Gas Or Vapor Form Agent Condensed Or Absorbed On Work Patents (Class 134/11)
  • Patent number: 6616769
    Abstract: A process and system for conditioning a bulk container for ultra-high purity liquefied gas. Vapor is generated in the container from a conditioning quantity of the ultra-high purity liquefied gas by imposing a temperature difference on the container so that the vapor condenses when a temperature difference is achieved. The resulting liquid reflux, e.g., the condensed liquid drips or flows back to the conditioning quantity of the liquified gas, washes or removes contaminants, e.g., particles, metal and moisture, from the interior surface of the container. A portion of the vapor is vented from the container for reclamation. The used conditioning liquid may also be reclaimed.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: September 9, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Anthony J. Lachawiec, Jr., Vladimir Yliy Gershtein, Ronald Martin Pearlstein, Robert William Ford
  • Publication number: 20030164177
    Abstract: A method of using PFCs recovered from the effluent of a CVD chamber cleaning process as an influent for the cleaning process is provided which includes the steps of selecting a first PFC gas mixture having a first ratio of C2F6 to CF4, providing the first PFC gas mixture as the influent gas to the CVD chamber to create a CVD chamber effluent gas of a second PFC gas mixture having a second ratio of C2F6 to CF4, adding virgin C2F6 or CF4 to the CVD chamber effluent gas in sufficient quantity to create a third PFC gas mixture having the first ratio of C2F6 to CF4, and using the third PFC gas mixture as the influent gas to the CVD chamber.
    Type: Application
    Filed: February 27, 2002
    Publication date: September 4, 2003
    Inventors: John Giles Langan, Andrew David Johnson
  • Patent number: 6605254
    Abstract: The present invention relates to a method of fumigating closed systems susceptible to microbially influenced corrosion (MIC). The method is particularly useful in a method for mitigating MIC in fire protection sprinkler systems.
    Type: Grant
    Filed: January 8, 2001
    Date of Patent: August 12, 2003
    Assignee: AlliedSignal Inc.
    Inventors: Anthony Mark Aguilera, Ronald Gordon Bitney, Stephen Alan Conviser, Barbara Ruth Decaire
  • Publication number: 20030140945
    Abstract: A substrate processing apparatus and a substrate processing method are provided wherein particles etc. adhering to a substrate after processing can be reduced.
    Type: Application
    Filed: January 28, 2003
    Publication date: July 31, 2003
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Yasuhiro Chono
  • Patent number: 6589355
    Abstract: Disclosed are methods of cleaning articles of manufacture using hydrofluorocarbon and hydrochlorofluorocarbon fluids. The methods comprise generally the steps of (a) providing a hydrofluorocarbon and/or hydrochlorofluorocarbon fluid in liquid or supercritical state; (b) contacting an article of manufacture with said fluid; and (c) removing substantially all of said fluid from said article of manufacture.
    Type: Grant
    Filed: September 26, 2000
    Date of Patent: July 8, 2003
    Assignee: AlliedSignal Inc.
    Inventors: Raymond Hilton Percival Thomas, Rajiv Ratna Singh, Kane David Cook, Gary Michael Knopeck, Robert Scott Wedinger
  • Patent number: 6589868
    Abstract: Embodiments of the present invention include a method of depositing an improved seasoning film. In one embodiment the method includes, prior to performing a substrate processing operation, forming a layer of silicon over an interior surface of the substrate processing chamber as opposed to a layer of silicon oxide. In certain embodiments, the layer of silicon comprises at least 70% atomic silicon, is deposited from a high density silane (SinH2n+2) process gas and/or is deposited from a plasma having a density of at least 1×1011 ions/cm3.
    Type: Grant
    Filed: February 8, 2001
    Date of Patent: July 8, 2003
    Assignee: Applied Materials, Inc.
    Inventor: Kent Rossman
  • Patent number: 6589357
    Abstract: In order to remove impurities, especially liquids (5) and/or particles (4) from surfaces of plate-shaped workpieces (2) contaminated or wetted with liquid (5), at least one wiping element (3) is provided which moves with respect to the surface (2a) the wiping element (3) to be cleaned and contacts this surface (2a). The wiping element (3) is cooled down so that the liquid (5) coming into contact with this wiping element (3) and bristles (8) preferably provided thereon assumes a higher viscosity or even solidifies and consequently remains adhered together with the particles (4) contained in the liquid (5) to the wiping element (3) or its bristles (8). This cleaning principle can be assisted and influenced by heating of the surface of workpiece (2) upstream of the wiping element or elements (3) in the feed direction.
