Having Growth From A Solution Comprising A Solvent Which Is Liquid At Or Below 20 Degrees Celsius (e.g., Aqueous Solution) Patents (Class 117/68)
  • Patent number: 8790462
    Abstract: A nanoengineered structure comprising an array of more than about 1000 nanowhiskers on a substrate in a predetermined spatial configuration, for use for example as a photonic band gap array, wherein each nanowhisker is sited within a distance from a predetermined site not greater than about 20% of its distance from its nearest neighbour. To produce the array, an array of masses of a catalytic material are positioned on the surface, heat is applied and materials in gaseous form are introduced such as to create a catalytic seed particle from each mass, and to grow, from the catalytic seed particle, epitaxially, a nanowhisker of a predetermined material, and wherein each mass upon melting, retains approximately the same interface with the substrate surface such that forces causing the mass to migrate across said surface are less than a holding force across a wetted interface on the substrate surface.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: July 29, 2014
    Assignee: Qunano AB
    Inventors: Lars Ivar Samuelson, Bjorn Jonas Ohlsson, Thomas M. I. Martensson
  • Publication number: 20140186710
    Abstract: A nickel composite hydroxide represented by Ni1-x-y-zCoxMnyMz(OH)2+A (where 0?x?0.35, 0?y?0.35, 0?z?0.1, 0<x+y, 0<x+y+z?0.7, 0?A?0.5, with M being at least one of V, Mg, Al, Ti, Mo, Nb, Zr and W), a plate-shaped crystal core is generated by allowing a crystal core generating aqueous solution containing cobalt and/or manganese to have a pH value of 7.5 to 11.1 at a standard liquid temperature of 25° C., and slurry for the particle growth containing the plate-shaped crystal core is adjusted to a pH value of 10.5 to 12.5 at a standard liquid temperature of 25° C., while a mixed aqueous solution containing a metal compound containing at least nickel is being supplied thereto, so that the crystal core is grown as particles.
    Type: Application
    Filed: December 18, 2013
    Publication date: July 3, 2014
    Applicant: Sumitomo Metal Mining Co., Ltd.
    Inventors: Kazuomi RYOSHI, Kensaku MORI
  • Publication number: 20140137916
    Abstract: A thermoelectric material including a 3-dimensional nanostructure, wherein the 3-dimensional nanostructure includes a 2-dimensional nanostructure connected to a 1-dimensional nanostructure.
    Type: Application
    Filed: June 25, 2013
    Publication date: May 22, 2014
    Applicants: Industry-Academic Cooperation Foundation, Yonsei University, Samsung Electronics Co., Ltd.
    Inventors: Jong-wook ROH, Jung-young CHO, Weon-ho SHIN, Dae-jin YANG, Kyu-hyoung LEE, Un-yong JEONG
  • Patent number: 8721788
    Abstract: A method for charging with liquefied ammonia comprising sequentially a feeding step of feeding gaseous ammonia in a condenser, a liquefaction step of converting the gaseous ammonia into a liquefied ammonia in the condenser, and a charging step of feeding the liquefied ammonia formed in the condenser to a vessel to thereby charge the vessel with the liquefied ammonia wherein a cooling step of feeding the liquefied ammonia formed in the condenser to the vessel and cooling the vessel by the latent heat of vaporization of the liquefied ammonia and a circulation step of feeding the gaseous ammonia formed through vaporization of the liquefied ammonia in the previous cooling step to the condenser are carried out between the liquefaction step and the charging step.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: May 13, 2014
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Yuuichi Katou, Takao Watanabe, Kazunori Hiruta
  • Publication number: 20140124677
    Abstract: A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 8, 2014
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventor: Lawrence Livermore National Security, LLC
  • Patent number: 8709153
    Abstract: The present invention relates to microfluidic devices and methods facilitating the growth and analysis of crystallized materials such as proteins. In accordance with one embodiment, a crystal growth architecture is separated by a permeable membrane from an adjacent well having a much larger volume. The well may be configured to contain a fluid having an identity and concentration similar to the solvent and crystallizing agent employed in crystal growth, with diffusion across the membrane stabilizing that process. Alternatively, the well may be configured to contain a fluid having an identity calculated to affect the crystallization process. In accordance with the still other embodiment, the well may be configured to contain a material such as a cryo-protectant, which is useful in protecting the crystalline material once formed.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: April 29, 2014
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Carl L. Hansen, Stephen R. Quake, James M. Berger
  • Patent number: 8709152
    Abstract: A static fluid and a second fluid are placed into contact along a microfluidic free interface and allowed to mix by diffusion without convective flow across the interface. In accordance with one embodiment of the present invention, the fluids are static and initially positioned on either side of a closed valve structure in a microfluidic channel having a width that is tightly constrained in at least one dimension. The valve is then opened, and no-slip layers at the sides of the microfluidic channel suppress convective mixing between the two fluids along the resulting interface. Applications for microfluidic free interfaces in accordance with embodiments of the present invention include, but are not limited to, protein crystallization studies, protein solubility studies, determination of properties of fluidics systems, and a variety of biological assays such as diffusive immunoassays, substrate turnover assays, and competitive binding assays.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: April 29, 2014
