Exhaust Gas Used With The Combustible Mixture (e.g., Emission Control Exhaust Gas Recirculation (egr) Valve) Patents (Class 123/568.11)
  • Publication number: 20150083096
    Abstract: A method of operating the turbine booster to improve engine operating response and to increase the effectiveness of emission control devices is disclosed. A turbocharger turbine booster for a turbo charged internal combustion engine provides pressurized air to the turbocharger turbine and increases the oxygen in engine exhaust without increasing the engine combustion oxygen content.
    Type: Application
    Filed: April 16, 2012
    Publication date: March 26, 2015
    Applicant: International Engine Intellectual Property Company , LLC
    Inventors: John R. Zagone, Jeremy Grant Schipper, Rade Milanovic, Jack Morais
  • Patent number: 8985088
    Abstract: Various systems and method for controlling exhaust gas recirculation (EGR) in an internal combustion engine are provided. In one embodiment, a method includes injecting fuel to a subset of cylinders that includes less than all cylinders of a first cylinder group to obtain a target EGR rate. The first cylinder group provides exhaust gas through an exhaust gas recirculation (EGR) passage structure fluidly coupled between the first cylinder group and an intake passage structure. The method further includes injecting fuel to at least one cylinder of a second cylinder group. The second cylinder group provides substantially no exhaust gas through the EGR passage structure.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: March 24, 2015
    Assignee: General Electric Company
    Inventors: Neil Xavier Blythe, Shawn Michael Gallagher, James Robert Mischler, Luke Henry
  • Patent number: 8984878
    Abstract: An internal combustion engine has a cylinder head having at least one cylinder. A cover is connected to the cylinder head and covers the cylinder and related valve train components. An exhaust gas turbocharger powered by the engine's exhaust system delivers compressed gasses to the intake system. An exhaust gas recirculation system branches off from the exhaust system downstream of the turbocharger and feeds into the intake system upstream of the turbocharger. A coolant-fed charge air cooler is disposed between the cylinder head and the cover, and at a point that is a geodetically highest point in the intake system when the internal combustion engine is in an installed position. This configuration prevents any liquid that has condensed out of the charge air during cooling from collecting in the cooler and/or in the intake system between the cooler and the at least one cylinder.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: March 24, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Hans-Guenter Grosch, Andreas Kuske, Christian Winge Vigild
  • Patent number: 8977474
    Abstract: A diesel-gasoline dual fuel powered combustion engine system is provided with spark-assisted fouling free EGR system in which gasoline and air are homogeneously combined and supplied to cylinders and then a diesel fuel is injected and combusted together. The system may include: a plurality of cylinders each having a fuel injector; and an exhaust line through which flows an exhaust gas discharged as a fuel from each cylinder is combusted; wherein gasoline fuel combustion type is adapted to one or more cylinder of the plurality of the cylinders, and diesel-gasoline fuel pre-mixed combustion type is adapted to the other cylinders.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: March 10, 2015
    Assignee: Hyundai Motor Company
    Inventors: Dae Choi, Hyunsung Jung, Minyoung Ki, Hyeungwoo Lee
  • Publication number: 20150059714
    Abstract: The present disclosure relates to a method for operating an internal combustion engine for a motor vehicle, in particular a passenger car having a turbocharger with a compressor and a turbine. The method includes determining a change quantity of a gas flow quantity of a gas flow through the internal combustion engine and regulating the compressor based on this change quantity.
    Type: Application
    Filed: September 4, 2014
    Publication date: March 5, 2015
    Inventors: Joerg Bernards, Martin Miertschink
  • Publication number: 20150059713
    Abstract: An intake manifold comprising an intake gas duct, an EGR duct, an EGR flow measurement system, and a mixing duct. The intake gas duct allows the fresh intake gas to flow therethrough. The EGR flow measurement system defines a portion of an EGR duct and measures a differential pressure of the recirculated exhaust gas passing through the EGR flow measurement system. The mixing duct is positioned downstream of the intake gas duct, and it is also positioned downstream of the EGR duct. The mixing duct, which is integrally formed into the EGR flow measurement system, mixes the fresh intake gas and the recirculated exhaust gas into a mixed intake gas.