    Type: Grant
    Filed: November 14, 2000
    Date of Patent: July 8, 2003
    Assignee: Wandres GmbH Micro-Cleaning
    Inventor: Claus G Wandres
  • Publication number: 20030108823
    Abstract: A method and an apparatus for removing an organic film such as a resist film from a substrate surface are provided. These are very safe even at high temperatures, and use a treatment liquid which can be recycled and reused. A treatment liquid typically formed from liquid ethylene carbonate, propylene carbonate, or a liquid mixture of these two compounds, and in particular such a treatment liquid containing dissolved ozone, is contacted with a substrate with an organic film, and the organic film is removed.
    Type: Application
    Filed: October 21, 2002
    Publication date: June 12, 2003
    Applicants: UMS Co., Ltd., Purex Co., Ltd.
    Inventors: Hisashi Muraoka, Rieko Muraoka, Asuka Sato, Mitsuru Endo
  • Patent number: 6576066
    Abstract: According to a supercritical drying method of this invention, a substrate having a pattern is dipped in water and rinsed with water. Then, the substrate is placed in the reaction chamber of a predetermined sealable vessel, and surfactant-added liquid carbon dioxide is introduced into the reaction chamber. The substrate is dipped in surfactant-added liquid carbon dioxide, and liquid carbon dioxide is changed to the supercritical state. After that, supercritical carbon dioxide is gasified.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: June 10, 2003
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventor: Hideo Namatsu
  • Patent number: 6569256
    Abstract: Toner xerographically adhered to a material, such as a sheet of paper, may be removed using a solvent-based or solventless approach. The application of ultrasonic tamping, scraping and brushing may aid in removing toner particles. In a solvent-based approach, a solvent may be applied generally or the solvent may be targeted specifically to the toner covered portions of the material to loosen the adhesive securement of the toner to the material. Thereafter, the toner is subjected to a mechanical abrasion using ultrasonic and physical agitation to cause flaking of the toner.
    Type: Grant
    Filed: September 21, 2000
    Date of Patent: May 27, 2003
    Assignee: Intel Corporation
    Inventor: David H. Koizumi
  • Publication number: 20030056987
    Abstract: A method and apparatus for treating for disposal oil-contaminated clay substrates such as drill cuttings from drilling with an oil-based mud. If necessary, the substrate is pretreated with an aqueous emulsion breaker such as alkylbenzenesulfonic acid. The substrate is mixed under high shear conditions with a mineral acid such as sulfuric acid. This can be done in an agitated reactor with sequential addition of the organic and inorganic acids. The substrate is then mixed with alkaline earth such as lime in a second agitated reactor. The reactions between the acid(s), alkaline earth and substrate are exothermic and provide heat to vaporize the oil, reaction products and water. Recoverable constituents in the vapor can be condensed in a vapor collection system. The treated substrate is essentially free of oil and has a controlled water content.
    Type: Application
    Filed: February 27, 2002
    Publication date: March 27, 2003
    Inventor: Ramon Perez Cordova
  • Patent number: 6506259
    Abstract: A separation method includes (a) providing a heterogeneous separation system, the heterogeneous cleaning system comprising CO2 in a first phase and an oil in a separate second phase; (b) entraining a material to be separated in the second phase; (c) wholly or partially solubilizing the second phase in the first phase to produce a separation system in which said material to be separated is insoluble; and then (d) separating the material from the system. The separating step is preferably followed by the step of (e) recovering at least a portion of the oil. The system is useful in a variety of applications, including cleaning (particularly metal cleaning), polymerization, extraction, coating, and particle formation and treatment.
    Type: Grant
    Filed: November 20, 2000
    Date of Patent: January 14, 2003
    Assignee: Micell Technologies, Inc.
    Inventors: Timothy J. Romack, James B. McClain, Gina M. Stewart, Ramone D. Givens
  • Patent number: 6494959
    Abstract: A low pressure-high hydrogen flow rate process of cleaning a silicon wafer surface is described. The combination of process pressures below about 1 Torr with hydrogen flow rates up to about 3 SLM has been found to remove substantially all oxygen contamination from the silicon wafer surface at process temperatures less than about 800° C. without the use of a reactive gas. After processing at such process pressures and flow rates, even lower levels of oxygen contamination may be achieved by then increasing the process pressure, the hydrogen flow rate, and the process temperature, though the process temperature still remains less than 800° C. The combination of low pressure and high hydrogen flow rate can be achieved using a vacuum pumping speed of at least 30 cubic meters per hour. The present invention also describes an apparatus for cleaning a silicon wafer surface in which the processes of the present invention and other processes can be practiced.
    Type: Grant
    Filed: January 28, 2000
    Date of Patent: December 17, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Arkadii V. Samoilov, Dale R. DuBois, Bradley M. Curelop, David R. Carlson, Paul B. Comita
  • Patent number: 6488779
    Abstract: A method of cleaning substrates is provided. Prior to, during or prior to and during a cleaning process, fluid is applied to a substrate surface to form a fluid film thereon. Ice crystals are introduced into the fluid film on the substrate surface. The ice crystals have a temperature that is lower than the temperature of the fluid such that the fluid changes the ice crystals into a gaseous state to form a pulse generated in the fluid film. The depth of penetration of the ice crystals into the fluid film is controlled such that the ice crystals do not strike the substrate surface. The substrate surface is cleaned with the pulse.