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Carl L. Hansen, Stephen R. Quake, James M. Berger
  • Patent number: 8702863
    Abstract: A method for the evaporative production of phenol-BPA adduct crystals in a crystallizer is provided. First, a supersaturated BPA solution is introduced into a crystallizer that includes a cylindrical vessel and a concentrically-disposed draft tube that defines an annular space between the vessel and tube. Next, the BPA solution is circulated through the draft tube and annular space while a coolant is uniformly distributed in the circulating flow by radially injecting a volatile hydrocarbon compound at between about 30% and 60% of a radial extent of the annular space of to form a BPA mixture. Phenol-BPA adduct crystals are produced in the vessel by evaporating the volatile hydrocarbon compound out of the BPA mixture. The method provides a consistent and uniform concentration of coolant across the surface of the boiling zone that prevents or at least reduces unwanted crystal nucleation.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: April 22, 2014
    Assignee: Badger Licensing LLC
    Inventor: Stephen W. Fetsko
  • Publication number: 20140106258
    Abstract: Truncated ditetragonal gold prisms (Au TDPs) are synthesized by adding a dilute solution of gold seeds to a growth solution, and allowing the growth to proceed to completion. The Au TDPs exhibit the face-centered cubic crystal structure and are bounded by 12 high-index {310} facets. The Au TDPs may be used as heterogeneous catalysts as prepared, or may be used as substrates for subsequent deposition of an atomically thin layer of a platinum group metal catalyst. When the Au TDPs are used as substrates, the atomically thin layer of metal reproduces the high-index facets of the Au TDPs.
    Type: Application
    Filed: October 15, 2013
    Publication date: April 17, 2014
    Applicant: Brookhaven Science Associates, LLC
    Inventors: Fang Lu, Oleg Gang, Yugang Zhang, Yu Zhang, Jia X. Wang
  • Patent number: 8691010
    Abstract: The use of microfluidic structures enables high throughput screening of protein crystallization. In one embodiment, an integrated combinatoric mixing chip allows for precise metering of reagents to rapidly create a large number of potential crystallization conditions, with possible crystal formations observed on chip. In an alternative embodiment, the microfluidic structures may be utilized to explore phase space conditions of a particular protein crystallizing agent combination, thereby identifying promising conditions and allowing for subsequent focused attempts to obtain crystal growth.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: April 8, 2014
    Assignee: California Institute of Technology
    Inventors: Carl L. Hansen, Morten Sommer, Stephen R. Quake
  • Patent number: 8685160
    Abstract: Provided is a fullerene thin wires-attached substrate in which fullerene thin wires are vertically aligned relative to the surface of the substrate and which is applicable to catalysts, column materials, chemical synthesis templates, field emission devices, field effect transistors, photonic crystals, etc.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: April 1, 2014
    Assignee: National Institute for Materials Science
    Inventors: Cha Seung, II, Kunichi Miyazawa, Jedeok Kim
  • Patent number: 8679443
    Abstract: A method of treating a diamond, the method comprising: (i) providing a liquid metal saturated with carbon with respect to graphite precipitation; (ii) lowering the temperature of the liquid metal such that the liquid metal is saturated with carbon with respect to diamond precipitation; (iii) immersing a diamond in the liquid metal; and (iv) removing the diamond from the metal.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: March 25, 2014
    Assignee: Designed Materials Ltd
    Inventors: Philip H. Taylor, A. Marshall Stoneham
  • Patent number: 8679249
    Abstract: Provided is a process for preparation of a compound containing a group 6A element which includes reaction of at least one compound selected from a group consisting of group IB element containing compounds and group 3 A element containing compounds with a group 6A element containing compound carried out using a reductant in a desirable solvent to produce a compound containing group 1B-6A elements, a compound containing group 3 A-6A elements and/or a compound containing group 1B-3A-6A elements.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: March 25, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Seokhee Yoon, Seokhyun Yoon, Taehun Yoon
  • Publication number: 20140069326
    Abstract: [Problem] To provide a method for producing a colloidal crystal, wherein the method is easily controlled and is capable of dealing with a wide range of types of colloidal particle. [Solution] The method for producing a colloidal crystal in the present invention is characterized by comprising a preparation step of preparing a colloidal dispersion liquid, in which colloidal particles are dispersed in a liquid comprising an ionic surfactant and a colloidal crystal can be formed due to temperature changes, and a crystallization step of formation of a colloidal crystal by changing the temperature of the colloidal dispersion liquid from a temperature region in which the colloidal crystal is not formed to a temperature region in which the colloidal crystal is formed.