    Type: Application
    Filed: August 27, 2013
    Publication date: March 5, 2015
    Applicant: DEERE & COMPANY
    Inventor: ADAM FORSHIER
  • Patent number: 8967125
    Abstract: A lip seal is placed between a housing and a valve shaft and adjacent to a bearing of the shaft. A deposit-guard plug is placed between the housing and the shaft and adjacent to the lip seal. A first end of the lip seal is placed adjacent to a first end of the bearing. A first end of the plug is placed adjacent to a second end and a lip portion of the lip seal. A second end of the plug is placed to face a passage. A first distance from the first end of the bearing to the leading end of the lip portion of the lip seal and a second distance from the second end of the plug to the leading end of the lip portion of the lip seal are set to be longer than a maximum stroke of the shaft in stroke movement.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: March 3, 2015
    Assignee: Aisan Kogyo Kabushiki Kaisha
    Inventor: Makoto Hatano
  • Patent number: 8967127
    Abstract: An intake apparatus for an internal combustion engine includes a plurality of branch pipes connected at downstream ends thereof to an engine main body, an intake chamber to which upstream ends of the branch pipes are connected, and a common intake air introducing part connected to the center of the intake chamber in a cylinder arrangement direction. The intake chamber includes a projecting part projecting toward the engine main body relative to the common intake air introducing part. An EGR introducing passage is connected to the center of the projecting part in the cylinder arrangement direction. A downstream end of the EGR introducing passage is directed toward a wall of the projecting part on the common intake air introducing part side.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: March 3, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masatatsu Enami, Osamu Watanabe, Akihiro Katsuura, Shinji Wakamoto, Takayuki Namai
  • Publication number: 20150053190
    Abstract: A system for filtering and oxidizing particulate matter produced by a gasoline direct injection engine is disclosed. In one embodiment, engine cylinder air-fuel is adjusted to allow soot to oxidize at an upstream particulate filter while exhaust gases are efficiently processed in a downstream catalyst.
    Type: Application
    Filed: November 4, 2014
    Publication date: February 26, 2015
    Inventors: Carolyn Parks Hubbard, Robert Walter McCabe, Eva Thanasiu, Jeffrey Scott Hepburn, Helmut Hans Ruhland, Moritz Klaus Springer, Thomas Lorenz, Georg Louven, David Karl Bidner
  • Publication number: 20150057910
    Abstract: Methods and systems are provided for indicating water at an oxygen sensor based on power consumption of a heating element of the oxygen sensor. In one example, water may be indicated at an oxygen sensor positioned in an intake of an engine responsive to power consumption of the heating element of the oxygen sensor increasing above a baseline level. Engine operating parameters may then be adjusted based on the water indication and the power consumption.
    Type: Application
    Filed: August 20, 2013
    Publication date: February 26, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, Richard E. Soltis, Dan A. Makled, Timothy Joseph Clark
  • Patent number: 8960167
    Abstract: A ventilation control apparatus for a supercharged internal combustion engine that can perform crankcase ventilation favorably. A system includes a supercharging system, an EGR mechanism, and a blow-by gas reflux mechanism. The EGR mechanism includes an ejector between an EGR valve and an EGR cooler. A suction port is connected to a cylinder head cover via a PCV passage. A nozzle portion is connected to an EGR passage on the EGR cooler side. A diffuser portion is connected to the EGR passage on the EGR valve side. By making EGR gas flow through the EGR passage, gas in the crankcase can be drawn through the PCV passage to thereby be burned, together with the EGR gas or fresh air, in an engine.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: February 24, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shintaro Hotta
  • Patent number: 8960168
    Abstract: An arrangement for cooling of recirculating exhaust gases of a combustion engine (2) in a vehicle (1). The arrangement comprises a first EGR cooler (14), a driving means (15, 31) adapted to driving air through the first EGR cooler (14) in order to cool the exhaust gases in a return line (11) which are subjected to a first step of cooling in the first EGR cooler (14), and at least one second EGR cooler (19, 20) in which the exhaust gases in the return line (11) are intended to undergo a second step of cooling. The arrangement comprises an air line (16) which extends at least from the first EGR cooler (14) to the exhaust pipe (4) at a location between the turbine (5) and the exhaust-treating component (18a, 18b), which air line (16) is adapted to leading warm air from the first EGR cooler (14) into the exhaust line (4) at said location.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: February 24, 2015
    Assignee: Scania CB AB
    Inventors: Zoltan Kardos, Erik Söderberg, Rolf Dybdal
  • Patent number: 8955317
    Abstract: In a method for operating a supercharged internal combustion engine of a motor vehicle, at the same time an internal exhaust gas recirculation and an external exhaust gas recirculation are carried out in an engine operating range with lean burn operation modes, wherein the exhaust gas recirculation rate of the internal and the external exhaust gas recirculation is increased with increasing load and/or speed of the internal combustion engine in the lean engine operating range and, at high engine speeds and loads, a homogenous mixture operation is carried out. The invention also reside in an internal combustion engine for performing the method.
