Patents Issued in July 24, 2018
  • Patent number: 10032597
    Abstract: An anode member includes a first metal tube and a second metal tube having a coefficient of thermal expansion that is larger than that of the first metal tube. A peripheral portion of a target is bonded to the anode member via a bonding material that is arranged so as to extend over the first metal tube and the second metal tube.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: July 24, 2018
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Yasuo Ohashi, Kazuyuki Ueda
  • Patent number: 10032598
    Abstract: An anode for an X-ray tube can include a ceramic body, e.g., material that includes yttrium-oxide derivatives. Upon collision with an anode, the kinetic energy of an electron beam in an X-ray tube is converted to high frequency electromagnetic waves, i.e., X-rays. An anode with a ceramic body can reduce costs and/or weight, extend the life of the anode or associated components (e.g., bearings) and simultaneously provide a high heat storage capacity.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: July 24, 2018
    Inventor: Neil Dee Olsen
  • Patent number: 10032599
    Abstract: A method of investigating a specimen using charged particle microscopy, comprising the following steps: Using a primary source to produce a pulsed beam of charged particles that propagate along a beam path; Providing a specimen at an irradiation position in said beam path; Using a secondary source to produce repetitive excitations of the specimen; Using a detector to register charged particles in said beam that traverse the specimen after each said excitation, wherein: Said primary source is configured to produce a train of multiple pulses per excitation by said secondary source; Said detector is configured to comprise an integrated array of pixels, each with an individual readout circuit, to register a time-of-arrival of individual particles in said train.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: July 24, 2018
    Assignee: FEI Cmnpany
    Inventor: Erik René Kieft
  • Patent number: 10032600
    Abstract: This invention provides a charged particle source, which comprises an emitter and means for generating a magnetic field distribution. The magnetic field distribution is minimum, about zero, or preferred zero at the tip of the emitter, and along the optical axis is maximum away from the tip immediately. In a preferred embodiment, the magnetic field distribution is provided by dual magnetic lens which provides an anti-symmetric magnetic field at the tip, such that magnetic field at the tip is zero.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: July 24, 2018
    Assignee: HERMES MICROVISION, INC.
    Inventor: Shuai Li
  • Patent number: 10032601
    Abstract: A platen support structure adapted to thermally insulate a heated platen portion from a cold base plate while providing substantially leak-free gas transport therebetween and while allowing thermal expansion and contraction of the platen portion. Various examples provide of the support structure provide a tubular flexure having an internal gas conduit, a platen portion mounting tab connected to the flexure and having an internal gas input slot that is in fluid communication with the internal gas conduit of the flexure, the platen portion mounting tab being adapted for connection to a platen portion of a platen, and a base plate mounting tab connected to the flexure and having an internal gas output slot that is in fluid communication with the internal gas conduit of the flexure, the base plate mounting tab being adapted for connection to a base plate of the platen.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: July 24, 2018
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Roger B. Fish, Steven Anella, Todd Lewis MacEachern
  • Patent number: 10032602
    Abstract: A method for processing a semiconductor wafer is provided. The method includes positioning the semiconductor wafer in a scanning electron microscope (SEM). The method further includes producing images of at least a portion of a test region that is designated on a process surface of the semiconductor wafer. The method also includes adjusting the condition of a charged particle beam of the SEM at a check point selected in the test region. In addition, the method includes producing images of another portion of the test region after the condition of the charged particle beam is adjusted.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: July 24, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventor: Ting-Tsung Chou
  • Patent number: 10032603
    Abstract: A charged particle beam lithography apparatus according to an embodiment includes: a pattern-writing-data data storage processing circuitry configured to store pattern writing data in association with pattern attribute information; a shot dividing processing circuitry configured to divide the pattern writing data into shot data in association with the pattern attribute information; an indicator data storage processing circuitry configured to store an indicator for determining correction section regions to be merged on calculation in an approximation calculation of heat transfers, the indicator being associated with the pattern attribute information; a pattern writing schedule creator configured to create a pattern writing schedule based on the shot data; an approximation-calculation-method determining processing circuitry configured to determine an approximation calculation method of the heat transfers from other shots written before a shot to be written, the shot being associated with the shot data to be wri
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: July 24, 2018
    Assignee: NuFlare Technology, Inc.
