Patents Issued in November 21, 2017
  • Patent number: 9825130
    Abstract: A nanowire device of the present description may include a highly doped underlayer formed between at least one nanowire transistor and the microelectronic substrate on which the nanowire transistors are formed, wherein the highly doped underlayer may reduce or substantially eliminate leakage and high gate capacitance which can occur at a bottom portion of a gate structure of the nanowire transistors. As the formation of the highly doped underlayer may result in gate inducted drain leakage at an interface between source structures and drain structures of the nanowire transistors, a thin layer of undoped or low doped material may be formed between the highly doped underlayer and the nanowire transistors.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: November 21, 2017
    Assignee: Intel Corporation
    Inventors: Seiyon Kim, Kelin Kuhn, Rafael Rios, Mark Armstrong
  • Patent number: 9825131
    Abstract: A method of manufacturing a semiconductor device includes determining information that indicates an extrinsic dopant concentration and an intrinsic oxygen concentration in a semiconductor wafer. On the basis of information about the extrinsic dopant concentration and the intrinsic oxygen concentration as well as information about a generation rate or a dissociation rate of oxygen-related thermal donors in the semiconductor wafer, a process temperature gradient is determined for generating or dissociating oxygen-related thermal donors to compensate for a difference between a target dopant concentration and the extrinsic dopant concentration.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: November 21, 2017
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Moriz Jelinek, Hans-Joachim Schulze, Werner Schustereder, Michael Stadtmueller
  • Patent number: 9825132
    Abstract: An electrical circuit is disclosed that comprises plurality of tunneling field-effect transistors (TFETs) arranged in a diffusion network matrix having a plurality of nodes wherein, for each of the TFETs that is not on an end of the matrix, a drain of the TFET is electrically coupled with the source of at least one of the other TFETs at a node of the matrix and a source of the TFET is electrically coupled with the drain of at least one of the other TFETs at another node of the matrix. The electrical circuit further comprises a plurality of capacitors, wherein a respective one of the plurality of capacitors is electrically coupled with each node that includes the source of at least one TFET and the drain of at least one TFET. The TFETs may be symmetrical graphene-insulator-graphene field-effect transistors (SymFETs), for example.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: November 21, 2017
    Assignee: University of Notre Dame du Lac
    Inventors: Behnam Sedighi, Xiaobo Sharon Hu, Michael Niemier, Joseph Nahas
  • Patent number: 9825133
    Abstract: A semiconductor device may include a gate electrode, an insulating layer, a first channel member, and a second channel member. The insulating layer may overlap the gate electrode. The first channel member may be positioned between the gate electrode and the insulating layer. The second channel member may be positioned between the gate electrode and the first channel member. A semiconductor material of the second channel member may be different from a semiconductor material of the first channel member.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: November 21, 2017
    Assignee: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION
    Inventor: Deyuan Xiao
  • Patent number: 9825134
    Abstract: A layered semiconductor includes a base layer including a substrate and a buffer layer, and a drift layer which is disposed on the base layer and is made of GaN and whose conductivity type is an n-type. The drift layer has an average n-type impurity concentration of 1.5×1016 cm?3 or less in a radial direction of the substrate, and the difference between the maximum n-type impurity concentration and the minimum n-type impurity concentration is 1.5×1015 cm?3 or less.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: November 21, 2017
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Fuminori Mitsuhashi, Yusuke Yoshizumi, Takashi Ishizuka, Masaki Ueno
  • Patent number: 9825135
    Abstract: Semiconductor devices and methods for manufacturing the same are provided. An example method may include: forming a sacrificial gate stack on a substrate; forming a gate spacer on sidewalls of the sacrificial gate stack; forming an interlayer dielectric layer on the substrate and planarizing it to expose the sacrificial gate stack; partially etching back the sacrificial gate stack to form an opening; expanding the resultant opening so that the opening is in a shape whose size gradually increases from a side adjacent to the substrate towards an opposite side away from the substrate; and removing a remaining portion of the sacrificial gate stack and forming a gate stack in a space defined by the gate spacer.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: November 21, 2017
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventor: Huilong Zhu
  • Patent number: 9825136
    Abstract: A semiconductor component includes an element composed of a conductive material, which is arranged above a surface of a semiconductor substrate. The element includes an element region not adjoined by any electrical contacts to an overlying or underlying electrically conductive plane. In this case, a surface of the element facing away from the semiconductor substrate is patterned with elevations or depressions and a surface of the element region facing the semiconductor substrate is patterned to a lesser extent or is not patterned.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: November 21, 2017
    Assignee: Infineon Technologies Austria AG
    Inventors: Franz Josef Niedernostheide, Manfred Pfaffenlehner, Frank Dieter Pfirsch, Hans-Joachim Schulze, Holger Schulze, Christoph Weiss
  • Patent number: 9825137
    Abstract: A semiconductor element and a method for producing the same are provided. A semiconductor element includes an active region comprising trenches, a termination region outside the active region, a transient region disposed between the active region and the termination region, the transient region including an inside trench, in which a center poly electrode is disposed inside at least one of the trenches of the active region, at least two gate poly electrodes are disposed adjacent to an upper portion of the center poly electrode, a p-body region is disposed between upper portions of the trenches, and a source region is disposed at a side of the gate poly electrodes.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: November 21, 2017
    Assignee: Magnachip Semiconductor, Ltd.