    Type: Application
    Filed: March 3, 2012
    Publication date: March 13, 2014
    Applicants: PUBLIC UNIVERSITY CORPORATION NAGOYA CITY UNIVERSITY, FUJI CHEMICAL CO., LTD.
    Inventors: Junpei Yamanaka, Akiko Toyotama, Masaaki Yamamoto, Sachiko Onda, Tohru Okuzono, Fumio Uchida
  • Publication number: 20140065437
    Abstract: The present invention includes a method of producing a segmented 1D nanostructure. The method includes providing a vessel containing a template wherein on one side of the template is a first metal reagent solution and on the other side of the template is a reducing agent solution, wherein the template comprises at least one pore; allowing a first segment of a 1D nanostructure to grow within a pore of the template until a desired length is reached; replacing the first metal reagent solution with a second metal reagent solution; allowing a second segment of a 1D nanostructure to grow from the first segment until a desired length is reached, wherein a segmented 1D nanostructure is produced.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 6, 2014
    Applicant: THE RESEARCH FOUNDATION OF STATE UNIVERSITY OF NEW YORK
    Inventors: Stanislaus Wong, Christopher Koenigsmann
  • Publication number: 20140058029
    Abstract: It is an object of the present invention to provide hexagonal prism-shaped zinc oxide particles which have a specific particle diameter and a specific aspect ratio, and high ultraviolet blocking performance and transparency, and therefore can be suitably used as a cosmetic and a heat releasing material. Provided are hexagonal prism-shaped zinc oxide particles having a primary particle diameter of 0.1 ?m or more and less than 0.5 ?m and an aspect ratio of less than 2.5.
    Type: Application
    Filed: April 26, 2012
    Publication date: February 27, 2014
    Applicant: Sakai Chemical Industry Co., Ltd.
    Inventors: Satoru Sueda, Mitsuo Hashimoto, Atsuki Terabe, Nobuo Watanabe, Koichiro Magara
  • Publication number: 20140045323
    Abstract: Preparation of semiconductor nanocrystals and their dispersions in solvents and other media is described. The nanocrystals described herein have small (1-10 nm) particle size with minimal aggregation and can be synthesized with high yield. The capping agents on the as-synthesized nanocrystals as well as nanocrystals which have undergone cap exchange reactions result in the formation of stable suspensions in polar and nonpolar solvents which may then result in the formation of high quality nanocomposite films.
    Type: Application
    Filed: October 16, 2013
    Publication date: February 13, 2014
    Inventors: Zehra Serpil GONEN WILLIAMS, Yijun WANG, Robert J. WIACEK, Xia BAI, Linfeng GOU, Selina I. THOMAS, Wei XU, Jun XU, Rakesh PATEL
  • Publication number: 20140020618
    Abstract: The objective of the present invention is to provide a method for producing a calcite single crystal which is appropriately fine in a large scale with no difficulty. The method for producing a calcite single crystal according to the present invention is characterized in comprising the steps of mixing raw material calcium carbonate with an ammonium nitrate aqueous solution to obtain a raw material mixed liquid, wherein pH of the ammonium nitrate aqueous solution is not less than 7.0 and not more than 8.0, a concentration of the ammonium nitrate aqueous solution is not less than 2 M, and a concentration of calcium carbonate in the raw material mixed liquid is not less than 4 g/L and not more than 16 g/L; heating the raw material mixed liquid at not less than 125° C.; and then gradually cooling the raw material mixed liquid.