    Inventors: Noriaki Nakayamada, Mizuna Suganuma
  • Patent number: 10032604
    Abstract: Embodiments of an apparatus having an improved coil antenna assembly with a remote plasma source and an electron beam generation system that can provide enhanced plasma in a processing chamber. In one embodiment, a plasma processing chamber includes a chamber body, a lid enclosing an interior volume of the chamber body, a substrate support disposed in the interior volume, a dual inductively coupled source including a coil antenna assembly coupled to the chamber body through the lid, and a remote plasma source coupled to the chamber body through the lid.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: July 24, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventor: Rajinder Dhindsa
  • Patent number: 10032605
    Abstract: Methods and apparatus for processing a substrate in a multi-frequency plasma processing chamber are disclosed. The base RF signal pulses between a high power level and a low power level. Each of the non-base RF generators, responsive to a control signal, proactively switches between a first predefined power level and a second predefined power level as the base RF signal pulses. Alternatively or additionally, each of the non-base RF generators, responsive to a control signal, proactively switches between a first predefined RF frequency and a second predefined RF frequency as the base RF signal pulses. Techniques are disclosed for ascertaining in advance of production time the first and second predefined power levels and/or the first and second predefined RF frequencies for the non-base RF signals.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: July 24, 2018
    Assignee: Lam Research Corporation
    Inventors: John C. Valcore, Jr., Bradford J. Lyndaker
  • Patent number: 10032606
    Abstract: Semiconductor processing systems are described including a process chamber. The process chamber may include a lid assembly, grid electrode, conductive insert, and ground electrode. Each component may be coupled with one or more power supplies operable to produce a plasma within the process chamber. Each component may be electrically isolated through the positioning of a plurality of insulation members. The one or more power supplies may be electrically coupled with the process chamber with the use of switching mechanisms. The switches may be switchable to electrically couple the one or more power supplies to the components of the process chamber.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: July 24, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Jang-Gyoo Yang, Xinglong Chen, Soonam Park, Jonghoon Baek, Saurabh Garg, Shankar Venkataraman
  • Patent number: 10032607
    Abstract: A method of frequency tuning an electrical generator for supplying electrical power to a plasma is provided. Also provided is a plasma processing system and a computer program product. The method, the electrical generator, the plasma processing system, and the computer program product may have the advantage that the stability of the plasma with respect to repeated and essentially identical high and low power pulses is used to reduce the controlling effort and to check the stability of the plasma process.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: July 24, 2018
    Assignee: COMET AG
    Inventor: Roland Schlierf
  • Patent number: 10032608
    Abstract: Embodiments of the present invention relate to apparatus for improving uniformity and film stress of films deposited during plasma process of a substrate. According to embodiments, the apparatus includes a tuning electrode and/or a tuning ring electrically coupled to a variable capacitor for tuning high frequency RF impedance of the electrode and a low frequency RF termination to ground. The plasma profile and resulting film thickness can be controlled by adjusting the capacitance of the variable capacitor and the resulting impedance of the tuning electrode. The film stress of the film deposited on the substrate can be controlled, i.e., increased, by terminating the low frequency RF during processing.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: July 24, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Jian J. Chen, Juan Carlos Rocha-Alvarez, Mohamad A. Ayoub
  • Patent number: 10032609
    Abstract: Plasma applications are disclosed that operate with helium or argon at atmospheric pressure, and at low temperatures, and with high concentrations of reactive species in the effluent stream. Laminar gas flow is developed prior to forming the plasma and at least one of the electrodes is heated which enables operation at conditions where the helium plasma would otherwise be unstable and either extinguish, or transition into an arc. The techniques can be employed to remove organic materials from a substrate, thereby cleaning the substrate; activate the surfaces of materials thereby enhancing adhesion between the material and an adhesive; kill microorganisms on a surface, thereby sterilizing the substrate; etches thin films of materials from a substrate, and deposit thin films and coatings onto a substrate.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: July 24, 2018
    Assignee: Surfx Technologies LLC
    Inventors: Siu Fai Cheng, Thomas Scott Williams, Toby Desmond Oste, Sarkis Minas Keshishian, Robert F. Hicks
  • Patent number: 10032610