    Type: Grant
    Filed: December 16, 2012
    Date of Patent: February 17, 2015
    Assignee: Daimler AG
    Inventors: Markus Schilling, Frank Otto, Klaus Roessler
  • Patent number: 8958971
    Abstract: By providing an electrically-controlled turbocharger (ECT) on a compression-ignition (CI) engine, the engine can be provided a desired lambda and a desired EGR fraction over the range of operating conditions. When lambda in the exhaust is leaner than the desired lambda, electrical energy to the electric motor of the ECT is reduced to bring actual lambda to desired lambda. Analogously, when lambda in the exhaust is richer than the desired lambda, electrical energy to the ECT is increased.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: February 17, 2015
    Assignee: EcoMotors, Inc.
    Inventor: Peter Hofbauer
  • Patent number: 8955498
    Abstract: Methods and systems are provided for adjusting cylinder valve timings to enable a group of cylinders to operate and combust while another group of cylinders on a second are selectively deactivated. Valve timing may be adjusted to allow flow of air through the inactive cylinders to be reduced, lowering catalyst regeneration requirements upon reactivation. The valve timing may alternatively be adjusted to enable exhaust gas to be recirculated to the active cylinders via the inactive cylinders, providing cooled EGR benefits.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: February 17, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: James Michael Kerns, Stephen B. Smith, Adam Nathan Banker, Michael James Uhrich
  • Patent number: 8944035
    Abstract: Exhaust gas recirculation (EGR) systems and methods are provided. In one embodiment, a method for controlling an engine includes providing a first EGR gas flow to an intake manifold of the engine by closing a first EGR valve or a second EGR valve and at least partially opening the other of the first EGR valve and the second EGR valve, wherein the first and second EGR valves are respectively positioned in first and second EGR passages respectively coupled between first and second donor cylinder groups and an intake manifold, and providing a second EGR gas flow that is higher than the first EGR gas flow to the intake manifold by fully opening the first EGR valve or the second EGR valve and at least partially opening the other of the first EGR valve and the second EGR valve.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: February 3, 2015
    Assignee: General Electric Company
    Inventors: Sebastian Walter Freund, Jassin Fritz, Georgios Bikas, Sean Jenkins
  • Patent number: 8944034
    Abstract: The present disclosure relates to methods, apparatuses and systems to manage exhaust gas expelled from cylinders of an internal combustion engine. An exemplary system may comprise at least one cylinder of the engine configured to operate as a dedicated exhaust gas recirculation (EGR) cylinder, and wherein substantially all exhaust gas expelled from the dedicated EGR cylinder is recirculated to an intake system of the engine. In one embodiment, the system may include a flow restrictor configured and arranged to restrict a flow of the recirculated exhaust gas to the dedicated EGR cylinder without restricting a flow of the recirculated exhaust gas to the remaining cylinders of the engine. In another embodiment, exhaust gas may be expelled from the dedicated EGR cylinder in pulsations, and the intake system may be configured to reduce an amplitude of the pulsations of the exhaust gas expelled from the dedicated EGR cylinder.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: February 3, 2015
    Assignee: Southwest Research Institute
    Inventors: Jess W. Gingrich, Barrett W. Mangold, Steven H. Almaraz
  • Patent number: 8938964
    Abstract: A Rankine circuit (40) includes, as a plurality of heat exchangers, an EGR cooler (36) of an EGR circuit and an exhaust gas heat exchanger (41) associated with an exhaust passage. The EGR cooler and the exhaust gas heat exchanger are arranged such that the EGR cooler is located upstream of the exhaust gas heat exchanger as viewed in the flowing direction of a working fluid in the Rankine circuit. The amount of heat transferred from EGR gas to the working fluid in the EGR cooler is controlled by a control unit (60) so that the temperature of the EGR gas detected by an EGR gas temperature detector (39) may fall within a predetermined temperature range (e.g., 150° C. to 200° C.).