    Type: Grant
    Filed: December 13, 2001
    Date of Patent: December 3, 2002
    Assignee: Steag MicroTech GmbH
    Inventor: Jürgen Lohmüller
  • Patent number: 6430840
    Abstract: A method of and an apparatus for drying a wafer using the Marangoni effect quickly forms an isopropyl alcohol layer on a cleaning liquid in which the wafer is submerged. The isopropyl alcohol is first heated and then supplied in a fluid state onto the cleaning liquid. The isopropyl alcohol liquid thus diffuses rapidly to form the isopropyl alcohol layer. The wafer is thoroughly dried by removing it from the cleaning liquid through the isopropyl alcohol while only supplying more of the heated nitrogen gas into the ambient above the cleaning liquid.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: August 13, 2002
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jae-Hyung Jung
  • Patent number: 6423151
    Abstract: A method and apparatus for removing a toxic contaminant from porous material by placing the material and a fluid solvent for the toxic in a drum and rotating the drum around its horizontal axis. Also provided is apparatus for placing the drum in a sealable container and sealing the container during the decontamination cycle.
    Type: Grant
    Filed: February 29, 2000
    Date of Patent: July 23, 2002
    Assignee: Kinectrics Inc.
    Inventors: Luciano A. Gonzalez, Blair F. Sim, Henry E. Kowalyk, Alexandre Z. Mlynarczyk, Nobuyoshi Miura
  • Patent number: 6423152
    Abstract: The invention relates to a method for generating a scale-removing or coat-applying system based on a vacuum-balancing low-pressure multicomponent two-phase fluid flow. A cleaning site such as, e.g., a pipe circuit (A) or the inner cavities of a heat exchanger (B) is supplied with an already used cleaning agent in a two- or multiphase flow made up of ca. 10% liquid and ca. 90% air or gas, which after separation is used again by way of continuously monitoring the ion density of the separated liquid, using a conductivity apparatus which determines whether it shall be filtered and reused, be supplied with new liquid and/or solids, or be dumped. A liquid flow and separated air/gas flow from an air pump meet at a mixing point from where an intended two-phase flow flows to the cleaning site (A), (B), or similar, through this and then forward to return as a re-use medium. A gas-injected liquid/powder flow from a mixing unit is also used for coating, e.g.
    Type: Grant
    Filed: December 28, 2000
    Date of Patent: July 23, 2002
    Assignee: Intel Sampling AS
    Inventor: Torstein Landaas
  • Patent number: 6418942
    Abstract: An enclosed solvent and aqueous decompression processing system includes a chamber for holding an object to be processed. At least one vacuum pump applies a negative gauge pressure to the chamber to remove air and other non-condensable gases. Means are provided for introducing a solvent to the evacuated chamber to treat the object contained within. Treatment may be in the form of coating, etching, deposition, cleaning, stripping, plating, adhesion, dissolving, filtering or any other process in which material is removed or deposited on a solid surface by transfer from or to a liquid phase. A first system removes pressure from the chamber to produce vapor bubbles for processing. A second system increases pressure by ceasing to apply vacuum or adding non-condensable gases. The system includes recovery of the solvent from the chamber and object.
    Type: Grant
    Filed: March 10, 2000
    Date of Patent: July 16, 2002
    Inventors: Donald Gray, Charlotte Frederick
  • Patent number: 6402857
    Abstract: The invention provides a solvent mixture including n-propyl bromide, a mixture of low boiling solvents and, preferably, a defluxing and/or ionics removing additive and/or at least one saturated terpene. The invention also provides a method of cleaning an article (e.g., an electrical, plastic, or metal part) in a vapor degreaser using the solvent mixture. The solvent mixture of the invention is non-flammable, non-corrosive, and non-hazardous. In addition, it has a high solvency and a very low ozone depletion potential. Thus, using the solvent mixture of the invention, oil, grease, rosin flux, and other organic material can be readily removed from the article of interest in an environmentally safe manner.
    Type: Grant
    Filed: November 29, 2000
    Date of Patent: June 11, 2002
    Assignee: Lawrence Industries, Inc.