    Abstract: A plasma generating device includes a plasma source having a plasma source hollow body (1) and an electron emission unit (5) for emitting free electrons into the plasma source hollow body. The plasma source hollow body (1) has a first gas inlet (7a) and a plasma source opening (10) which forms an opening to a vacuum chamber. An anode has an anode hollow body (2). The anode hollow body (2) has a second gas inlet (7b) and an anode opening (11) which forms an opening to the vacuum chamber, and a voltage source (8) the negative pole of which is connected to the electron emission unit (5) and the positive pole of which is connected to the anode hollow body (2). The positive pole of the voltage source (8) is electrically connected by a first shunt (6a) to the plasma source hollow body.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: July 24, 2018
    Assignee: OBERLIKON SURFACE SOLUTIONS AG, PFÄFFIKON
    Inventors: Siegfried Krassnitzer, Juerg Hagmann
  • Patent number: 10032611
    Abstract: A connection control method in a substrate processing apparatus is provided. The substrate processing apparatus comprises: a depressurized processing room; a susceptor that is provided in the processing room and configured to mount a wafer thereon; a HF high frequency power supply configured to apply a high frequency voltage for plasma generation to the susceptor; a LF high frequency power supply configured to apply a high frequency voltage for a bias voltage generation to the susceptor; and a DC voltage applying unit configured to apply a DC voltage of a rectangle-shaped wave to the susceptor, capable of improving a processing controllability in an etching process. The connection control method comprises controlling connection or disconnection between the susceptor and the LF high frequency power supply and connection or disconnection between the susceptor and the DC voltage applying unit when plasma is generated in the processing room.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: July 24, 2018
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Shinji Himori, Norikazu Yamada, Takeshi Ohse
  • Patent number: 10032612
    Abstract: A method of ion mapping is disclosed comprising depositing a sample onto a target surface and separating the sample on the target surface according to a first physico-chemical property in a first dimension and according to a second physico-chemical property in a second dimension. The method further comprises ionising and mass analysing multiple separate regions of the sample so as to generate an ion map of at least a portion of the sample deposited upon the target surface. The sample is deposited onto and separated on the target surface by mechanical, hydrodynamic and/or aerodynamic means.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: July 24, 2018
    Assignee: MICROMASS UK LIMITED
    Inventors: Stevan Bajic, Paul Robert Murray, Mark William Towers
  • Patent number: 10032613
    Abstract: A method of normalizing data can comprise globally normalizing at least a first and second data distribution by normalizing the proximal compositional proportionality of the abundance of the analyte using proximity-based intensity normalization. In an example, the proximity-based intensity normalization comprising using the following formula: i jx ? j = 1 n x ? ? i jx / i jy ? j = 1 n y ? ? i jy wherein: ijx is the intensity of ion j in the first distribution x, ijy is the intensity of ion j in the second distribution y, nx is the number of surrogate ions in distribution x, and ny is the number of surrogate ions in distribution y.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: July 24, 2018
    Assignee: Regents of the University of Minnesota
    Inventors: Susan Van Riper, John V. Carlis, Timothy J. Griffin, Ebbing de Jong, LeeAnn Higgins
  • Patent number: 10032614
    Abstract: A method and apparatus for analyzing samples using mass spectrometry are disclosed. The apparatus includes a reaction device configured to dissociate sample ions into fragments by reacting the sample ions with a charged species (e.g., electrons) such as through ECD, EID, or EIEIO. The kinetic energy of the charged species is such that the fragments may be detected and produce spectra that allow for the determination of isomeric species in the sample and the location of double bonds of sample molecules. The fragments may include radical fragments and non-radical fragments. The apparatus may also include an oxygen gas source configured to react with the radical fragments to produce oxygen-radical fragments. Spectra resulting from analysis of the fragments may allow for the determination of the oxygen-radical fragments resulting from the dissociation of the sample molecules.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: July 24, 2018
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: Takashi Baba, John Lawrence Campbell
  • Patent number: 10032615
    Abstract: Systems and methods for single cell culture and analysis by microscopy and matrix assisted laser desorption ionization mass spectrometry are disclosed. The systems and methods isolate a plurality of cells in a plurality of wells such that a predetermined number of the plurality of wells contain one and only one cell. The plurality of wells allow for optical interrogation of the cells and subsequent matrix assisted laser desorption ionizing of molecules within the cells.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: July 24, 2018
    Assignees: The Brigham and Women's Hospital, Massachusetts Institute of Technology
    Inventors: Nathalie Y. R. Agar, J. Christopher Love, Denis Loginov
  • Patent number: 10032616