    Type: Application
    Filed: February 8, 2012
    Publication date: January 23, 2014
    Applicant: Japan Agency for Marine-Earth Science and Technology
    Inventors: Kazumichi Yanagisawa, Arito Sakaguchi, Hide Sakaguchi
  • Publication number: 20130344333
    Abstract: The present invention provides methods for preparing trimanganese tetroxide with low BET specific surface area and methods for controlling particle size of trimanganese tetroxide and trimanganese tetroxide product.
    Type: Application
    Filed: June 19, 2013
    Publication date: December 26, 2013
    Inventors: Zhiguang Jiang, Dong Hua, Zhengtao Liu, Kaiwen Zeng
  • Publication number: 20130337331
    Abstract: To provide nickel composite hydroxide particles having a small and uniform particle diameter and a method for producing the same. The method for producing the nickel composite hydroxide particles includes: a nucleation step of producing nuclei including primary particles by controlling a pH of an aqueous solution for nucleation to 11.5 to 13.2 at a liquid temperature of 25° C., the aqueous solution for nucleation containing a metal compound having an atomic ratio of metals corresponding to an atomic ratio of metals in the nickel composite hydroxide particles and substantially not containing a metal complex ion-forming agent; and a particle growth step of forming, on an outer surface of each of the nuclei, an outer shell portion including platy primary particles larger than primary particles of the nuclei by controlling a pH of an aqueous solution for particle growth containing the nuclei obtained in the nucleation step to 9.5 to 11.0 at a liquid temperature of 25° C.
    Type: Application
    Filed: March 31, 2011
    Publication date: December 19, 2013
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Kensaku Mori, Rei Kokado, Shin Imaizumi
  • Publication number: 20130333613
    Abstract: Method for crystal growth from a surfactant of a metal-nonmetal (MN) compound, including the procedures of providing a seed crystal, introducing atoms of a first metal to the seed crystal thus forming a thin liquid metal wetting layer on a surface of the seed crystal, setting a temperature of the seed crystal below a minimal temperature required for dissolving MN molecules in the wetting layer and above a melting point of the first metal, each one of the MN molecules being formed from an atom of a second metal and an atom of a first nonmetal, introducing the MN molecules which form an MN surfactant monolayer, thereby facilitating a formation of the wetting layer between the MN surfactant monolayer and the surface of the seed crystal, and regulating a thickness of the wetting layer, thereby growing an epitaxial layer of the MN compound on the seed crystal.
    Type: Application
    Filed: March 4, 2012
    Publication date: December 19, 2013
    Applicant: Mosiac Crystals Ltd.
    Inventor: Moshe Einav
  • Patent number: 8591647
    Abstract: A method is provided for producing a single crystal body of a group III nitride, comprising the steps of forming a molten flux of a volatile metal in a reaction vessel and causing a growth of a GaN single crystal from the molten flux, wherein the growth is continued while replenishing a compound containing N from a source outside the reaction vessel, and wherein a seed crystal is disposed in the reaction vessel.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: November 26, 2013
    Assignee: Ricoh Company, Ltd.
    Inventors: Seiji Sarayama, Masahiko Shimada, Hisanori Yamane, Hirokazu Iwata
  • Publication number: 20130302358
    Abstract: Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape).
    Type: Application
    Filed: October 3, 2011
    Publication date: November 14, 2013
    Applicants: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA, INTELLIGENT MATERIAL SOLUTIONS, INC.
    Inventors: Joshua E. Collins, Howard Y. Bell, Xingchen Ye, Christopher Murray
  • Patent number: 8574361
    Abstract: A method for producing a high-quality group-III element nitride crystal at a high crystal growth rate, and a group-III element nitride crystal are provided. The method includes the steps of placing a group-III element, an alkali metal, and a seed crystal of group-III element nitride in a crystal growth vessel, pressurizing and heating the crystal growth vessel in an atmosphere of nitrogen-containing gas, and causing the group-III element and nitrogen to react with each other in a melt of the group-III element, the alkali metal and the nitrogen so that a group-III element nitride crystal is grown using the seed crystal as a nucleus. A hydrocarbon having a boiling point higher than the melting point of the alkali metal is added before the pressurization and heating of the crystal growth vessel.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: November 5, 2013
    Assignee: Ricoh Company, Ltd.