    Inventor: Youngjae Kim
  • Patent number: 9825138
    Abstract: A method of fabricating a FET includes forming a gate on the surface of a substrate. A trench contact extends between a first region located proximate the surface of the substrate and a second region located below the first region is formed in the surface. The surface of the substrate is coated with a conductive material, wherein the conductive material at least partially covers the gate and lines the trench contact to electrically connect the first region and the second region. A void remains in the trench contact. A dielectric material is applied to the conductive material, wherein the dielectric material at least partially fills the void in the trench contact. At least a portion of the conductive material is etched from the gate.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: November 21, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Hong Yang, Zachary K. Lee, Yufei Xiong, Yunlong Liu, Wei Tang
  • Patent number: 9825139
    Abstract: A semiconductor device includes a device region including a compound semiconductor material and a non-device region at least partially surrounding the device region. The semiconductor device further includes a dielectric material in the non-device region and at least one electrode in the device region. The semiconductor device further includes at least one pad electrically coupled to the at least one electrode, wherein the at least one pad is arranged on the dielectric material in the non-device region.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: November 21, 2017
    Assignee: Infineon Technologies Austria AG
    Inventors: Gilberto Curatola, Oliver Haeberlen, Simone Lavanga, Gianmauro Pozzovivo, Fabian Reiher
  • Patent number: 9825140
    Abstract: A metal oxide thin film transistor (TFT) includes a gate electrode, a gate insulating layer, a metal oxide active layer, a source electrode, and a drain electrode. The gate electrode is formed on a substrate. The gate insulating layer is formed on the substrate and covers the gate electrode. The metal oxide active layer is formed on the gate insulating layer. The drain electrode and the source electrode are formed on two opposite ends of the metal oxide active layer in a spaced-apart manner, in which at least one of the orthographic projection of the source electrode and the orthographic projection of the drain electrode on the substrate does not overlap the gate electrode.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: November 21, 2017
    Assignee: E Ink Holdings Inc.
    Inventors: Chia-Chun Yeh, Henry Wang, Xue-Hung Tsai, Chih-Hsuan Wang
  • Patent number: 9825141
    Abstract: A three dimensional monolithic LDMOS transistor implements a drain structure vertically disposed above a level of the structure that includes a drain connection of the transistor. Displacing the drain structure vertically, out of the plane or level of the gate and source/drain connections, creates a three dimensional structure for the transistor. One result is that the transistor consumes far less lateral area on the substrate. The reduction in lateral area in turn provides benefits such as allowing transistors to be more densely arranged on the substrate and allowing additional devices of other types to be formed on the substrate.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: November 21, 2017
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Qing Liu, Shom Ponoth
  • Patent number: 9825142
    Abstract: Methods of fabricating semiconductor devices include forming a first impurity region in a substrate by implanting a first impurity of a first conductivity type in a cell region and a peripheral region of the substrate to a first target depth from a top surface of the substrate; forming a second impurity region in the cell region and the peripheral region by implanting a second impurity of the first conductivity type into the cell region and the peripheral region to a second target depth that is smaller than the first depth from the top surface of the substrate; forming a cell transistor with a channel in the cell region, wherein the first impurity region forms the channel of the cell transistor; and forming a peripheral transistor with a channel in the peripheral region, wherein the second impurity region forms the channel of the peripheral transistor.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: November 21, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: HyeoungWon Seo, Daehyun Moon, Jooyoung Lee, Ilgweon Kim, Dongjin Jung
  • Patent number: 9825143
    Abstract: A method for forming a stacked semiconductor nanowire field effect transistor (FET) having reduced parasitic capacitance is provided. The parasitic capacitance of the stacked semiconductor nanowire FET including vertically stacked and vertically spaced apart semiconductor nanowires can be reduced by forming a tunnel spacer laterally surrounding a gate structure located beneath each of the vertically stacked and vertically spaced apart semiconductor nanowires.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: November 21, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Effendi Leobandung
  • Patent number: 9825144