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: January 27, 2015
    Assignee: Sanden Corporation
    Inventors: Yasuaki Kanou, Junichiro Kasuya
  • Publication number: 20150020781
    Abstract: An intake manifold having an EGR-air flow distributor for distributing the desired air flow and EGR-air mixture through the intake manifold to each cylinder is disclosed. The EGR-air flow distributor includes a set of guide vanes defining plural flow channels in a plenum region of the inlet manifold. The EGR-air flow distributor also includes an EGR tube partially extending into the inlet manifold and having a slot formed therein for introducing EGR into the plenum region at a single location between the engine throttle and the guide vanes.
    Type: Application
    Filed: July 22, 2013
    Publication date: January 22, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Edward J. KEATING, Alan W. HAYMAN, Robert S. MCALPINE
  • Publication number: 20150020783
    Abstract: A second recirculation passage recirculates blow-by gas at an upstream section, which is upstream of an impeller of a turbocharger in an intake passage. A first passage branches and extends from a downstream section, which is downstream of the impeller in the intake passage. A second passage that forms part of the second recirculation passage connects the first passage and the upstream section to each other. A third passage, which is provided separately from the second passage, connects the first passage and the upstream section to each other. A change mechanism changes, in different manners, the flow rate of compressed gas recirculating to the upstream section through the second passage, and the flow rate of compressed gas recirculating to the upstream section through the third passage.
    Type: Application
    Filed: March 5, 2012
    Publication date: January 22, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takahiro Sadamitsu, Atsushi Nakagaki, Osamu Maeda, Tomoyuki Isogai, Tatsuo Iida, Koichi Yonezawa
  • Publication number: 20150020782
    Abstract: An exhaust turbo pump of an internal combustion engine has multiple pairs of turbine and compressor wheels rotatable about a common axis, an inner pair of wheels being connected by a tubular shaft rotatable relative to a spindle connecting an outer pair of wheels. One pair of wheels comprises a turbocharger for inlet air, and another pair of wheels comprises a low pressure EGR pump.
    Type: Application
    Filed: March 8, 2013
    Publication date: January 22, 2015
    Inventor: Philip Newman
  • Patent number: 8936011
    Abstract: A method of imposing a variable load upon the internal combustion engine as it is typically used in the performance of degassing operations includes coupling a crankshaft of the internal combustion engine to a secondary internal combustion engine.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: January 20, 2015
    Assignee: BRB/Sherline, Inc.
    Inventor: Bernhardt R. Bruns
  • Patent number: 8935917
    Abstract: A partially integrated manifold assembly is disclosed which improves performance, reduces cost and provides efficient packaging of engine components. The partially integrated manifold assembly includes a first leg extending from a first port and terminating at a mounting flange for an exhaust gas control valve. Multiple additional legs (depending on the total number of cylinders) are integrally formed with the cylinder head assembly and extend from the ports of the associated cylinder and terminate at an exit port flange. These additional legs are longer than the first leg such that the exit port flange is spaced apart from the mounting flange. This configuration provides increased packaging space adjacent the first leg for any valving that may be required to control the direction and destination of exhaust flow in recirculation to an EGR valve or downstream to a catalytic converter.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: January 20, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Alan W. Hayman, Rodney E. Baker
  • Publication number: 20150013651
    Abstract: An internal combustion engine comprises a first engine bank and a second engine bank. A first intake valve is disposed in an intake port of a cylinder of the first engine bank, and is configured for metering the first flow of combustion air by periodically opening and closing according to a first intake valve lift and duration characteristic. A variable valve train control mechanism is configured for affecting the first intake valve lift and duration characteristic. Either a lift or duration of the first intake valve is modulated so as to satisfy an EGR control criterion.