    Inventors: Osamu Yamada, Hisashi Minemoto, Kouichi Hiranaka, Takeshi Hatakeyama, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Yasuo Kitaoka
  • Patent number: 8574525
    Abstract: Boron-containing compounds, gasses and fluids are used during ammonothermal growth of group-Ill nitride crystals. Boron-containing compounds are used as impurity getters during the ammonothermal growth of group-Ill nitride crystals. In addition, a boron-containing gas and/or supercritical fluid is used for enhanced solubility of group-Ill nitride into said fluid.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: November 5, 2013
    Assignee: The Regents of the University of California
    Inventors: Siddha Pimputkar, Derrick S. Kamber, James S. Speck, Shuji Nakamura
  • Publication number: 20130266809
    Abstract: A biotemplated nanomaterial can include a crystalline perovskite.
    Type: Application
    Filed: April 10, 2013
    Publication date: October 10, 2013
    Applicant: Massachusetts Institute of Technology
    Inventors: Nuerxiati Nueraji, Angela M. Belcher
  • Publication number: 20130266800
    Abstract: The present invention provides a method of preparing aluminum-doped zinc oxide (AZO) nanocrystals. In an exemplary embodiment, the method includes (1) injecting a precursor mixture of a zinc precursor, an aluminum precursor, an amine, and a fatty acid in a solution of a vicinal diol in a non-coordinating solvent, thereby resulting in a reaction mixture, (2) precipitating the nanocrystals from the reaction mixture, thereby resulting in a final precipitate, and (3) dissolving the final precipitate in an apolar solvent. The present invention also provides a dispersion. In an exemplary embodiment, the dispersion includes (1) nanocrystals that are well separated from each other, where the nanocrystals are coated with surfactants and (2) an apolar solvent where the nanocrystals are suspended in the apolar solvent. The present invention also provides a film. In an exemplary embodiment, the film includes (1) a substrate and (2) nanocrystals that are evenly distributed on the substrate.
    Type: Application
    Filed: November 23, 2011
    Publication date: October 10, 2013
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Raffaella Buonsanti, Delia J. Milliron
  • Publication number: 20130236388
    Abstract: In one aspect, the invention relates to an inorganic nanoparticle or nanocrystal, also referred to as a quantum dot, capable of emitting white light. In a further aspect, the invention relates to an inorganic nanoparticle capable of absorbing energy from a first electromagnetic region and capable of emitting light in a second electromagnetic region, wherein the second electromagnetic region comprises an at least about 50 nm wide band of wavelengths and to methods for the preparation thereof. In further aspects, the invention relates to a frequency converter, a light emitting diode device, a modified fluorescent light source, an electroluminescent device, and an energy cascade system comprising the nanoparticle of the invention. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Application
    Filed: November 16, 2012
    Publication date: September 12, 2013
    Inventors: Michael J. Bowers, James R. McBride, Sandra J. Rosenthal
  • Publication number: 20130221279
    Abstract: Preparation of semiconductor nanocrystals and their dispersions in solvents and other media is described. The nanocrystals described herein have small (1-10 nm) particle size with minimal aggregation and can be synthesized with high yield. The capping agents on the as-synthesized nanocrystals as well as nanocrystals which have undergone cap exchange reactions result in the formation of stable suspensions in polar and nonpolar solvents which may then result in the formation of high quality nanocomposite films.
    Type: Application
    Filed: October 26, 2011
    Publication date: August 29, 2013
    Applicant: PIXELLIGENT TECHNOLOGIES, LLC
    Inventors: Wei Xu, Zehra Serpil Gonen Williams, Yijun Wang, Robert J. Wiacek, Xia Bai, Linfeng Gou, Selina L. Thomas, Jun Xu
  • Patent number: 8518178
    Abstract: Disclosed is: a single crystalline silicon carbide nanofiber having improved thermal and mechanical stability as well as a large specific surface area which is applicable to a system for purifying exhaust gas, silicon carbide fiber filter, diesel particulate filter having a high temperature stability and may be used in the form of nanostructures such as nanorods and nanoparticles.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: August 27, 2013
    Assignee: Korea Institute of Science and Technology
    Inventors: Il Doo Kim, Seung Hun Choi, Seong Mu Jo, Jae-Min Hong
  • Publication number: 20130207053
    Abstract: Preparation of semiconductor nanocrystals and their dispersions in solvents and other media is described. The nanocrystals described herein have small (1-10 nm) particle size with minimal aggregation and can be synthesized with high yield. The capping agents on the as-synthesized nanocrystals as well as nanocrystals which have undergone cap exchange reactions result in the formation of stable suspensions in polar and nonpolar solvents which may then result in the formation of high quality nanocomposite films.