    Abstract: A sample introduction device comprises a sampling unit, a gas suction pump, adsorption units, a piston cylinder and a desorption cylinder that comprises a desorption chamber, a carrier-gas inlet, a split/purge vent and an analyzer nozzle communicating with the desorption chamber. A heating film and a temperature sensor are provided on outer wall of the desorption cylinder. The piston cylinder above the desorption cylinder comprises two piston chambers, each of which is provided with the adsorption unit and in communication with the desorption chamber. The piston cylinder comprises a sample-gas inlet connected to the sampling unit and a gas-suction-pump orifice connected to the gas suction pump, each of which can communicate with both piston chambers. Each adsorption unit comprises an adsorption cylinder-like screen for holding adsorbents and a piston rod slidably mounted in the piston chamber.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: July 24, 2018
    Assignee: Nuctech Company Limited
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Weiping Zhu, Huishao He, Qiufeng Ma, Yaohong Liu, Xiang Zou, Jianping Chang
  • Patent number: 10032617
    Abstract: RF ion guides are configured as an array of elongate electrodes arranged symmetrically about a central axis, to which RF voltages are applied. The RF electrodes include at least a portion of their length that is semi-transparent to electric fields. Auxiliary electrodes are then provided proximal to the RF electrodes distal to the ion guide axis, such that application of DC voltages to the auxiliary electrodes causes an auxiliary electric field to form between the auxiliary electrodes and the ion guide RF electrodes. A portion of this auxiliary electric field penetrates through the semi-transparent portions of the RF electrodes, such that the potentials within the ion guide are modified. The auxiliary electrode structures and voltages can be configured so that a potential gradient develops along the ion guide axis due to this field penetration, which provides an axial motive force for collision damped ions.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: July 24, 2018
    Assignee: PerkinElmer Health Sciences, Inc.
    Inventor: David G. Welkie
  • Patent number: 10032618
    Abstract: A method of determining the structure of a macromolecular assembly (MMA) comprises the steps of (a) generating precursor ions of an MMA species to be investigated; (b) transporting the MMA precursor ions to a fragmentation zone; (c) carrying out pulsed fragmentation of the MMA precursor ions in the fragmentation zone; (d) for a first plurality of MMA precursor ions, detesting both a spatial distribution of the resultant MMA fragment ions, and an m/z distribution of the MMA fragment ions; (e) analyzing the spatial and m/z distributions of fragment ions formed from the said first plurality of precursor ions of the MMA species to be investigated, to determine the relative positions of those fragment ions within the structure of the precursor MMA; and (f) reconstructing the three dimensional (3D) structure of the MMA from the analysis of the spatial and m/z distributions of fragment ions.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: July 24, 2018
    Assignees: Thermo Fisher Scientific (Bremen) GmbH, Universiteit Maastricht, Universitiet Utrecht Holding B.V.
    Inventors: Alexander Alekseevich Makarov, Ronald M. A. Heeren, Albert J. R. Heck
  • Patent number: 10032619
    Abstract: A high brightness laser-sustained broadband light source includes a gas containment structure and a pump laser configured to generate a pump beam including illumination of a wavelength at least proximate to a weak absorption line of a neutral gas contained in the gas containment structure. The broadband light source includes one or more anamorphic illumination optics configured to focus the pump beam into an approximately elliptical beam waist positioned in or proximate to the center of the gas containment structure. The broadband light source includes one or more first collection optics configured to collect broadband radiation emitted by the plasma in a direction substantially aligned with a longer axis of the elliptical beam waist.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: July 24, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Alex Chuang, Xiaoxu Lu, Justin Liou, John Fielden
  • Patent number: 10032620
    Abstract: A laser-sustained plasma light source includes a plasma lamp configured to contain a volume of gas and receive illumination from a pump laser in order to generate a plasma. The plasma lamp includes one or more transparent portions transparent to illumination from the pump laser and at least a portion of the broadband radiation emitted by the plasma. The one or more transparent portions are formed from a transparent material having elevated hydroxide content above 700 ppm.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: July 24, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Lauren Wilson, Anant Chimmalgi, Matthew Panzer, Ilya Bezel
  • Patent number: 10032621
    Abstract: Devices and methods related to flat discharge tubes. In some embodiments, a gas discharge tube (GDT) device can include a first insulator substrate having first and second sides and defining an opening. The GDT device can further include second and third insulator substrates mounted to the first and second sides of the first insulator substrate with first and second seals, respectively, such that inward facing surfaces of the second and third insulator substrates and the opening of the first insulator substrate define a chamber. The GDT device can further include first and second electrodes implemented on the respective inward facing surfaces of the second and third insulator substrates, and first and second terminals implemented on at least one external surface of the GDT device. The GDT device can further include electrical connections implemented between the first and second electrodes and the first and second terminals, respectively.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: July 24, 2018
    Assignee: Bourns, Inc.