    Abstract: A metal gate transistor includes a substrate, a metal gate on the substrate, and a source/drain region in the substrate adjacent to the metal gate. The metal gate includes a high-k dielectric layer, a bottom barrier metal (BBM) layer comprising TiSiN on the high-k dielectric layer, a TiN layer on the BBM layer, a TiAl layer between the BBM layer and the TiN layer, and a low resistance metal layer on the TiN layer.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: November 21, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shih-Fang Tzou, Chien-Ming Lai, Yi-Wen Chen, Hung-Yi Wu, Tong-Jyun Huang, Chien-Ting Lin, Chun-Hsien Lin
  • Patent number: 9825145
    Abstract: When p-type impurities are implanted into a SiC substrate using a laser, controlling the concentration is difficult. A p-type impurity region is formed by a laser in a region where the control of the concentration in the SiC substrate is not necessary almost at all. A SiC semiconductor device having withstanding high voltage is manufactured at a lower temperature process compared to ion implantation process. A method of manufacturing a silicon carbide semiconductor device includes forming, on one main surface of a first conductivity-type silicon carbide substrate, a first conductivity-type drift layer having a lower concentration than that of the silicon carbide substrate; forming, on a front surface side of the drift layer, a second conductivity-type electric field control region by a laser doping technology; forming a Schottky electrode in contact with the drift layer; and forming, on the other main surface of the silicon carbide substrate, a cathode electrode.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: November 21, 2017
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Koh Yoshikawa, Haruo Nakazawa, Kenichi Iguchi, Yasukazu Seki
  • Patent number: 9825146
    Abstract: A MOS capacitor, a method of fabricating the same, and a semiconductor device using the same are provided. The MOS capacitor is arranged in an outermost cell block of the semiconductor device employing an open bit line structure. The MOS capacitor includes a first electrode arranged in a semiconductor substrate, a dielectric layer arranged on a semiconductor substrate, and a second electrode arranged on the dielectric layer and including a dummy bit line.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: November 21, 2017
    Assignee: SK HYNIX INC.
    Inventor: Jeong Sub Lim
  • Patent number: 9825147
    Abstract: A method of forming a HVMOS transistor device is provided. A substrate is provided. A first insulation structure and a trench are formed in the substrate. A base region having a second conductivity type is formed, wherein the base region completely encompasses the trench. Next, a gate dielectric layer and a gate structure are formed in the trench and covering a portion of the first insulation structure. Then, a drain region and a source region are formed in the substrate at two respective sides of the gate structure, and the drain region and the source region comprise a first conductivity type complementary to the second conductivity type. A channel is defined between the source region and the drain region along a first direction.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: November 21, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Ming-Shun Hsu
  • Patent number: 9825148
    Abstract: A method of manufacturing a semiconductor device includes forming a transistor in a semiconductor substrate having a first main surface. The transistor is formed by forming a source region, forming a drain region, forming a channel region, forming a drift zone, and forming a gate electrode adjacent to at least two sides of the channel region. The channel region and the drift zone are disposed along a first direction parallel to the first main surface, between the source region and the drain region. Forming the semiconductor device further includes forming a conductive layer, a portion of the conductive layer being disposed beneath the gate electrode and insulated from the gate electrode.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: November 21, 2017
    Assignee: Infineon Technologies AG
    Inventors: Andreas Meiser, Till Schloesser, Thorsten Meyer
  • Patent number: 9825149
    Abstract: The present invention generally relates to a structure and manufacturing of a power field effect transistor (FET). The present invention provides a planar power metal oxide semiconductor field effect transistor (MOSFET) structure and an insulated gate bipolar transistor (IGBT) structure comprising a split gate and a semi-insulating field plate. The present invention also provides manufacturing methods of the structures.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: November 21, 2017
    Inventors: Jiajin Liang, Chun Wai Ng, Johnny Kin On Sin
  • Patent number: 9825150