    Type: Application
    Filed: October 26, 2012
    Publication date: August 15, 2013
    Inventors: Zehra Serpil Gonen Williams, Yijun Wang, Robert J. Wiacek, Xia Bai, Linfeng Gou, Selina I. Thomas, Wei Xu, Jun Xu
  • Publication number: 20130202521
    Abstract: A manganese oxide particle having a hexagonal crystal structure or an analogous hexagonal crystal structure with an a-axis length of 8.73±1 ? and a c-axis length of 14.86±1 ?. The manganese oxide particle is preferably produced by a process including mixing an aqueous solution containing manganese (II) and an organic compound having a hydroxyl group while in a heated state with an alkali.
    Type: Application
    Filed: July 8, 2011
    Publication date: August 8, 2013
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Mami Yoshida, Kenji Suzuoka, Kazuhiko Kato, Yasunori Tabira, Isamu Yashima
  • Publication number: 20130199439
    Abstract: A device for crystallising a molecule to be crystallised, which includes: at least one crystallisation cell that includes a crystallisation chamber for receiving a first solution S1 containing the molecule to be crystallised and the crystal seeds thereof, a dialysis membrane, and a container to be filled with a second solution S2 that contains constituents selected from the group containing crystallisation agents, additives and buffers; and at least one image acquisition means. The crystallisation device is characterized in that it includes: at least one addition means arranged to add, to the container, constituents selected from the group containing crystallisation agents, additives and buffers of solution S2; and/or at least one sampling means arranged to collect, from the container, all or a portion of solution S2. The invention also relates to a crystallisation method.
    Type: Application
    Filed: September 15, 2011
    Publication date: August 8, 2013
    Applicant: UNIVERSITE JOSEPH FOURIER (GRENOBLE 1)
    Inventor: Monika Spano
  • Patent number: 8486190
    Abstract: A raw material mixture containing an easily oxidizable material is weighed. The raw material mixture is melted and then solidified within a reaction vessel 1 set in a non-oxidizing atmosphere to thereby produce a solidified matter 19. The reaction vessel 1 and the solidified matter 19 are heated in a non-oxidizing atmosphere within a crystal growth apparatus to melt the solidified matter to thereby produce a solution. A single crystal is grown from the solution.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: July 16, 2013
    Assignees: NGK Insulators, Ltd., Osaka University
    Inventors: Katsuhiro Imai, Makoto Iwai, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura
  • Publication number: 20130174778
    Abstract: A method of synthesizing colloidal semiconductor-metal hybrid heterostructures is disclosed. The method includes dissolving semiconductor nanorods in a solvent to form a nanorod solution, and adding a precursor solution to the nanorod solution. The precursor solution contains a metal. The method further includes illuminating the combined precursor and nanorod solutions with light of a specific wavelength. The illumination causes the deposition of the metal in the precursor solution onto the surface of the semiconductor nanorods.
    Type: Application
    Filed: January 4, 2013
    Publication date: July 11, 2013
    Applicant: Iowa State University Research Foundation, Inc.
    Inventors: Javier Vela Becerra, T. Purnima A. Ruberu
  • Publication number: 20130145983
    Abstract: The invention relates to a novel process for preparing the crystalline from A of febuxostat by crystallization in a solvent selected from ethyl acetate, isopropyl acetate or ethyl formiate.
    Type: Application
    Filed: July 13, 2011
    Publication date: June 13, 2013
    Applicant: INTERQUIM, S.A.