    Inventors: Jan Heath, Gordon L. Bourns
  • Patent number: 10032622
    Abstract: In a light source device, a control unit causes an energy density of a laser light in a lighting start region RS when a laser support light is maintained to be lower than an energy density of the laser light in the lighting start region RS when the laser support light is put on. For this reason, when the laser support light is maintained, a laser light L is radiated to the lighting start region RS at an energy density of a degree where sputtering does not occur. Therefore, in the light source device, because sputtering in a light emission sealing body can be suppressed, a sufficiently long life can be realized.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: July 24, 2018
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Akinori Asai, Kenshi Fukumitsu
  • Patent number: 10032623
    Abstract: A cleaning method including a persulphuric acid producing step of causing a cleaning sulfuric acid solution to travel into an electrolyzing section and to circulate therethrough to produce persulphuric acid having a predetermined concentration by electrolysis in the electrolyzing section, a solution mixing step of mixing the sulfuric acid solution containing the persulphuric acid produced in the persulphuric acid producing step with a halide solution containing one or more types of halide ion without causing the solutions to travel into the electrolyzing section to produce a mixed solution having a post-mixture concentration of oxidant including the persulphuric acid that ranges from 0.001 to 2 mol/L, a heating step of heating the mixed solution, and a cleaning step of cleaning a semiconductor substrate by transporting the heated mixed solution to cause the heated mixed solution to come into contact with the semiconductor substrate.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: July 24, 2018
    Assignee: KURITA WATER INDUSTRIES LTD.
    Inventors: Yuichi Ogawa, Haruyoshi Yamakawa
  • Patent number: 10032624
    Abstract: A substrate support apparatus is provided. The apparatus includes a circular base plate and one or more spacers disposed about a circumference of the base plate. The spacers may extend from a top surface of the base plate and a ring body may be coupled to the spacers. The ring body may be spaced from the base plate to define apertures between the base plate and the ring body. One or more support posts may be coupled to the base plate and extend therefrom. The support posts may be coupled to the base plate at positions radially inward from an inner surface of the ring body.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: July 24, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Roman Gouk, Han-Wen Chen, Steven Verhaverbeke, Jean Delmas
  • Patent number: 10032625
    Abstract: A method of making a semiconductor device includes forming a titanium nitride layer over a gate dielectric layer. The method further includes performing a silicon treatment on the titanium nitride layer to form at least one silicon monolayer over the titanium nitride layer. The method further includes driving silicon from the at least one silicon monolayer into the titanium nitride layer to form a TiSiON layer.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: July 24, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Hao Hou, Xiong-Fei Yu
  • Patent number: 10032626
    Abstract: A semiconductor device manufacturing method includes: vertically arranging and storing a plurality of substrates in a processing container and forming a condition where at least an upper region or a lower region relative to a substrate disposing region where the plurality of substrates are arranged is blocked off by an adaptor; and while maintaining the condition, forming films on the plurality of substrates by performing a cycle including the following steps a predetermined number of times in a non-simultaneous manner: supplying source gas to the plurality of substrates in the processing container from the side of the substrate disposing region; discharging the source gas from the interior of the processing container via exhaust piping; supplying reaction gas to the plurality of substrates in the processing container from the side of the substrate disposing region; and discharging the reaction gas from the interior of the processing container via the exhaust piping.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: July 24, 2018
    Assignee: HITACHI KOKUSAI ELECTRIC INC.
    Inventors: Takaaki Noda, Shingo Nohara, Kosuke Takagi, Takeo Hanashima, Mamoru Sueyoshi, Kotaro Konno, Motoshi Sawada
  • Patent number: 10032627
    Abstract: A method includes forming a first semiconductor stack using an epitaxial growth process, the first semiconductor stack comprising a first plurality of semiconductor layers alternating with a second plurality of semiconductor layers, the first plurality of semiconductor layers comprising a first semiconductor material and the second plurality of semiconductor layers comprising a second semiconductor material that is different than the first semiconductor material. The method further includes patterning the first semiconductor stack to form a set of semiconductor stack features, forming isolation features between the semiconductor stack features, removing at least one of the semiconductor stack features, thereby forming at least one trench, and forming, within the trench, a second semiconductor stack using an epitaxial growth process, the second semiconductor stack having different characteristics than the first semiconductor stack.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: July 24, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tung Ying Lee, Shao-Ming Yu
  • Patent number: 10032628
    Abstract: A method for improving source/drain performance through conformal solid state doping and its resulting device are disclosed. Specifically, the doping takes place through an atomic layer deposition of a dopant layer. Embodiments of the invention may allow for an increased doping layer, improved conformality, and reduced defect formation, in comparison to alternate doping methods, such as ion implantation or epitaxial doping.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: July 24, 2018
    Assignee: ASM IP Holding B.V.