    Type: Application
    Filed: July 9, 2013
    Publication date: January 15, 2015
    Inventors: Alan W. Hayman, Robert S. McAlpine, Edward J. Keating
  • Patent number: 8931461
    Abstract: Various systems and methods are described for operating an engine system having a sensor coupled to an exhaust gas recirculation system in a motor vehicle. One example method comprises during a first operating condition, directing at least some exhaust gas from an exhaust of the engine through the exhaust gas recirculation system and past the sensor to an intake of the engine and, during a second operating condition, directing at least some fresh air through the exhaust gas recirculation system and past the sensor.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: January 13, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Dave Charles Weber, Michiel J. Van Nieuwstadt, Daniel Joseph Styles, Daniel Joseph Rinkevich
  • Patent number: 8931462
    Abstract: An internal combustion engine of a motor vehicle has a multi-channel fresh gas system with a plurality of fresh gas lines leading to different cylinder groups. At least one shut-off element is connected in each of the fresh gas lines and coupled to a control and/or regulating device. A multi-channel exhaust system for the discharge of exhaust gas out of the cylinders has a plurality of exhaust lines leading away from the different cylinder groups. A multi-channel exhaust-gas recirculation system has exhaust-gas recirculation lines, for recirculating exhaust gas from the exhaust system to the fresh gas system. The method and device utilize crossed-channel exhaust-gas recirculation, in which the exhaust-gas recirculation lines branching off from the exhaust lines of a certain channel lead back in each case to fresh gas lines of a different channel.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: January 13, 2015
    Assignee: MAN Truck & Bus AG
    Inventor: Andreas Pappenheimer
  • Patent number: 8925530
    Abstract: An integrated exhaust gas recirculation intake module comprises: an intake system including a fresh air channel; and a coupling device, wherein the coupling device is configured to receive an exhaust gas recirculation valve, wherein the coupling device is configured to connect an exhaust gas channel with a fresh gas channel, and wherein the exhaust gas channel is connected with the coupling device such that a heat transfer is hindered.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: January 6, 2015
    Assignee: Mahle International GmbH
    Inventors: Veit Bruggesser, Hans-Peter Drespling, Oliver Fischer
  • Patent number: 8925315
    Abstract: A method for reducing turbolag in a turbocharged internal combustion engine includes demanding torque for shifting the internal combustion engine from a stationary engine mode to a transient engine mode, closing an exhaust gas recirculation (EGR) valve during the transient engine mode, repositioning guide vanes of a Variable Geometry Turbine (VGT) turbo unit from a first position when in the stationary engine mode to a second position when in the transient engine mode, increasing a duration of overlapping of at least one inlet valve and at least one outlet valve provided in a cylinder head of the internal combustion engine from as first duration when in the stationary mode to a second duration when in the transient mode for increasing the amount of air flowing from an inlet manifold to an exhaust manifold and thereby increasing acceleration of a turbine of the VGT turbo unit.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: January 6, 2015
    Assignee: Volvo Lastvagnar AB
    Inventors: Andreas Nordstrand, Lennarth Zander
  • Publication number: 20140373818
    Abstract: An air supply system includes a displacement type compressor attached to an intake pipe of an engine, a motor that is variable in rotation number and configured to drive the compressor, and an arithmetic circuit configured to control the rotation number of the motor so as to control an amount of air supplied to the engine by the compressor.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 25, 2014
    Inventor: Yoshinori SUNAGA
  • Patent number: 8915081
    Abstract: An internal combustion engine comprises a compressor disposed in an intake system configured to compress combustion air and deliver it to cylinders of the engine. A compressor inlet assembly has a combustion air inlet, in fluid communication with, and configured to receive combustion air from the intake system. A combustion air passage extends through the assembly to an outlet located downstream of the inlet and is configured for fluid communication with the compressor. An EGR mixing conduit is disposed within the compressor inlet assembly and has an EGR inlet configured for fluid communication with, and receipt of EGR from, an EGR supply conduit. An EGR passage extends from the EGR inlet to an EGR supply annulus disposed about the combustion air inlet opening and a plurality of EGR ports extend between the EGR supply annulus and the combustion air passage for delivery of EGR thereto.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: December 23, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Alan W. Hayman, Rodney E. Baker
  • Patent number: 8915236
    Abstract: A control system for an engine includes first and second modules. The first module determines an oxygen concentration within an intake manifold of the engine. The second module regulates a flow of exhaust gas recirculation (EGR) into the intake manifold based on the determined oxygen concentration. In a homogeneous charge compression ignition (HCCI) engine, the second module may also disable an HCCI combustion mode of the HCCI engine based on the oxygen concentration.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: December 23, 2014
    Inventors: Vijay Ramappan, Darrell W. Burleigh, B. Jerry Song
  • Patent number: 8915235
    Abstract: An air exhaust mixer assembly includes an upstream intake section with an upstream elbow and a downstream elbow. A mixing tube is configured to introduce exhaust gas into the upstream intake section at a location upstream of the downstream elbow. An internal combustion engine utilizing the air exhaust mixer assembly is also provided.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: December 23, 2014
    Assignee: Caterpillar Inc.