    Inventors: Josep Salaet Ferré, Francisco Marquillas Olondriz
  • Patent number: 8454747
    Abstract: A method for producing a single-crystal thin film includes, for example, applying a chemical solution containing raw materials for a single-crystal thin film composed of (BaxSryCaz)TiO3 (wherein x+y+z=1.0) by spin coating on a thin film composed of BaZrO3 formed on a MgO(100) surface of a MgO(100) substrate and subjecting the applied chemical solution to heat treatment at a temperature at which orientation occurs, thereby epitaxially growing a single-crystal thin film composed of (BaxSryCaz)TiO3.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: June 4, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Tadasu Hosokura
  • Patent number: 8449672
    Abstract: This disclosure pertains to a process for making single crystal Group III nitride, particularly gallium nitride, at low pressure and temperature, in the region of the phase diagram of Group III nitride where Group III nitride is thermodynamically stable comprises a charge in the reaction vessel of (a) Group III nitride material as a source, (b) a barrier of solvent interposed between said source of Group III nitride and the deposition site, the solvent being prepared from the lithium nitride (Li3N) combined with barium fluoride (BaF2), or lithium nitride combined with barium fluoride and lithium fluoride (LiF) composition, heating the solvent to render it molten, dissolution of the source of GaN material in the molten solvent and following precipitation of GaN single crystals either self seeded or on the seed, maintaining conditions and then precipitating out.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: May 28, 2013
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, Richard L. Henry
  • Patent number: 8449673
    Abstract: The present disclosure describes a method and an apparatus for making nanomaterials. In particular, the present innovation provides an apparatus that can be used to produce nanocrystals and/or nanorods of noble metals. The disclosure also provides methods that can be advantageously used to produce gold nanocrystals/nanorods with aspect ratios higher than 4.0.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: May 28, 2013
    Inventor: Babak Nikoobakht
  • Patent number: 8435347
    Abstract: A high pressure apparatus and related methods for processing supercritical fluids is described. The apparatus includes a capsule, a heater, at least one ceramic ring with one or more scribe marks and/or cracks present. The apparatus optionally has a metal sleeve containing each ceramic ring. The apparatus also has a high-strength enclosure, end flanges with associated insulation, and a power control system. The apparatus is capable of accessing pressures and temperatures of 0.2-2 GPa and 400-1200° C., respectively.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: May 7, 2013
    Assignees: Soraa, Inc., Elmhurst Research, Inc.
    Inventors: Mark P. D'Evelyn, Joseph A. Kapp, John C. Lawrenson
  • Publication number: 20130108853
    Abstract: An object of the present invention is to produce a non-conventional high-quality BNA single crystal. Another object of the present invention is to provide a process for producing the above-described high-quality BNA single crystal. Specifically, the present invention provides a BNA crystal characterized by having a half-value width of diffraction peak X-ray intensity of 100 seconds or less in a rocking curve measurement by X-ray diffraction method.
    Type: Application
    Filed: June 10, 2011
    Publication date: May 2, 2013
    Applicant: RIKEN
    Inventors: Mikiko Saito, Takashi Notake, Hiroaki Minamide, Hiromasa Ito
  • Patent number: 8431084
    Abstract: A crystallizer for the evaporative production of phenol-BPA adduct crystals is provided that achieves more uniform crystal growth while suppressing undesired crystal nucleation. The crystallizer includes a cylindrical vessel; a draft tube concentrically disposed within the cylindrical vessel such that an annular space is defined between the vessel and tube; an impeller that circulates liquid in the vessel through the draft tube and the annular space, and a plurality of nozzles mounted around an inner wall of said cylindrical vessel that introduce an evaporative coolant into the vessel. Each of the nozzles includes a discharge end disposed between about 30% and 60% of a radial extent of the annular space, and is located below an upper end of the draft tube a distance of between about 50% to 150% of the diameter of the vessel. Such a nozzle arrangement provides a consistent and uniform concentration of coolant across the surface of the boiling zone that prevents or at least reduces unwanted crystal nucleation.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: April 30, 2013
    Assignee: Badger Licensing LLC
    Inventor: Stephen W. Fetsko
  • Patent number: 8430958
    Abstract: An apparatus and associated method for large-scale manufacturing of gallium nitride. The apparatus comprises a large diameter autoclave or internally-heated high pressure vessel, a seed rack, and a raw material basket. Methods include effective means for utilization of seed crystals. The apparatus and methods are scalable up to very large volumes and are cost effective.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: April 30, 2013
    Assignee: Soraa, Inc.
    Inventor: Mark P. D'Evelyn
  • Publication number: 20130102781
    Abstract: Disclosed are processes for preparing cocrystals, including processes for scaling up of cocrystal formation, as well as scalable processes for preparing cocrystals. Also disclosed are processes for scaled-up preparation of pterostilbene, progesterone, p-coumaric, and minoxidil cocrystals. Minoxidil cocrystals, such as minoxidil:benzoic acid 1:1 monohydrate cocrystals are also disclosed herein.