    Abstract: A method of making a Fin field effect transistor (FinFET) includes forming a fin having a first height above a first surface of a substrate, wherein a portion of the fin has first tapered sidewalls, and the fin has a top surface. The method includes forming an insulation region over a portion of the first surface of the substrate, wherein a top of portion of the insulation region defines a second surface. The method further includes covering the first tapered sidewalls and the top surface with a gate dielectric. The method further includes forming a conductive gate strip traversing over the gate dielectric, wherein the conductive gate strip has second tapered sidewalls along a longitudinal direction perpendicular to the first height, and a space between the second tapered sidewalls in the longitudinal direction is greater at a location nearest to the substrate than at a location farthest from the substrate.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: November 21, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Jhon Jhy Liaw
  • Patent number: 9825151
    Abstract: The present invention suggests a substrate manufacturing method and a manufacturing method of a semiconductor device comprising: providing a SOI structure having an insulation layer and a silicon layer laminated on a substrate; laminating to form a silicon germanium layer and a capping silicon layer on the SOI structure; implementing oxidation process at two or more temperatures and heat treatment process at least once during the oxidation process to form a germanium cohesion layer and a silicon dioxide layer; and removing the silicon dioxide layer.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: November 21, 2017
    Assignee: IUCF-HYU
    Inventors: Jea Gun Park, Tea Hun Shim, Seung Hyun Song, Du Yeong Lee
  • Patent number: 9825153
    Abstract: A method of manufacturing a semiconductor device includes forming a preliminary fin-type active pattern extending in a first direction, forming a device isolation pattern covering a lower portion of the preliminary fin-type active pattern, forming a gate structure extending in a second direction and crossing over the preliminary fin-type active pattern, forming a fin-type active pattern having a first region and a second region, forming a preliminary impurity-doped pattern on the second region by using a selective epitaxial-growth process, and forming an impurity-doped pattern by injecting impurities using a plasma doping process, wherein the upper surface of the first region is at a first level and the upper surface of the second region is at a second level lower than the first level.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: November 21, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kyungin Choi, Sunghyun Choi, Yong-Suk Tak, Bonyoung Koo, Jaejong Han
  • Patent number: 9825154
    Abstract: The tunneling channel of a field effect transistor comprising a plurality of tunneling elements contacting a channel substrate. Applying a source-drain voltage of greater than a turn-on voltage produces a source-drain current of greater than about 10 pA. Applying a source-drain voltage of less than a turn-on voltage produces a source-drain current of less than about 10 pA. The turn-on voltage at room temperature is between about 0.1V and about 40V.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: November 21, 2017
    Assignee: Michigan Technological University
    Inventor: Yoke Khin Yap
  • Patent number: 9825155
    Abstract: The magnetoresistive element includes a semiconductor channel layer, a pinned layer disposed on the semiconductor channel layer via a first tunnel layer, a free layer disposed on the semiconductor channel layer via a second tunnel layer, wherein the semiconductor channel layer includes a first region containing an interface with the first tunnel layer, a second region containing an interface with the second tunnel layer, and a third region, impurity concentrations in the first and second regions are higher than 1×1019 cm?3, an impurity concentration in the third region is 1×1019 cm?3 or less, the first and second regions are separated by the third region, and the impurity concentrations in the first and second regions decrease in the thickness direction of the semiconductor channel layer from the interface between the semiconductor channel layer and the first tunnel layer and the interface between the semiconductor channel layer and the second tunnel layer.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: November 21, 2017
    Assignee: TDK CORPORATION
    Inventors: Tomoyuki Sasaki, Tohru Oikawa
  • Patent number: 9825156
    Abstract: A compound semiconductor device includes a heterojunction bipolar transistor and a bump. The heterojunction bipolar transistor includes a plurality of unit transistors. The bump is electrically connected to emitters of the plurality of unit transistors. The plurality of unit transistors are arranged in a first direction. The bump is disposed above the emitters of the plurality of unit transistors while extending in the first direction. The emitter of at least one of the plurality of unit transistors is displaced from a center line of the bump in the first direction toward a first side of a second direction which is perpendicular to the first direction. The emitter of at least another one of the plurality of unit transistors is displaced from the center line of the bump in the first direction toward a second side of the second direction.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: November 21, 2017