    Inventors: Lawrence A. Clark, James L. Priest
  • Patent number: 6398875
    Abstract: A process of drying a semiconductor wafer which includes at least one microelectric structure disposed thereon which includes contacting a water-containing thin film-covered semiconductor wafer with a composition which includes liquid or supercritical carbon dioxide and a surfactant.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: June 4, 2002
    Assignee: International Business Machines Corporation
    Inventors: John Michael Cotte, Dario L. Goldfarb, Kenneth John McCullough, Wayne Martin Moreau, Keith R. Pope, John P. Simons, Charles J. Taft
  • Patent number: 6352081
    Abstract: The present invention is a method for removing deposited etch byproducts from surfaces of a semiconductor processing chamber after a copper etch process. The method of the invention comprises the following general steps: (a) an oxidation step, in which interior surfaces of the processing chamber are contacted with an oxidizing plasma; (b) a first non-plasma cleaning step, in which interior surfaces of the processing chamber are contacted with an H+hfac-comprising gas; and (c) a second cleaning step, in which interior surfaces of the processing chamber are contacted with a plasma containing reactive fluorine species, whereby at least a portion of the copper etch byproducts remaining after step (b) are volatilized into gaseous species, which are removed from the processing chamber. The method of the invention is preferably performed at a chamber wall temperature of at least 150° C.
    Type: Grant
    Filed: July 9, 1999
    Date of Patent: March 5, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Danny Chien Lu, Allen Zhao, Peter Hsieh, Hong Shih, Li Xu, Yan Ye
  • Patent number: 6350322
    Abstract: The present invention relates to a method of cleaning and drying a semiconductor structure in a modified conventional gas etch/rinse or dryer vessel. In a first embodiment of the present invention, a semiconductor structure is placed into a first treatment vessel and chemically treated. Following the chemical treatment, the semiconductor structure is transferred directly to a second treatment vessel where it is rinsed with DI water and then dried. The second treatment vessel is flooded with both DI water and a gas that is inert to the ambient, such as nitrogen, to form a DI water bath upon which an inert atmosphere is maintained during rinsing. Next, an inert gas carrier laden with IPA vapor is fed into the second treatment vessel. After sufficient time, a layer of IPA has formed upon the surface of the DI water bath to form an IPA-DI water interface.
    Type: Grant
    Filed: March 21, 1997
    Date of Patent: February 26, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Donald L. Yates
  • Patent number: 6348101
    Abstract: An object is treated by contacting it with an organic solvent and then removing the organic solvent by directly displacing it with a fluid comprising a drying vapor (e.g., isopropyl alcohol or IPA vapor) such that substantially no liquid droplets of organic solvent are left on the surfaces of the object to evaporate after the direct displacement of the organic solvent with the fluid.
    Type: Grant
    Filed: September 26, 2000
    Date of Patent: February 19, 2002
    Assignee: CFMT, Inc.
    Inventor: Alan E. Walter
  • Patent number: 6348174
    Abstract: Infectious wastes originating in hospitals or other locations are deposited into a sealable, pressure resistant, portable sterilizer vessel at the source of the wastes. The sterilizer vessel rides on wheels enabling travel of the filled vessel to a sterilization station at another location where steam is directed into the vessel to perform the sterilization. Operators need not transfer unprocessed infectious waste from a collection cart to a fixed sterilization vessel at the sterilization site. In the preferred form, handler exposure to unprocessed wastes is further reduced by creating an airflow from the vessel opening to a filter while the vessel is opened for deposit of wastes.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: February 19, 2002
    Inventor: John L. Hall
  • Patent number: 6312528
    Abstract: An improved approach for cleaning and recycling materials is based on pressurized solvents including liquid propane, butane, dimethyl ether, and supercritical carbon dioxide. The approaches are particularly suitable for cleaning sorbent materials. The approach allows for recycling of the sorbent materials, the solvent and the contaminents, typically oils and the like.
    Type: Grant
    Filed: February 27, 1998
    Date of Patent: November 6, 2001
    Assignee: CRI Recycling Service, Inc.
    Inventors: John W. Summerfield, John P. Markiewicz, John M. Moses, Randall L. Barcus
  • Patent number: 6231683
    Abstract: Radioactively contaminated material is cleaned by contacting the material with a decontaminating liquid comprising an aqueous solution of nitric acid containing an NOx generating agent. The NOx generating agent may be a nitrite, for example, sodium nitrite, or a ferrous metal. The material to be cleaned may comprise a plastics material contaminated with uranium or other actinides. Cleaning is effected by placing the material in a rotatable, apertured vessel in which the material is subjected to a leaching cycle by contact with the decontaminating liquid and then a washing cycle in which the material is contacted with a washing liquid.
    Type: Grant
    Filed: November 2, 1999
    Date of Patent: May 15, 2001
    Assignee: British Nuclear Fuels plc
    Inventors: Alan Rushton, James Clark Armit
  • Patent number: 6203623
    Abstract: An aerosol assisted chemical cleaning method to remove wall deposition from reaction chambers is provided. The method generates cleaning chemicals in an aerosol state, and then feeds them into the reaction chamber by a carrier gas. The cleaning chemicals interact quickly with unwanted deposits on all internal surfaces of the reaction chamber. By controlling the pressure in the closed reaction chamber, the deposits can be stripped off from the wall and fall into a waste acid collector. The acid collector can then process the waste to prevent contamination.