    Type: Application
    Filed: October 22, 2012
    Publication date: April 25, 2013
    Applicant: APTUIT (WEST LAFAYETTE), LLC
    Inventor: Aptuit (West Lafayette), LLC
  • Patent number: 8398767
    Abstract: Bulk mono-crystalline gallium-containing nitride, grown on the seed at least in the direction essentially perpendicular to the direction of the seed growth, essentially without propagation of crystalline defects as present in the seed, having the dislocation density not exceeding 104/cm2 and considerably lower compared to the dislocation density of the seed, and having a large curvature radius of the crystalline lattice, preferably longer than 15 m, more preferably longer than 30 m, and most preferably of about 70 m, considerably longer than the curvature radius of the crystalline lattice of the seed.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: March 19, 2013
    Assignees: Ammono S.A., Nichia Corporation
    Inventors: Robert Dwilinski, Roman Doradzinski, Jerzy Garczynski, Leszek Sierzputowski, Yasuo Kanbara, Robert Kucharski
  • Patent number: 8382896
    Abstract: High throughput screening of crystallization of a target material is accomplished by simultaneously introducing a solution of the target material into a plurality of chambers of a microfabricated fluidic device. The microfabricated fluidic device is then manipulated to vary the solution condition in the chambers, thereby simultaneously providing a large number of crystallization environments. Control over changed solution conditions may result from a variety of techniques, including but not limited to metering volumes of crystallizing agent into the chamber by volume exclusion, by entrapment of volumes of crystallizing agent determined by the dimensions of the microfabricated structure, or by cross-channel injection of sample and crystallizing agent into an array of junctions defined by intersecting orthogonal flow channels.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: February 26, 2013
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Carl L. Hansen, Stephen R. Quake, James M. Berger
  • Publication number: 20130035470
    Abstract: Provided is a novel crystal of oxidized glutathione hexahydrate. Crystal of oxidized glutathione hexahydrate is produced by cooling an aqueous solution containing oxidized glutathione to 15° C. or lower to precipitate a crystal of oxidized glutathione hexahydrate.
    Type: Application
    Filed: April 21, 2011
    Publication date: February 7, 2013
    Applicant: Kyowa Hakko Bio Co., Ltd.
    Inventors: Ken Kimura, Kenta Fukumoto, Hiroshi Tanaka
  • Patent number: 8366826
    Abstract: The present invention relates to a method of preparing silicon germanium alloy nanocrystals by the simultaneous thermal disproportionation of a siliceous material and GeX2 in a conventional tube furnace. Also included is a method of preparing free standing silicon germanium nanocrystals by the acid etching product of the product of the thermal disproportionation of a siliceous material and GeX2.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: February 5, 2013
    Assignee: The Governors of the University of Alberta
    Inventors: Jonathan Gordon Conn Veinot, Eric James Henderson
  • Patent number: 8361224
    Abstract: The present invention relates to colloidal photonic crystals using colloidal nanoparticles and a method for the preparation thereof, wherein by adding a viscoelastic material into a solution containing the colloidal nanoparticles when preparing the colloidal photonic crystals, a uniform volume contraction occurs due to the elasticity of the viscoelastic material even when a nonuniform volume contraction occurs while drying a dispersion medium in the colloidal solution. Thus, it is possible to prepare 2 or 3 dimensional colloidal photonic crystals of large scale with no defects in less time.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: January 29, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Young-jun Hong, Sang-hyuk Im
  • Patent number: 8353985
    Abstract: A process for producing colloidal crystals immobilized with a polymer, comprising the steps of: preparing a monomer-dispersion in which colloidal crystals having a three-dimensionally ordered array state are formed by adding, to a monomer-containing liquid containing at least one kind of monomers, colloidal particles having an average particle size in a range from 0.01 ?m to 10 ?m and a degree of monodispersity expressed by a following equation (1) of 20% or below, [Degree of monodispersity (unit: %)]=([Standard deviation of particle size]/[Average particle size])×100??(1) and then by dispersing the colloidal particles so as to arrange the colloidal particles in a three-dimensionally ordered array state at which a reflection spectrum thereof exhibits a reflection peak; and obtaining the colloidal crystals immobilized with a polymer by polymerizing the monomers in the monomer-dispersion.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: January 15, 2013
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Hiroshi Nakamura, Masahiko Ishii