    Inventors: Qi Xie, David de Roest, Jacob Woodruff, Michael Eugene Givens, Jan Willem Maes, Timothee Blanquart
  • Patent number: 10032629
    Abstract: A method of manufacturing a semiconductor device includes: providing a substrate; and forming a film on the substrate by supplying a silicon hydride and a halogen element-free catalyst containing one of a group III element or a group V element to the substrate, under a condition that the silicon hydride is not thermally decomposed when the silicon hydride is present alone.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: July 24, 2018
    Assignee: HITACHI KOKUSAI ELECTRIC INC.
    Inventors: Takafumi Nitta, Satoshi Shimamoto, Yoshiro Hirose
  • Patent number: 10032630
    Abstract: There is provided a technique for facilitating a patterning process by the DSA appropriately and efficiently. According to the technique described herein, there is provided a method of manufacturing a semiconductor device, including (a) accommodating in a process chamber a substrate having a guide pattern thereon; (b) supplying a plasma of a first process gas into the process chamber to subject the substrate to first one of a first process for hydrophilizing the substrate and a second process for hydrophobilizing the substrate; and (c) supplying a plasma of a second process gas into the process chamber to subject the substrate to second one of the first process and the second process other than the first one of the first process and the second process.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: July 24, 2018
    Assignee: HITACHI KOKUSAI ELECTRIC INC.
    Inventors: Katsuhiko Yamamoto, Hajime Karasawa, Kazuyuki Toyoda
  • Patent number: 10032631
    Abstract: A method of fabricating a mask pattern includes providing numerous masks on a substrate. A wider trench and a narrower trench are respectively defined between the mask. Subsequently, a mask material is formed to fill in the wider trench and the narrower trench. The top surface of the mask material overlapping the wider trench is lower than the top surface of the mask material overlapping the narrower trench. A photoresist layer is formed on the mask material overlapping the wider trench. Later, the mask material overlapping the narrower trench is etched while the mask material overlapping the wider trench is protected by the photoresist layer.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: July 24, 2018
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Li-Chiang Chen, Fu-Che Lee, Ming-Feng Kuo, Hsien-Shih Chu, Cheng-Yu Wang, Yu-Chen Chuang
  • Patent number: 10032632
    Abstract: Selective gas etching for self-aligned pattern transfer uses a first block and a separate second block formed in a sacrificial layer to transfer critical dimensions to a desired final layer using a selective gas etching process. The first block is a first hardmask material that can be plasma etched using a first gas, and the second block is a second hardmask material that can be plasma etched using a second gas separate from the first gas. The first hardmask material is not plasma etched using the second gas, and the second hardmask material is not plasma etched using the first gas.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: July 24, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John Christopher Arnold, Sean D. Burns, Yann Alain Marcel Mignot, Yongan Xu
  • Patent number: 10032633
    Abstract: An EUV lithographic structure includes an EUV photosensitive resist layer disposed on a hardmask layer, wherein the EUV lithographic structure is free of an antireflective coating. An organic adhesion layer can be provided between the hardmask layer and the EUV photosensitive resist layer. The hardmask layer can include an uppermost oxide hardmask layer, an intermediate hardmask layer, and a lowermost oxide hardmask layer, wherein the EUV photosensitive resist layer is disposed on the uppermost oxide hardmask layer. Also described are methods for patterning the EUV lithographic structures.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: July 24, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hsueh-Chung Chen, Yann A. M. Mignot, Yongan Xu
  • Patent number: 10032634
    Abstract: A method includes forming a gate stack over a semiconductor substrate; forming an interlayer dielectric layer surrounding the gate stack; and at least partially removing the gate stack, thereby forming an opening. The method further includes forming a multi-function wetting/blocking layer in the opening, a work function layer over the multi-function blocking/wetting layer, and a conductive layer over the work function layer. The work function layer, the multi-function wetting/blocking layer, and the conductive layer fill the opening. The multi-function wetting/blocking layer includes aluminum, carbon, nitride, and one of: titanium and tantalum.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: July 24, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD
    Inventors: Shiu-Ko Jangjian, Ting-Chun Wang, Chi-Cherng Jeng, Chi-Wen Liu
  • Patent number: 10032635
    Abstract: The disclosed subject matter provides thin films including a metal silicide and methods for forming such films. The disclosed subject matter can provide techniques for tailoring the electronic structure of metal thin films to produce desirable properties. In example embodiments, the metal silicide can comprise a platinum silicide, such as for example, PtSi, Pt2Si, or Pt3Si. For example, the disclosed subject matter provides methods which include identifying a desired phase of a metal silicide, providing a substrate, depositing at least two film layers on the substrate which include a first layer including amorphous silicon and a second layer including metal contacting the first layer, and annealing the two film layers to form a metal silicide. Methods can be at least one of a source-limited method and a kinetically-limited method. The film layers can be deposited on the substrate using techniques known in the art including, for example, sputter depositing.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: July 24, 2018
    Assignee: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Robert W. Carpick, Frank Streller, Rahul Agarwal, Filippo Mangolini
  • Patent number: 10032637
    Abstract: A technique relates to protecting a tunnel junction. A first electrode paddle and a second electrode paddle are on a substrate. The first and second electrode paddles oppose one another. A sacrificial shorting strap is formed on the substrate. The sacrificial shorting strap connects the first electrode paddle and the second electrode paddle; The tunnel junction is formed connecting the first electrode paddle and the second electrode paddle, after forming the sacrificial shorting strap. The substrate is mounted on a portion of a quantum cavity. The portion of the quantum cavity is placed in a vacuum chamber. The sacrificial shorting strap is etched away in the vacuum chamber while the substrate is mounted to the portion of the quantum cavity, such that the sacrificial shorting strap no longer connects the first and second electrode paddles. The tunnel junction has been protected from electrostatic discharge by the sacrificial shorting strap.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: July 24, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Josephine B. Chang, Douglas T. McClure, III
  • Patent number: 10032638
    Abstract: A method includes forming mask patterns spaced apart from each other by at least one opening on an etch target layer, filling the opening with a block copolymer material including first and second polymer blocks of different properties, and annealing the block copolymer material to form first patterns and second patterns, the first patterns in contact with facing sidewalls of adjacent ones of the mask patterns, respectively, and at least one of the second patterns between the first patterns. The first patterns include the first polymer blocks and the second patterns include the second polymer blocks.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: July 24, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Shigenobu Maeda, Jeong Ju Park, Eunsung Kim, Hyunwoo Kim, Shiyong Yi
  • Patent number: 10032639
    Abstract: Exemplary methods of patterning a device layer are described, including operations of patterning a protector layer and forming a first opening in a first patterning layer to expose a first portion of the protector layer and a first portion of the hard mask layer, which are then are exposed to a first etch to form a first opening in the first portion of the hard mask layer. A second opening is formed in a second patterning layer to expose a second portion of the protector layer and a second portion of the hard mask layer. The second portion of the protector layer and the second portion of the hard mask layer are exposed to an etch to form a second opening in the second portion of the hard mask layer. Exposed portions of the device layer are then etched through the first opening and the second opening.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: July 24, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Cheng Hung, Chun-Kuang Chen, De-Fang Chen, Wei-Liang Lin, Yu-Tien Shen
  • Patent number: 10032640
    Abstract: Methods of fabricating a semiconductor structure using a photoresist cross link process and a photoresist de-cross link process are described. A cross link bottom layer is employed during the fabricating process and the photoresist de-cross link process de-cross links the cross link bottom layer before the bottom layer is removed. The incorporation of the photoresist de-cross link process with the usage of the cross link bottom layer provides a cost effective and low defect level solution to fabricate the semiconductor structure.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: July 24, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Inc.
