Including Steam, Gaseous Agent Or Temperature Feature Patents (Class 134/30)
  • Patent number: 8961701
    Abstract: Drying a microelectronic topography. At least some of the illustrative embodiments are methods that include placing a microelectronic topography inside a process chamber, providing a non-aqueous liquid to the process chamber until at least 90% of the volume of the process chamber contains the non-aqueous liquid, pressurizing the process chamber by way of a fluid different than the non-aqueous liquid, ceasing activity with respect to the process chamber until the non-aqueous liquid and fluid form a mixture that is substantially homogenous, venting the process chamber while simultaneously providing the fluid to the process chamber, and venting the process chamber in a manner which prevents formation of liquid in the process chamber.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: February 24, 2015
    Assignee: Lam Research Corporation
    Inventors: Mark I. Wagner, James P. DeYoung
  • Publication number: 20150047677
    Abstract: A substrate processing apparatus includes a heater having an infrared lamp and a housing for heating an upper surface of a substrate held by a substrate holding mechanism with the heater in opposed relation to the upper surface. A heater cleaning method includes locating the heater at a position above a lower nozzle in opposed relation to a first spout of the lower nozzle, the lower nozzle being in opposed relation to a lower surface of the substrate held by the substrate holding mechanism, and a lower cleaning liquid spouting step of supplying a cleaning liquid to the lower nozzle to spout the cleaning liquid upward from the first spout with no substrate being held by the substrate holding mechanism to thereby supply the cleaning liquid to an outer surface of the housing of the heater located at the heater cleaning position.
    Type: Application
    Filed: February 25, 2013
    Publication date: February 19, 2015
    Inventor: Ryo Muramoto
  • Patent number: 8956465
    Abstract: [Problem] To provide a liquid processing method with which, while alleviating a watermark occurring in the surface of a substrate, it is possible to hydrophobize the surface using a hydrophobing gas. [Solution] A substrate (W), retained in substrate retaining parts (21, 22, 23), is rotated and has a liquid compound supplied to the surface thereof, whereby a liquid process is carried out. Next, a rinse liquid is supplied to the surface of the substrate (W) while the substrate (W) is rotated, and the liquid compound is replaced with the rinse liquid. Next, supplying a hydrophobing gas for hydrophobizing the surface of the substrate (W) and supplying the rinse liquid to the surface of the substrate (W) after supplying the hydrophobing gas are repeated alternately, thus hydrophobizing the substrate (W). Next, the rinse liquid is removed by rotating the substrate (W), drying the substrate (W).
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: February 17, 2015
    Assignee: Tokyo Electron Limited
    Inventor: Jun Nonaka
  • Patent number: 8951359
    Abstract: There is provided a liquid processing method for performing a liquid process on a front surface of a substrate by using a processing solution and then performing a rinse process on the front surface of the substrate by using a rinse solution having a temperature lower than a temperature of the processing solution. The liquid processing method includes performing an intermediate process between the liquid process and the rinse process, for adjusting a temperature of the front surface of the substrate to a temperature higher than the temperature of the rinse solution and lower than the temperature of the processing solution.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: February 10, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Takao Inada, Naoyuki Okamura, Hidetsugu Yano, Yosuke Hachiya
  • Publication number: 20150020852
    Abstract: A substrate processing apparatus comprises: an air flow generator which generates a down flow by gas flowing from top to bottom around a substrate W held horizontally; a liquid film former which forms a liquid film by supplying a liquid on an upper surface of the substrate; a cooling gas discharge nozzle which discharges cooling gas of a temperature lower than a freezing point of the liquid to the liquid film and thereby freezes the liquid film; and a remover which removes a frozen film formed by freezing the liquid film from the substrate. The air flow generator reduces a flow velocity of the down flow when the cooling gas is discharged to the liquid film from the cooling gas discharge nozzle than when the liquid is supplied to the substrate from the liquid film former.
    Type: Application
    Filed: July 16, 2014
    Publication date: January 22, 2015
    Inventors: Masahiko KATO, Katsuhiko MIYA, Hiroyuki YASHIKI, Yoshiki IMURO
  • Patent number: 8920570
    Abstract: The disclosure relates to the cleaning of rods made of metal, particularly to the method of reclamation of used standard length rods, such as pump rods already used in the mechanical deep-pumping extraction of oil, as well as to the product made with the help of the mentioned method. The method of remanufacturing of standard length rods includes cleaning the rod with non-toxic particles which are able to undergo sublimation to eliminate environmental contamination and to assist in workplace safety.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: December 30, 2014
    Assignee: TRC Services, Inc.