    Type: Grant
    Filed: December 28, 1999
    Date of Patent: March 20, 2001
    Assignee: Ball Semiconductor, Inc.
    Inventor: Chang Feng Xia
  • Patent number: 6200393
    Abstract: A separation method includes (a) providing a heterogeneous separation system, the heterogeneous cleaning system comprising CO2 in a first phase and an oil in a separate second phase; (b) entraining a material to be separated in the second phase; (c) wholly or partially solubilizing the second phase in the first phase to produce a separation system in which said material to be separated is insoluble; and then (d) separating the material from the system. The separating step is preferably followed by the step of (e) recovering at least a portion of the oil. The system is useful in a variety of applications, including cleaning (particularly metal cleaning), polymerization, extraction, coating, and particle formation and treatment.
    Type: Grant
    Filed: August 7, 2000
    Date of Patent: March 13, 2001
    Assignee: MiCell Technologies, Inc.
    Inventors: Timothy J. Romack, James B. McClain, Gina M. Stewart, Ramone D. Givens
  • Patent number: 6176942
    Abstract: The invention provides a solvent mixture including n-propyl bromide, a mixture of low boiling solvents and, preferably, a defluxing and/or ionics removing additive and/or at least one saturated terpene. The invention also provides a method of cleaning an article (e.g., an electrical, plastic, or metal part) in a vapor degreaser using the solvent mixture. The solvent mixture of the invention is non-flammable, non-corrosive, and non-hazardous. In addition, it has a high solvency and a very low ozone depletion potential. Thus, using the solvent mixture of the invention, oil, grease, rosin flux, and other organic material can be readily removed from the article of interest in an environmentally safe manner.
    Type: Grant
    Filed: August 16, 1999
    Date of Patent: January 23, 2001
    Assignee: Lawrence Industries, Inc
    Inventors: Lawrence A. Clark, James L. Priest
  • Patent number: 6165377
    Abstract: A plasma etching method includes the steps of placing a sample having metal a wiring portion on a sample table in a vacuum vessel, evacuating the vacuum vessel to establish a reduced pressure in the vacuum vessel, introducing an etching gas into the vacuum vessel while continuing to evacuate the vacuum vessel to maintain the reduced pressure in the vacuum vessel, and generating a plasma from the etching gas under the reduced pressure in the vacuum vessel using radio-frequency power. The plasma etches the metal wiring portion, and a residue forms on the metal wiring portion during the etching of the metal wiring portion by the plasma. The method further includes the step of applying to the sample table a bias voltage which periodically changes between two different voltages during the etching of the metal wiring portion by the plasma to remove the residue from the metal wiring portion.
    Type: Grant
    Filed: May 4, 1999
    Date of Patent: December 26, 2000
    Assignee: Hitachi, Ltd.
    Inventors: Hironobu Kawahara, Yoshinao Kawasaki, Yoshiaki Sato, Ryooji Fukuyama
  • Patent number: 6164295
    Abstract: There is provided a CVD apparatus and a cleaning method which can precisely perform cleaning at a high speed, in order to increase the throughput of a CVD apparatus. A film formation gas (e.g., SiH.sub.4 and O.sub.2 gases) is introduced from a source gas supply pipe into a chamber to form a silicon oxide film (SiO.sub.2) on a wafer placed on a susceptor by using a plasma or the like. A thin film (SiO.sub.2) mainly consisting of silicon and oxygen, an imperfect oxide film of silicon, or the like also attaches to a wall surface and the respective surfaces of a window plate, a vacuum seal portion, the susceptor, an electrode, an insulator, an exhaust pipe, and the like in the chamber. An HF-based gas supply system for a cleaning etching gas is arranged to clean the interior of the chamber of the CVD apparatus. Particularly, a film formed with a source gas of Si.sub.x H.sub.2x+2 (x=1, 2, 3) and O.sub.2 is more perfect than an imperfect oxide film (e.g.
    Type: Grant
    Filed: April 29, 1997
    Date of Patent: December 26, 2000
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akio Ui, Naruhiko Kaji, Hideshi Miyajima, Nobuo Hayasaka
  • Patent number: 6165282
    Abstract: Apparatus and methods are described for removing contaminants from an article using a supercritical or near supercritical solvent fluid held at substantially constant pressure in a pressure vessel. The article to be cleaned is first contacted with a solvent fluid in which the contaminant is soluble at a first supercritical or near-supercritical temperature. The contaminate-containing fluid is then cooled or heated to a second supercritical or near supercritical temperature to lower the solubility of the contaminant in the supercritical fluid and thereby precipitate or phase separate the contaminant. The contaminant is then recovered. Movement of the solvent fluid within the pressure vessel is preferably by convection induced by heating and cooling means in the vessel.