    Inventors: Aaron Luft, Jeremy Byrd, Rohan Swar, Catalin Tiru, Prasad Chodavarapu
  • Publication number: 20140366852
    Abstract: An exhaust gas re-circulation mixer for use with an engine is disclosed. The exhaust gas re-circulation mixer may include an inlet air port configured to receive inlet air, an outlet configured to release a mixture of the inlet air and exhaust gases and a body integrated with and connecting the inlet air port and the outlet together in fluid communication to form a unitary structure. The body may define a cavity therein for mixing the inlet air and the exhaust gases, the exhaust gas re-circulation mixer being composed of a composite material.
    Type: Application
    Filed: June 17, 2013
    Publication date: December 18, 2014
    Inventors: Matthew J. Liening, Christopher R. Reed, Dave Ahlman, Rong Qu, Timothy Alcenius
  • Publication number: 20140366853
    Abstract: While an engine is at idling state with an EGR valve fully closed, an EGR controller estimates a leak quantity of an exhaust gas flowing into an intake passage and performs a biasing-force-increase control in which the EGR valve is biased toward a full-close position. When the leak quantity of the exhaust gas is greater than or equal to a specified value, the controller executes an abutting control in which the EGR valve is opened and closed multiple times so that the EGR valve is brought into contact with a valve seat multiple times after the engine is shut down.
    Type: Application
    Filed: June 9, 2014
    Publication date: December 18, 2014
    Applicant: DENSO CORPORATION
    Inventor: Hideaki ICHIHARA
  • Patent number: 8910614
    Abstract: A combustion system comprises a supercharger with an operating range from an idled condition up to a maximum rotations per minute (RPM) of its drive shaft. An engine in the system has an engine operating range from an idled condition up to a maximum RPM of its crank shaft, the engine having at least one airflow demand for each RPM in the engine operating range for providing peak torque output. A continuously variable transmission (CVT) is connected to the drive shaft for transmitting a variable amount of rotational energy to operate the supercharger. The control system controls the transmitting of the CVT based on the at least one airflow demand for each RPM in the engine operating range such that the supercharger variably pumps air across the operating range as the engine operates across the engine operating range.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: December 16, 2014
    Assignee: Eaton Corporation
    Inventors: Karen E. Bevan, Daniel Robert Ouwenga
  • Patent number: 8904786
    Abstract: An internal combustion engine comprises a four stroke working cylinder, a four stroke EGR cylinder, an intake system for supplying a combustion air charge to the cylinders, a first exhaust system for removing exhaust gas from the four stroke working cylinder and to the atmosphere and a second exhaust system for removing exhaust from the four stroke EGR cylinder and to the intake system, wherein the combustion air charge is a combination of combustion air and exhaust gas from the four stroke EGR cylinder.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: December 9, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Alan W. Hayman
  • Patent number: 8909458
    Abstract: By means of an air model, an estimated quantity of an exhaust gas flowing into a cylinder and a target quantity of the exhaust gas are computed. A deviation between the estimated quantity and the target quantity is multiplied by a feedback gain to obtain a feedback correction quantity. A reference opening degree of an EGR valve is defined according to an engine driving condition and the feedback correction quantity is added to the reference opening degree to obtain a command opening degree of the EGR valve. According to the engine driving condition and the deviation between the estimated quantity and the target quantity, a feedback gain is established so that control accuracy and control stability of a feedback control can be ensured.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: December 9, 2014
    Assignee: Denso Corporation
    Inventor: Hiroyuki Takezoe
  • Patent number: 8905008
    Abstract: The invention relates to a gas supply module (20) for an engine, comprising a heat exchanger (22) capable of cooling gases for the intake thereof in an intake space of a cylinder head of the engine, and a gas supply valve (24) capable of directing said gases toward the intake space of said cylinder head and/or through said heat exchanger (22), said module (20) further comprising an interface element (26) closing said intake space of said cylinder head. According to the invention, said interface element (26) and said valve (24) are shaped such that said valve (24) can be attached to said cylinder head via at least a first attachment means extending through at least the interface element (26). The invention also relates to an assembly of an engine cylinder head and such a module, and to a motor vehicle engine comprising such an assembly. The invention can particularly be used in the field of motor vehicles.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: December 9, 2014
    Assignee: Valeo Systems Thermiques
    Inventor: Samuel Leroux
  • Publication number: 20140352672
    Abstract: An exhaust system is disclosed for use with an engine. The exhaust system may have a compression relief valve associated with an engine cylinder. The exhaust system may also have an exhaust gas recirculation passage extending from the compression relief valve to an intake of the engine cylinder.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Inventors: Michael B. GOETZKE, Reddy POCHA SIVA SANKARA
  • Publication number: 20140352669
    Abstract: A method and system for providing a suitable engine torque response during a transient condition is presented. In one example, when a desired inlet manifold pressure is greater than a throttle inlet pressure of a first throttle, a second throttle positioned upstream from the first throttle is opened to increase the throttle inlet pressure. The method may provide an appropriate torque response while minimizing impact on fuel economy.