    Inventor: Lonnie Dale White
  • Patent number: 8920577
    Abstract: A method of treating a substrate comprises, in one aspect, placing a substrate having material on a surface thereof in a treatment chamber; directing a stream of a liquid treatment composition to impinge the substrate surface; and directing a stream of water vapor to impinge the substrate surface and/or to impinge the liquid treatment composition. A preferred aspect of this invention is the removal of materials, and preferably photoresist, from a substrate, wherein the treatment composition is a liquid sulfuric acid composition comprising sulfuric acid and/or its desiccating species and precursors.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: December 30, 2014
    Assignee: Tel FSI, Inc.
    Inventors: David DeKraker, Jeffery W. Butterbaugh, Richard E. Williamson
  • Patent number: 8911559
    Abstract: A method for cleaning an etching chamber is disclosed. The method comprises providing an etching chamber; introducing a first gas comprising an inert gas into the etching chamber for a first period of time; and transporting a first wafer into the etching chamber after the first period of time, wherein the first wafer undergoes an etching process.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: December 16, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu Chao Lin, Ryan Chia-Jen Chen, Yih-Ann Lin, Jr Jung Lin
  • Publication number: 20140352737
    Abstract: A cleaning liquid and a gas are discharged in sequence to a central portion of a substrate while the substrate is being rotated, and after nozzles that discharge them are moved to a peripheral edge side of the substrate, discharge of the cleaning liquid is switched to a second cleaning liquid nozzle set at a position deviated from a movement locus of the first cleaning liquid nozzle. Both of the nozzles are moved toward the peripheral edge side of the substrate while discharging the cleaning liquid and discharging the gas so that a difference between a distance from the discharge position of the second cleaning liquid nozzle to the central portion of the substrate and a distance from the discharge position of the gas nozzle to the central portion of the substrate gradually decreases.
    Type: Application
    Filed: May 21, 2014
    Publication date: December 4, 2014
    Applicant: Tokyo Electron Limited
    Inventors: Atsushi OOKOUCHI, Kousuke YOSHIHARA, Hiroshi ICHINOMIYA, Hirosi NISIHATA, Ryouichirou NAITOU
  • Patent number: 8900372
    Abstract: The disclosure relates to the cleaning of rods made of metal, particularly to the method of reclamation of used standard length rods, such as pump rods already used in the mechanical deep-pumping extraction of oil, as well as to the product made with the help of the mentioned method. The method of remanufacturing of standard length rods includes cleaning the rod with cryogenic liquids to eliminate environmental contamination and to assist in workplace safety.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: December 2, 2014
    Assignee: TRC Services, Inc.
    Inventor: Lonnie Dale White
  • Publication number: 20140338706
    Abstract: [Problem] To provide a liquid processing method with which, while alleviating a watermark occurring in the surface of a substrate, it is possible to hydrophobize the surface using a hydrophobing gas. [Solution] A substrate (W), retained in substrate retaining parts (21, 22, 23), is rotated and has a liquid compound supplied to the surface thereof, whereby a liquid process is carried out. Next, a rinse liquid is supplied to the surface of the substrate (W) while the substrate (W) is rotated, and the liquid compound is replaced with the rinse liquid. Next, supplying a hydrophobing gas for hydrophobizing the surface of the substrate (W) and supplying the rinse liquid to the surface of the substrate (W) after supplying the hydrophobing gas are repeated alternately, thus hydrophobizing the substrate (W). Next, the rinse liquid is removed by rotating the substrate (W), drying the substrate (W).