    Type: Grant
    Filed: July 8, 1996
    Date of Patent: December 26, 2000
    Assignee: Southwest Research Institute
    Inventors: Mary C. Marshall, John G. Franjione, Christopher J. Freitas
  • Patent number: 6162304
    Abstract: Cleaning a component of a vapor compression system with a cleaning composition having a hydrofluorocarbon as an active ingredient.
    Type: Grant
    Filed: December 9, 1998
    Date of Patent: December 19, 2000
    Assignee: AlliedSignal Inc.
    Inventors: David Weidman, George McDonough, Raymond Thomas, Ian Shankland, Roy Robinson, Ellen Swan
  • Patent number: 6153060
    Abstract: A method for coating substrates having sides of the substrate with unequal adhesion properties includes the steps of non-symmetrically coating the substrate by coating a first side under a first set of coating conditions and coating a second side under a second set of operating conditions wherein the operating conditions used to coat each side are varied so as to compensate for the unequal adhesion properties of the sides.
    Type: Grant
    Filed: August 4, 1999
    Date of Patent: November 28, 2000
    Assignee: Honeywell International Inc.
    Inventors: Richard J. Pommer, Glen Roeters, Stephen M. Avery
  • Patent number: 6143087
    Abstract: An object is treated by contacting it with an organic solvent and then removing the organic solvent by directly displacing it with a fluid comprising a drying vapor (e.g., isopropyl alcohol or IPA vapor) such that substantially no liquid droplets of organic solvent or drying vapor are left on the surfaces of the object to evaporate after the direct displacement of the organic solvent with the fluid.
    Type: Grant
    Filed: February 19, 1999
    Date of Patent: November 7, 2000
    Assignee: CFMT, Inc.
    Inventor: Alan E. Walter
  • Patent number: 6139681
    Abstract: A system and method for removing plasma contaminants from a vacuum vessel requires circulating a fluid through the vacuum vessel and thereby exposing the fluid to the contaminants. When the contaminants contact the fluid, they are trapped and become suspended in the fluid. The contaminants are then removed from the vacuum vessel along with the fluid. Subsequently, the contaminants can be removed from the fluid, and the fluid reintroduced into the vessel for the subsequent removal of additional contaminants. For one embodiment, a cleaning plasma is generated in the vacuum chamber which interacts with the contaminants to create neutrals. The fluid is then circulated through channels that are formed into a tray which is inserted into the bottom of the chamber. The neutrals then fall into the fluid on the tray, while magnetic shields prevent the cleaning plasma itself from doing so. In another embodiment, the vacuum vessel is an open-ended, hollow, cylindrical centrifuge which is tilted from the vertical.
    Type: Grant
    Filed: March 9, 1999
    Date of Patent: October 31, 2000
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Tihiro Ohkawa
  • Patent number: 6135128
    Abstract: A method and system for in-process cleaning of an ion source (12) is provided. The ion source (12) comprises (i) a plasma chamber (22) formed by chamber walls (112, 114, 116) that bound an ionization zone (120); (ii) a source of ionizable dopant gas (66) and a first mechanism (68) for introducing said ionizable dopant gas into said plasma chamber; (iii) a source of cleaning gas (182) and a second mechanism (184) for introducing said cleaning gas into said plasma chamber; and (iv) an exciter (130) at least partially disposed within said chamber for imparting energy to said ionizable dopant gas and said cleaning gas to create a plasma within said plasma chamber. The plasma comprises disassociated and ionized constituents of said dopant gas and disassociated and ionized constituents of said cleaning gas.
    Type: Grant
    Filed: March 27, 1998
    Date of Patent: October 24, 2000
    Assignee: Eaton Corporation
    Inventors: Michael A. Graf, Victor M. Benveniste
  • Patent number: 6132577
    Abstract: The invention generally relates to various aspects of a plasma process, and more specifically the monitoring of such plasma processes. One aspect relates in at least some manner to calibrating or initializing a plasma monitoring assembly. This type of calibration may be used to address wavelength shifts, intensity shifts, or both associated with optical emissions data obtained on a plasma process. A calibration light may be directed at a window through which optical emissions data is being obtained to determine the effect, if any, that the inner surface of the window is having on the optical emissions data being obtained therethrough, the operation of the optical emissions data gathering device, or both. Another aspect relates in at least some manner to various types of evaluations which may be undertaken of a plasma process which was run, and more typically one which is currently being run, within the processing chamber.