    Inventors: Chien-Hua Huang, Chung-Ju Lee, Ming-Hui Weng, Tzu-Hui Wei
  • Patent number: 10032641
    Abstract: A semiconductor device is provided as follows. A first fin-type pattern is disposed on a substrate. A first field insulating film is adjacent to a sidewall of the first fin-type pattern. A second field insulating film is adjacent to a sidewall of the first field insulating film. The first field insulating film is interposed between the first fin-type pattern and the second field insulating film. The second field insulating film comprises a first region and a second region. The first region is closer to the sidewall of the first field insulating film. A height from a bottom of the second field insulating film to an upper surface of the second region is larger than a height from the bottom of the second field insulating film to an upper surface of the first region.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: July 24, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dae-Young Kwak, Kyung-Seok Oh, Seung-Jae Lee, Sang-Jin Hyun
  • Patent number: 10032642
    Abstract: Disclosed is a substrate liquid processing apparatus that includes: a liquid processing unit that performs a liquid processing on a film formed on a surface of a substrate with an etching liquid; an etching liquid supply unit that supplies an etching liquid to the liquid processing unit; and a controller that controls the etching liquid supply unit. The controller is configured to perform a control such that an etching liquid in a state of having a relatively low etching rate for the film is supplied from the etching liquid supply unit to the liquid processing unit so that the substrate is etched in the liquid processing unit, and then, an etching liquid in a state of having a relatively high etching rate for the film is supplied from the etching liquid supply unit to the liquid processing unit so that the substrate is etched in the liquid processing unit.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: July 24, 2018
    Assignee: Tokyo Electron Limited
    Inventors: Hideaki Sato, Takashi Nagai, Hiromi Hara
  • Patent number: 10032643
    Abstract: Interconnect structures having alternating dielectric caps and an etchstop liner for semiconductor devices and methods for manufacturing such devices are described. According to an embodiment, an interconnect structure may include an interlayer dielectric (ILD) with a first hardmask layer over a top surface of the ILD. The interconnect structure may also include one or more first interconnect lines in the ILD. A first dielectric cap may be positioned above a top surface of each of the first interconnect lines. Additional embodiments include one or more second interconnect lines in the ILD that are arranged in an alternating pattern with the first interconnect lines. A second dielectric cap may be formed above a top surface of each of the second interconnect lines. Embodiments may also include an etchstop liner that is formed over top surfaces of the first dielectric caps.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: July 24, 2018
    Assignee: Intel Corporation
    Inventors: Jasmeet S. Chawla, Ruth A. Brain, Richard E. Schenker, Kanwal Jit Singh, Alan M. Myers
  • Patent number: 10032644
    Abstract: Chemical Mechanical Planarization (CMP) polishing compositions comprising composite particles, such as ceria coated silica particles, offer tunable polishing removal selectivity values between different films. Compositions enable high removal rates on interconnect metal and the silicon oxide dielectric while providing a polish stop on low-K dielectrics, a-Si and tungsten films. Chemical Mechanical Planarization (CMP) polishing compositions have shown excellent performance using soft polishing pad.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: July 24, 2018
    Assignee: VERSUM MATERIALS US, LLC
    Inventors: Xiaobo Shi, James Allen Schlueter, Mark Leonard O'Neill, Dnyanesh Chandrakant Tamboli
  • Patent number: 10032645
    Abstract: Embodiments of the present invention are directed to a method of manufacturing a semiconductor package with an internal routing circuit. The internal routing circuit is fondled from multiple molding routing layers in a leadframe land grid array semiconductor package by using a laser to blast away un-designed conductive areas to create conductive paths on each molding compound layer of the semiconductor package.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: July 24, 2018
    Assignee: UTAC HEADQUARTERS PTE. LTD.
    Inventors: Saravuth Sirinorakul, Suebphong Yenrudee
  • Patent number: 10032646
    Abstract: An interconnect element 130 can include a dielectric layer 116 having a top face 116b and a bottom face 116a remote from the top face, a first metal layer defining a plane extending along the bottom face and a second metal layer extending along the top face. One of the first or second metal layers, or both, can include a plurality of conductive traces 132, 134. A plurality of conductive protrusions 112 can extend upwardly from the plane defined by the first metal layer 102 through the dielectric layer 116. The conductive protrusions 112 can have top surfaces 126 at a first height 115 above the first metal layer 132 which may be more than 50% of a height of the dielectric layer. A plurality of conductive vias 128 can extend from the top surfaces 126 of the protrusions 112 to connect the protrusions 112 with the second metal layer.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: July 24, 2018
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, Vage Oganesian, Kimitaka Endo
  • Patent number: 10032647
    Abstract: A component such as an interposer or microelectronic element can be fabricated with a set of vertically extending interconnects of wire bond structure. Such method may include forming a structure having wire bonds extending in an axial direction within one of more openings in an element and each wire bond spaced at least partially apart from a wall of the opening within which it extends, the element consisting essentially of a material having a coefficient of thermal expansion (“CTE”) of less than 10 parts per million per degree Celsius (“ppm/° C.”). First contacts can then be provided at a first surface of the component and second contacts provided at a second surface of the component facing in a direction opposite from the first surface, the first contacts electrically coupled with the second contacts through the wire bonds.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: July 24, 2018
    Assignee: Invensas Corporation
    Inventors: Rajesh Katkar, Cyprian Emeka Uzoh