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Kenji Sasaki, Kingo Kurotani, Takashi Kitahara
  • Patent number: 9825157
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a heterojunction bipolar transistor with a stress component and methods of manufacture. The heterojunction bipolar transistor includes a collector region, an emitter region and a base region. Stress material is formed within a trench of a substrate and surrounding at least the collector region and the base region.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: November 21, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Vibhor Jain, Renata A. Camillo-Castillo, Anthony K. Stamper
  • Patent number: 9825158
    Abstract: An IGBT is provided having a first gate unit having first trench gates with first conductive layers and planar gates with second conductive layers. A second gate unit having a second trench gates may be connected to the emitter electrode, with the first and second conductive layers forming a first shape closed in itself and enclosing the second gate unit. Third trench gates are arranged between a planar gate and the second gate unit such that first and third trench gates are connected and form a second shape closed in itself by which the second gate unit is enclosed. P+ doped bars below the planar gale contact the emitter electrode with each third trench gate separating a bar and a planar gate electrode from the second gate unit, with a p doped base layer separating the second gate unit from the enclosing second shape.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: November 21, 2017
    Assignee: ABB Schweiz AG
    Inventor: Chiara Corvasce
  • Patent number: 9825159
    Abstract: Provided is a semiconductor device comprising: a semiconductor substrate; a plurality of gate trench sections formed in the semiconductor substrate; and a plurality of emitter trench sections formed in the semiconductor substrate, one or more emitter trench sections provided in each region between adjacent gate trench sections of the plurality of gate trench sections, wherein the semiconductor device includes at least one of: pairs of gate trench sections in which at least two gate trench sections of the plurality of gate trench sections are connected; and a pair of emitter trench sections in which at least two emitter trench sections of the plurality of emitter trench sections are connected.
    Type: Grant
    Filed: December 26, 2016
    Date of Patent: November 21, 2017
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Tetsutaro Imagawa
  • Patent number: 9825160
    Abstract: A semiconductor device includes: a semiconductor substrate; a main electrode; a peripheral electrode; an insulating protective film; a surface metallic layer; and a solder layer, wherein the semiconductor substrate includes: a first region of a first conductive-type in contact with the main electrode on a main contact surface; a second region of a first conductive-type in contact with the peripheral electrode on a peripheral contact surface; and a third region of a second conductive-type provided under the first region, under the second region, and circumferentially outward of the second region, and a circumferentially-outward end of the metallic layer and a circumferentially-outward end of the solder layer are located more circumferentially inward than the circumferentially-outward end of the peripheral electrode.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: November 21, 2017
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Tomohiko Sato
  • Patent number: 9825161
    Abstract: Provided is a logical operation element that performs logical operations on three or more inputs using a single unique device. The logical operation element 30 is provided with an electrode 5A and the other electrode 5B that are provided to have a nanogap, a metal nanoparticle 7 arranged between the electrode 5A and the other electrode 5B in insulated state, and a plurality of gate electrodes 5C, 5D, 11, 11A, 11B for adjusting a charge of the metal nanoparticle 7. Electric current that flows between the electrode 5A and the other electrode 5B is controlled in accordance with the voltage applied to three or more of the gate electrodes 5C, 5D, 11, 11A, 11B.
    Type: Grant
    Filed: March 9, 2014
    Date of Patent: November 21, 2017
    Assignee: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Yutaka Majima, Toshiharu Teranishi, Kazuhiko Matsumoto, Kenzo Maehashi, Tomofumi Susaki, Yasuhide Ohno, Kosuke Matsuzaki, Guillaume Hubert Frederic Hackenberger
  • Patent number: 9825162
    Abstract: A vertical power transistor device comprises: a substrate formed from a III-V semiconductor material and a multi-layer stack at least partially accommodated in the substrate. The multi-layer stack comprises: a semi-insulating layer disposed adjacent the substrate and a first layer formed from a first III-V semiconductor material and disposed adjacent the semi-insulating layer. The multi-layer stack also comprises a second layer formed from a second III-V semiconductor material disposed adjacent the first layer and a heterojunction is formed at an interface of the first and second layers.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: November 21, 2017
    Assignee: NXP USA, INC.