    Type: Grant
    Filed: April 23, 1998
    Date of Patent: October 17, 2000
    Assignee: Sandia Corporation
    Inventors: Michael Lane Smith, Jr., Joel O'Don Stevenson, Pamela Peardon Denise Ward
  • Patent number: 6125859
    Abstract: A method for a multiple-stage microwave plasma cleaning technique for efficiently cleaning a substrate processing chamber. In a specific embodiment, a two-stage cleaning process is described. The first stage begins by flowing a reactive gas from a gas source into a processing chamber where microwaves ignite and maintain a plasma from the reactive gas. Reactive radicals generated which react with residues on the interior surfaces of the processing chamber. In the second stage, an inert gas is flowed into the processing chamber in addition to the reactive gas. Microwaves then ignite and maintain a plasma from the reactive gas and optionally, the inert gas as well. Optionally, an inert gas can be flowed into the processing chamber prior to the first stage to remove loose particles from the processing chamber. The reactive gas in such embodiments is preferably NF.sub.3, but other fluorine-containing gases such as carbon tetrafluoride (CF.sub.4) or sulfur hexafluoride (SF.sub.6) may also be used.
    Type: Grant
    Filed: July 11, 1997
    Date of Patent: October 3, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Chien-Teh Kao, Karl Anthony Littau, Anand Vasudev, Dong Won Koo
  • Patent number: 6120613
    Abstract: A separation method includes (a) providing a heterogeneous separation system, the heterogeneous cleaning system including CO.sub.2 in a first phase and an oil in a separate second phase; (b) entraining a material to be separated in the second phase; (c) wholly or partially solubilizing the second phase in the first phase to produce a separation system in which said material to be separated is insoluble; and then (d) separating the material from the system. The separating step is preferably followed by the step of (e) recovering at least a portion of the oil. The system is useful in a variety of applications, including cleaning (particularly metal cleaning), polymerization, extraction, coating, and particle formation and treatment.
    Type: Grant
    Filed: April 30, 1998
    Date of Patent: September 19, 2000
    Assignee: MiCell Technologies, Inc.
    Inventors: Timothy J. Romack, James B. McClain, Gina M. Stewart, Ramone D. Givens
  • Patent number: 6117190
    Abstract: A piece of soiled fabric is cleaned by contacting it with a jet of an ionized soil-dislodging gas to dislodge the soil therefrom. The ionized gas and the use of an oppositely charged electrostatic filter aid in preventing redeposition of the soil onto the fabric. The fabric may be agitated while it is contacted with the gas jet. A portion of the piece of fabric may be treated with an electrostatic spotting compound that enhances the effect of the ionized gas and may also enhance the removal of the soil. An apparatus for accomplishing the cleaning includes a container having an interior in which the fabric is received, a gas jet nozzle directed into the interior of the container, a source of a pressurized gas communicating with an inlet of the gas jet nozzle, a gas jet manifold extending from the source to the gas jet nozzle, and a gas ionizer disposed to ionize the pressurized gas passing through the gas jet nozzle.
    Type: Grant
    Filed: August 12, 1999
    Date of Patent: September 12, 2000
    Assignee: Raytheon Company
    Inventors: Sidney C. Chao, Nelson W. Sorbo, Edna M. Purer
  • Patent number: 6117794
    Abstract: A method of preparing a supporting substrate of an optical subassembly for metal-oxide bonding an optical element to the substrate. The method includes providing a supporting substrate including a metalized region for metal-oxide bonding an optical element to the substrate and rinsing the substrate in a potassium hydroxide solution. The potassium hydroxide solution removes any excess metal oxide or other contaminants from the surface of the metalized region.
    Type: Grant
    Filed: January 16, 1998
    Date of Patent: September 12, 2000
    Assignee: Lucent Technologies, Inc.
    Inventors: James F. Dormer, John William Osenbach, Marilyn Markey Ecker
  • Patent number: 6105588
    Abstract: A method of resist stripping for use during fabrication of semiconductor devices. A semiconductor substrate with a resist material formed thereon, such as a silicon wafer, is positioned in a sealed chamber in communication with a plasma generating source. A gaseous material which includes a reducing agent is passed through the plasma generating source to produce a plasma stream. The plasma stream is directed at the semiconductor substrate for a predetermined period of time to remove the resist material from the semiconductor substrate. A reducing environment is produced in the sealed chamber by the plasma stream, which can passivate and strip the resist material simultaneously.
    Type: Grant
    Filed: May 27, 1998
    Date of Patent: August 22, 2000
    Assignee: Micron Technology, Inc.