    Type: Application
    Filed: May 28, 2013
    Publication date: December 4, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Ralph Wayne Cunningham, Matthew John Gerhart, Julia Helen Buckland, Suzanne Kay Wait, Michael Howard Shelby, Jeffrey Allen Doering, Mrdjan J. Jankovic, John Eric Rollinger, Gopichandra Surnilla, Naginder Gogna
  • Patent number: 8899016
    Abstract: An integrated water-gas-shift (WGS) and emissions control device (ECD) catalyst for treating exhaust from an internal combustion engine. The engine is assumed to have an EGR loop, such that exhaust is recirculated back to the engine's intake. A WGS catalyst on the EGR loop, for conditioning the EGR flow, is integrated with a catalyzed ECD on the main exhaust line, for reducing pollutant emissions.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: December 2, 2014
    Assignee: Southwest Research Institute
    Inventors: Jess W. Gingrich, Steven H. Almaraz
  • Publication number: 20140345578
    Abstract: There is provided an inner fin wherein: a sheet material is formed into an offset configuration in which grooves and ridges are formed alternately in a widthwise direction, and the grooves and the ridges are offset laterally at right angles to a gas flowing direction at predetermined length intervals in an alternate fashion; and a first projection and a second projection are formed for each segment surrounded by a pair of left and right side walls, by cutting either an upper surface portion or a lower surface portion and causing the cut surface portion to stand, the first projection being inclined towards an upstream side of the gas flowing direction, the second projection being disposed downstream of the first projection and being inclined towards a downstream side of the gas flowing direction at an angle equal to an angle at which the first projection is inclined.
    Type: Application
    Filed: November 22, 2012
    Publication date: November 27, 2014
    Applicants: TOKYO RADIATOR MFG. CO., LTD., TOKYO RADIATOR MFG. CO., LTD.
    Inventor: Tetsu Yokoo
  • Patent number: 8893687
    Abstract: A method using exhaust gas recirculation (EGR) in an internal combustion engine. The engine has at least one “dedicated EGR cylinder”, whose entire exhaust is recirculated back to all the engine cylinders. The dedicated EGR cylinder is operated at a rich air-fuel ratio, and the other cylinders are operated stoichiometrically so that a conventional three way catalyst may be used to treat the exhaust. A fuel injector is used to inject fuel into the combustion chamber of the dedicated EGR cylinder after initiation of the main combustion event. This post injection method overcomes flammability limits of a dedicated EGR cylinder, and increases the hydrogen (H2) and carbon monoxide (CO) in its exhaust.