    Inventors: Philippe Renaud, Bruce Green
  • Patent number: 9825163
    Abstract: Super-junction MOSFETs by trench fill system requires void-free filling epitaxial growth. This may require alignment of plane orientations of trenches in a given direction. Particularly, when column layout at chip corner part is bilaterally asymmetrical with a diagonal line between chip corners, equipotential lines in a blocking state are curved at corner parts due to column asymmetry at chip corner. This tends to cause points where equipotential lines become dense, which may cause breakdown voltage reduction. In the present invention, in power type semiconductor active elements such as power MOSFETs, a ring-shaped field plate is disposed in chip peripheral regions around an active cell region, etc., assuming a nearly rectangular shape. The field plate has an ohmic-contact part in at least a part of the portion along the side of the rectangle. However, in the portion corresponding to the corner part of the rectangle, an ohmic-contact part is not disposed.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: November 21, 2017
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventor: Tomohiro Tamaki
  • Patent number: 9825164
    Abstract: A silicon carbide semiconductor device includes a drift layer of a first conductivity type, a source region of the first conductivity type, an active trench formed in penetration through the source region, a base region, a termination trench formed around the active trench, a gate insulating film formed on a bottom surface, a side surface of the active trench, a gate electrode embedded and formed in the active trench with the gate insulating film interposed therebetween, a protective diffusion layer of a second conductivity type formed in a lower portion of the active trench and a part of a lower portion of the termination trench and having a first impurity concentration, and a termination diffusion layer of the second conductivity type formed on an outside of the protective diffusion layer in the lower portion of the termination trench and having a second impurity concentration lower than the first impurity concentration.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: November 21, 2017
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yasuhiro Kagawa, Rina Tanaka, Yutaka Fukui, Kohei Ebihara, Shiro Hino
  • Patent number: 9825165
    Abstract: A charge-compensation semiconductor device includes a semiconductor body having a first surface, a lateral edge delimiting the semiconductor body in a horizontal direction substantially parallel to the first surface, an active area, a peripheral area arranged between the active area and the lateral edge, a drift region, first compensation regions forming respective first pn-junctions with the drift region, and second compensation regions extending from the first surface into the drift region and forming respective second pn-junctions with the drift region. The first compensation regions form in the active area a lattice comprising a first base vector having a first length. The second compensation regions have, in a horizontal direction parallel to the first surface, a horizontal width which decreases with an increasing vertical distance from the first surface and with a decreasing horizontal distance from the edge.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: November 21, 2017
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans Weber, Markus Schmitt, Andreas Voerckel
  • Patent number: 9825166
    Abstract: Disclosed herein is a technique for realizing a high-performance and high-reliability silicon carbide semiconductor device. A trenched MISFET with a trench formed into the drift through a p-type body layer 105 includes an n-type resistance relaxation layer 109 covering the bottom portion of the trench, and a p-type field relaxation layer 108. The p-type field relaxation layer 108 is separated from the trench bottom portion via the resistance relaxation layer 109, and is wider than the resistance relaxation layer 109. This achieves a low ON resistance, high reliability, and high voltage resistance at the same time. By forming the field relaxation layer beneath the trench, feedback capacitance can be controlled to achieve a high switching rate and high reliability.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: November 21, 2017
    Assignee: HITACHI, LTD.
    Inventors: Naoki Tega, Digh Hisamoto, Satoru Akiyama, Takashi Takahama, Tadao Morimoto, Ryuta Tsuchiya
  • Patent number: 9825167
    Abstract: In characteristic test measurements of double-gate-in-trench p-channel power MOSFETs each having a p+ polysilicon gate electrode and a p+ field plate electrode in a trench, which were fabricated according to common design techniques, it has been found that, under conditions where a negative gate bias is applied continuously at high temperature with respect to the substrate, an absolute value of threshold voltage tends to increase steeply after the lapse of a certain period of stress application time. To solve this problem, the present invention provides a p-channel power MOSFET having an n-type polysilicon linear field plate electrode and an n-type polysilicon linear gate electrode in each trench part thereof.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: November 21, 2017
    Assignee: Renesas Electronics Corporation
    Inventors: Hitoshi Matsuura, Yoshito Nakazawa
  • Patent number: 9825168
    Abstract: A semiconductor device includes a semiconductor substrate and a first well region formed in the semiconductor substrate. An insulator is formed in and over a portion of the first well region and a second well region is formed in the first well region at a first side of the insulator. A first doped region is formed in the second well region, and a second doped region is formed in the first well region at a second side opposite the first side of the insulator. A gate structure is formed over the insulator, the first well region between the second well region and the insulator, and the second well region. An isolation element is formed in the semiconductor substrate, surrounding the first well region and the second well region. The first and second doped regions are formed with asymmetric configurations from a top view.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: November 21, 2017
    Assignee: MEDIATEK INC.