    Inventors: Li Li, Harlan Frankamp
  • Patent number: 6105518
    Abstract: A method and apparatus for treating a work surface, wherein there is provided a chamber having a longitudinal axis and longitudinally extending electrically conductive sidewalls, at least one sidewall having at least one longitudinally extending gap that interrupts a current path through the sidewalls transverse to the longitudinal axis, and wherein the chamber is sealed to allow pressure inside the chamber to be controlled.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: August 22, 2000
    Assignee: Research Triangle Institute
    Inventors: Anthony E. Robson, Ronald A. Rudder, Robert C. Hendry, Moses M. David, James V. Burt
  • Patent number: 6105589
    Abstract: An improved method and apparatus are provided for cleaning the specimen and interior specimen chamber of Electron Microscopes, and similar electron beam instruments. The apparatus consists of a glow-discharge, oxygen-radical generator placed on a specimen chamber port with an excitation source to create a low-power glow-discharge plasma inside the generator. Air or other oxygen and nitrogen mixture is admitted to the generator at a pressure between 0.3 Torr and 5 Torr. The low power glow discharge is used to disassociate oxygen preferentially over nitrogen to create the oxygen radicals. The oxygen radicals then disperse by convection throughout the chamber to clean hydrocarbons from the surfaces of the chamber, stage and specimen by oxidation to CO and H.sub.2 O gases. The excitation power of the plasma is limited to limit the nitrogen ion production that destroys the oxygen radicals and to limit the projection of the electrically active plasma into the specimen chamber.
    Type: Grant
    Filed: January 11, 1999
    Date of Patent: August 22, 2000
    Inventor: Ronald A. Vane
  • Patent number: 6103680
    Abstract: Non-corrosive cleaning compositions that are useful for removing photoresist and/or plasma etch residues from a substrate. The cleaning composition comprises: (i) a hydroxy-(lower alkyl)-hydrazine, (ii) water, and (iii) at least one compound selected from the group consisting of a carboxylic acid, a water-miscible organic solvent and mixtures thereof.
    Type: Grant
    Filed: December 31, 1998
    Date of Patent: August 15, 2000
    Assignee: Arch Specialty Chemicals, Inc.
    Inventors: Kenji Honda, Eugene F. Rothgery
  • Patent number: 6098637
    Abstract: The invention provides generally a method and an apparatus for in situ cleaning of a surface in a semiconductor substrate processing chamber which operates quickly and reduces the downtime for chamber cleaning. The apparatus comprises an ultraviolet (UV) radiation plate moveable between a cleaning position and a storage position and at least one UV radiation source disposed on the UV radiation plate. Preferably, the apparatus includes a reflector disposed adjacent the UV radiation source to focus emitted UV radiation and a rotary actuator pivotally attached to a transport arm to move the UV radiation plate between the cleaning position and the storage position. The method comprises: providing a UV radiation plate having at least one UV radiation source disposed thereon, moving the UV radiation plate into a cleaning position, introducing a cleaning gas into the processing chamber and exposing the surface to UV radiation.
    Type: Grant
    Filed: March 3, 1998
    Date of Patent: August 8, 2000
    Assignee: Applied Materials, Inc.
    Inventor: Vijay Parke
  • Patent number: 6099747
    Abstract: A plasma processing apparatus and method in which a counter electrode is connected to a high frequency power source to generate a plasma and the substrate electrode is grounded and in which the substrate electrode is connected to a high frequency power source and the counter electrode is grounded to perform chamber etching.
    Type: Grant
    Filed: October 5, 1998
    Date of Patent: August 8, 2000
    Assignee: NEC Corporation
    Inventor: Tatsuya Usami
  • Patent number: 6095159
    Abstract: A method for controlling the voltage distribution of the standing wave impressed upon the coil of an inductively coupled plasma generator includes the steps of impressing a radio frequency voltage across the coil to establish a standing wave thereacross. A voltage profile is selected for the standing wave so as to control the location and amount of capacitive coupling. A circuit parameter is controlled to achieve the selected voltage profile. Proper selection of the voltage profile enhances process capabilities, decreases the time between cleans, minimizes component wear, and minimizes cleaning time. An apparatus for carrying out the disclosed method is also disclosed.
    Type: Grant
    Filed: January 22, 1998
    Date of Patent: August 1, 2000
    Assignee: Micron Technology, Inc.
    Inventors: Guy Blalock, Kevin G. Donohoe
  • Patent number: 6095160
    Abstract: A method for cleaning the surface of magnetic disks prior to the deposition of a metal layer on the magnetic disk. The method includes the steps of first, placing a magnetic disk into a magnetron assisted DC plasma chamber. The plasma chamber includes a vacuum chamber, one or more targets, one or more magnets, a noble gas source, a target power supply, and a DC bias power supply. Next, a noble gas, for example argon, is introduced into the vacuum chamber via the noble gas source, and a DC glow discharge is generated in the vacuum chamber by supplying power to the one or more targets using the target power supply. Finally, the magnetic disk is etched when a negative voltage is applied to the magnetic disk using the DC bias power supply.
    Type: Grant
    Filed: April 6, 1998
    Date of Patent: August 1, 2000
    Inventor: Xi Chu