    Type: Grant
    Filed: February 25, 2012
    Date of Patent: November 25, 2014
    Assignee: Southwest Research Institute
    Inventors: Jess W. Gingrich, Terrence F. Alger, II, Raphael Gukelberger
  • Patent number: 8887700
    Abstract: The disclosure provides a diesel engine, which includes an engine body mounted in a vehicle and having a cylinder to be supplied with fuel containing diesel fuel as its main component, a geometric compression ratio ? of the cylinder being set within a range of 12:1 to 15:1, and an EGR system for allowing a part of burned gas to exist inside of the engine body cylinder when the engine body is at least in a particular operating state where an engine load and an engine speed are relatively low. The EGR system includes an EGR passage at least partially formed inside the engine body, and having a predetermined or shorter passage, an EGR control valve provided in a course of the EGR passage and for adjusting a flow rate of the burned gas inside the EGR passage, and a controller for controlling an opening of the EGR control valve.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: November 18, 2014
    Assignee: Mazda Motor Corporation
    Inventors: Yoshie Kakuda, Takeshi Yokoo, Daisuke Shimo, Kyotaro Nishimoto, Kim Sangkyu
  • Patent number: 8887701
    Abstract: A control method for a low pressure exhaust gas recirculation (LP-EGR) system may include measuring an engine speed and load, setting a target pressure difference between a downstream side and an upstream side of a LP-EGR valve according to the measured engine speed and load, measuring a present pressure difference between the downstream and upstream sides of the LP-EGR valve, comparing the present pressure difference with the target pressure difference, and preventing a reverse flow of a recirculated exhaust gas by adjusting an opening rate of the LP-EGR valve to alter a recirculated exhaust gas amount when the present pressure difference is smaller than the target pressure difference. The LP-EGR system for preventing reverse flow of a recirculated exhaust gas may include an air intake line, an exhaust line, a LP-EGR line, a LP-EGR valve, pressure sensors and a control portion.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: November 18, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: Kihoon Nam
  • Publication number: 20140331978
    Abstract: An engine system for a machine is disclosed. The engine system may have a first intake manifold configured to distribute air into a first cylinder bank of an engine. The engine system may also have a second intake manifold configured to distribute air into a second cylinder bank of the engine. The engine system may have a first exhaust manifold configured to discharge exhaust from the first cylinder bank to the atmosphere. The engine system may further have a second exhaust manifold configured to discharge exhaust from non-donor cylinders in the second cylinder bank to the atmosphere. In addition, the engine system may have a third exhaust manifold separate from the first and second exhaust manifolds and configured to recirculate exhaust from donor cylinders in the second cylinder bank to the first and second intake manifolds.
    Type: Application
    Filed: May 8, 2013
    Publication date: November 13, 2014
    Applicant: Electro-Motive Diesel, Inc.
    Inventors: Michael B. GOETZKE, Reddy POCHA SIVA SANKARA, Stephen M. BEDNARZ, Deep BANDYOPADHYAY, Steven Dallas JOHNSON
  • Publication number: 20140324323
    Abstract: Systems are provided for EGR mass and air mass estimation during steady state and transient operations. By utilizing a combination sensor comprising of a manifold absolute pressure sensing element and a differential pressure sensing element sharing a common pressure chamber with connections to the intake manifold, errors in EGR mass estimation may be reduced.
    Type: Application
    Filed: April 24, 2013
    Publication date: October 30, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Freeman Carter Gates, Dennis Vroman, Fadi Maroun Naddaf, Gitanjli McRoy
  • Publication number: 20140318511
    Abstract: Provided is an exhaust gas recirculation device for an internal combustion engine, the device being configured, without an increase in the number of parts, so that stress concentrated on an EGR pipe and on the connection section thereof is dispersed. The upstream EGR pipe extends substantially upward from the first connection section and has four bends provided between the first connection section and the second connection section. Among the four bends, the smallest-angle bend having the smallest bend angle is disposed at a position having a substantially equal distance from both the first connection section and the second connection section.
    Type: Application
    Filed: October 3, 2012
    Publication date: October 30, 2014
    Inventors: Noritaka Sekiya, Yusaku Komaki
  • Publication number: 20140311465
    Abstract: An internal combustion engine is provided with at least two reclaim cylinders for each two fuel burning cylinders. A plurality of routing members, such as hoses, are provided to route exhaust gas from the fuel burning cylinders to the reclaim cylinders.
    Type: Application
    Filed: July 8, 2014
    Publication date: October 23, 2014
    Inventor: Robert L. Murtha
  • Publication number: 20140311464
    Abstract: In an exhaust system for an internal combustion engine, an output member is configured to transmit power generated by a motor to a valving element via a valve stem. An output shaft is disposed on a rotation central axis of an output gear and coupled with the output gear to be rotatable integrally therewith. A follower is disposed eccentrically relative to a rotation central axis of the output shaft and connected to the output shaft to be rotatable integrally therewith. A first accommodating chamber accommodates at least the valve stem and the follower. A second accommodating chamber accommodates at least the motor and the output gear. A housing includes a housing wall that divides the first chamber from the second chamber. The housing wall includes a first bearing slidably supporting the output shaft in its rotation direction, and a cylindrical first bearing holder holding outer periphery of the first bearing.
    Type: Application
    Filed: March 14, 2014
    Publication date: October 23, 2014
    Applicant: DENSO CORPORATION
    Inventors: Ryo SANO, Satoshi ISHIGAKI, Hiroki SHIMADA, Osamu SATO