    Inventors: Cheng Hua Lin, Yan-Liang Ji
  • Patent number: 9825169
    Abstract: A device includes a semiconductor substrate, a buried doped isolation layer disposed in the semiconductor substrate to isolate the device, a drain region disposed in the semiconductor substrate and to which a voltage is applied during operation, and a depletion region disposed in the semiconductor substrate and having a conductivity type in common with the buried doped isolation barrier and the drain region. The depletion region reaches a depth in the semiconductor substrate to be in contact with the buried doped isolation layer. The depletion region establishes an electrical link between the buried doped isolation layer and the drain region such that the buried doped isolation layer is biased at a voltage level lower than the voltage applied to the drain region.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: November 21, 2017
    Assignee: NXP USA, Inc.
    Inventors: Xin Lin, Xu Cheng, Hongning Yang, Zhihong Zhang, Jiang-Kai Zuo
  • Patent number: 9825170
    Abstract: A semiconductor device formed in a semiconductor substrate having a first main surface comprises a transistor array and a termination region. The transistor array comprises a source region, a drain region, a body region, a drift zone, and a gate electrode at the body region. The gate electrode is configured to control a conductivity of a channel formed in the body region. The gate electrode is disposed in first trenches. The body region and the drift zone are disposed along a first direction between the source region and the drain region, the first direction being parallel to the first main surface. The body region has a shape of a first ridge extending along the first direction. The termination region comprises a termination trench, a portion of the termination trench extending in the first direction, a length of the termination trench being larger than a length of the first trenches, the length being measured along the first direction.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: November 21, 2017
    Assignee: Infineon Technologies AG
    Inventors: Franz Hirler, Andreas Meiser, Till Schloesser
  • Patent number: 9825171
    Abstract: A semiconductor device has: a silicon (semiconductor) substrate; a gate insulating film and a gate electrode, which are formed on the silicon substrate in this order; and source/drain material layers formed in recesses (holes) in the silicon substrate, the recesses being located beside the gate electrode. Here, each of side surfaces of the recesses, which are closer to the gate electrode, is constituted of at least one crystal plane of the silicon substrate.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: November 21, 2017
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Hidenobu Fukutome, Tomohiro Kubo
  • Patent number: 9825172
    Abstract: The disclosure relates generally to a metal-oxide-semiconductor field effect transistor (MOSFET) structures and methods of forming the same. The MOSFET structure includes at least one semiconductor body on a substrate; a dielectric cap on a top surface of the at least one semiconductor body, wherein a width of the at least one semiconductor body is less than a width of the dielectric cap; a gate dielectric layer conformally coating the at least one semiconductor body; and at least one electrically conductive gate on the gate dielectric layer.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: November 21, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Edward J. Nowak, Richard Q. Williams
  • Patent number: 9825173
    Abstract: A fin-type field-effect transistor (FinFET) device includes a plurality of fins formed over a substrate. The semiconductor device further includes a dielectric layer filled in a space between each fin and over a first portion of the plurality of fins and a dielectric trench formed in the dielectric layer. The dielectric trench has a vertical profile. The semiconductor device further includes a second portion of the plurality of fins recessed and exposed in the dielectric trench. The second portion of the plurality of fins have a rounded-convex-shape top profile.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: November 21, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia Tai Lin, Yih-Ann Lin, An-Shen Chang, Ryan Chia-Jen Chen, Chao-Cheng Chen
  • Patent number: 9825174
    Abstract: Embodiments of the present invention provide a fin type field effect transistor (FinFET) and methods of fabrication. A punchthrough stopper region is formed on a semiconductor substrate. An insulator layer, such as silicon oxide, is formed on the punchthrough stopper. Fins and gates are formed on the insulator layer. The insulator layer is then removed from under the fins, exposing the punchthrough stopper. An epitaxial semiconductor region is grown from the punchthrough stopper to envelop the fins, while the insulator layer remains under the gate. By growing the fin merge epitaxial region mainly from the punchthrough stopper, which is part of the semiconductor substrate, it provides a higher growth rate then when growing from the fins. The higher growth rate provides better epitaxial quality and dopant distribution.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: November 21, 2017
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Ali Khakifirooz, Alexander Reznicek, Soon-Cheon Seo
  • Patent number: 9825175
    Abstract: A thin film transistor and a fabrication method thereof, an array substrate and a display device are provided. The thin film transistor includes: an active layer, a source-drain metal layer and a diffusion blocking layer located between the active layer and the source-drain metal layer, wherein, the source-drain metal layer includes a source electrode and a drain electrode; the diffusion blocking layer includes a source blocking part corresponding to a position of the source electrode and a drain blocking part corresponding to a position of the drain electrode; and the diffusion blocking layer is doped with different concentrations of nitrogen from a side close to the source-drain metal layer to a side close to the active layer.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: November 21, 2017
    Assignee: BOE Technology Group Co., Ltd.
    Inventors: Wei Liu, Chunsheng Jiang, Lung Pao Hsin
  • Patent number: 9825176
    Abstract: A thin film transistor includes: a substrate, a semiconductor layer disposed on the substrate, a first gate electrode and a second gate electrode disposed on the semiconductor layer, a gate insulating layer disposed between the semiconductor layer and the first and second gate electrodes and having a first through hole between the first and second gate electrodes and a capping layer covering the first gate electrode and contacting the semiconductor layer via the first through hole. The capping layer includes a conductive material.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: November 21, 2017
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Yul-Kyu Lee, Kyu-Sik Cho, Sun Park
  • Patent number: 9825177
    Abstract: A semiconductor device which includes a transistor having a miniaturized structure is provided. A first insulator is provided over a stack in which a semiconductor, a first conductor, and a second conductor are stacked in this order. Over the first insulator, an etching mask is formed. Using the etching mask, the first insulator and the second conductor are etched until the first conductor is exposed. After etching the first conductor until the semiconductor is exposed so as to form a groove having a smaller width than the second conductor, a second insulator and a third conductor are formed sequentially.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: November 21, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Shinya Sasagawa, Satoru Okamoto, Motomu Kurata, Yuta Endo
  • Patent number: 9825178
    Abstract: In a transistor including an oxide semiconductor film, a metal oxide film which has a function of preventing electrification and covers a source electrode and a drain electrode is formed in contact with the oxide semiconductor film, and then, heat treatment is performed. Through the heat treatment, impurities such as hydrogen, moisture, a hydroxyl group, or hydride are intentionally removed from the oxide semiconductor film, whereby the oxide semiconductor film is highly purified. By providing the metal oxide film, generation of a parasitic channel on the back channel side of the oxide semiconductor film in the transistor is prevented.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: November 21, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 9825179
    Abstract: A novel oxide semiconductor is provided. An oxide semiconductor contains In, an element M (M represents Al, Ga, Y, or Sn), and Zn. The oxide semiconductor has little characteristics variation and structure change and has high electron mobility in the case where the atomic ratio of In to M and Zn in the oxide semiconductor ranges from 4:2:3 to 4:2:4.1 or is a neighborhood thereof.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: November 21, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masashi Tsubuku, Masashi Oota, Akihisa Shimomura, Yasumasa Yamane
  • Patent number: 9825180
    Abstract: The present invention provides a thin-film transistor in which transistor characteristics such as drain current and threshold voltage are improved, and a method of manufacturing the same. The present invention provides a thin-film transistor provided with a source electrode (108), a drain electrode (109), a semiconductor layer (105), a gate electrode (103), and an insulating layer (104); wherein the semiconductor layer (105) contains a composite metal oxide obtained by adding to a first metal oxide an oxide having an oxygen dissociation energy that is at least 200 kJ/mol greater than the oxygen dissociation energy of the first metal oxide, whereby the amount of oxygen vacancy is controlled; and the insulating layer (104) is provided with an SiO2 layer, a high-permittivity first layer, and a high-permittivity second layer, whereby the dipoles generated at the boundary between the SiO2 layer and the high-permittivity layers are used to control the threshold voltage.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: November 21, 2017
    Assignee: National Institute for Materials Science
    Inventors: Toshihide Nabatame, Kazuhito Tsukagoshi, Shinya Aikawa, Toyohiro Chikyo