    Type: Application
    Filed: January 11, 2013
    Publication date: November 20, 2014
    Applicant: Tokyo Electron Limited
    Inventor: Jun Nonaka
  • Patent number: 8888927
    Abstract: A rinsing method for a water-conducting domestic appliance is provided in which rinsing liquid is heated to a first temperature in a first operating mode in at least one partial program step of a first rinse cycle; a scale formation in the water-conducting domestic appliance is recorded by a scale sensor arranged in a hydraulic system; the scale formation is compared with a nominal value for the scale formation; and, upon exceeding the nominal value, a second rinse cycle is executed in a second operating mode, while the rinsing liquid is heated to a second temperature that is higher than the first temperature.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: November 18, 2014
    Assignee: BSH Bosch und Siemens Hausgeraete GmbH
    Inventors: Helmut Jerg, Michael Georg Rosenbauer
  • Patent number: 8876979
    Abstract: A recyclable article having an external surface with an image printed thereon by droplets of ink is provided. The droplets of ink comprise a composition that includes a hydrophilic component. In embodiments, the hydrophilic component can facilitate the separation or loosening of the image from the external surface of the container when the image is exposed to a liquid-based solution at an elevated temperature. Methods for facilitating recycling of recyclable articles having printed images are also disclosed.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: November 4, 2014
    Assignee: Plastipak Packaging, Inc.
    Inventors: Ronald L. Uptergrove, Brent Mrozinski
  • Patent number: 8876978
    Abstract: An object is to reduce changes in mechanical properties of a gas turbine blade base material during repair or regeneration of a gas turbine blade. For this purpose, a gas turbine blade after being operated is washed by being immersed into a strong alkaline washing solution, and the gas turbine blade after being washed with the strong alkaline washing solution is washed with water. The gas turbine blade after being washed with water is then washed by being immersed into a weak acid washing solution, and the gas turbine blade after being washed with the weak acid washing solution is subjected to heat treatment. The gas turbine blade after the heat treatment is then immersed into a strong acid washing solution, whereby the coating formed on the surface of the gas turbine blade is removed.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: November 4, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Tetsuji Kawakami, Ikumasa Koshiro, Rumi Haruna, Yoshitaka Uemura
  • Patent number: 8871108
    Abstract: A method of removing carbon materials, preferably amorphous carbon, from a substrate includes dispensing a liquid sulfuric acid composition including sulfuric acid and/or its desiccating species and precursors and having a water/sulfuric acid molar ratio of no greater than 5:1 onto an material coated substrate in an amount effective to substantially uniformly coat the carbon material coated substrate. The liquid sulfuric acid composition is exposed to water vapor in an amount effective to increase the temperature of the liquid sulfuric acid composition above the temperature of the liquid sulfuric acid composition prior to exposure to the water vapor. In preferred embodiments, amorphous carbon is selectively removed as compared to a silicon oxide (e.g., silicon dioxide) and/or silicon nitride.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 28, 2014
    Assignee: TEL FSI, Inc.
    Inventor: Jeffrey M. Lauerhaas
  • Publication number: 20140311531
    Abstract: The present invention provides a gas-liquid two-phase atomizing cleaning device. The cleaning device comprises a gas-liquid two-phase atomizing spray head. The spray head is a double jacket structure and comprises a nozzle, a rotating arm, a gas guide tube and a liquid guide tube; wherein the nozzle is connected with the rotating arm, the gas guide tube and the liquid guide tube are fixed to the rotating arm, the gas guide tube and the liquid guide tube are both provided with pneumatic valves.
    Type: Application
    Filed: April 1, 2013
    Publication date: October 23, 2014
    Inventors: Yujia Su, Yi Wu
  • Patent number: 8864912
    Abstract: Internal cleaning of inverted cans includes engaging a can's cylindrical wall with a wall-conforming vacuum or adhesive gripper, causing a spraying unit to travel axially in and out of the can's opening while the can is inverted on a circular conveyor, and using a supporting arm or bottom stop to subject the can to a counterforce against a flushing force from sprayed cleaning medium. This prevents the can from being pressed out of a receptacle in which it sits during cleaning.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: October 21, 2014
    Assignee: KHS GmbH
    Inventors: Timo Jakob, Steffen Kappel, Thomas Stolte
  • Patent number: 8864914
    Abstract: A method for cleaning a ceramic component includes generating a computer solid model of a component, converting the computer solid model to a stereo-lithographic instruction file, and preparing the component in a stereo-lithography machine in response to the stereo-lithographic instruction file. The method further includes providing an amount of solvent, where a residue left from preparing the component is at least partially soluble in the solvent. The method includes immersing at least part of the component in the solvent, heating the solvent in a liquid state, and reducing a pressure of the solvent sufficiently to boil the solvent. The method further includes heat-curing the component.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: October 21, 2014
    Assignee: Rolls-Royce Corporation
    Inventor: Max Eric Schlienger
  • Publication number: 20140299161
    Abstract: There is provided a substrate processing method including: supplying a developing liquid to a surface of an exposed substrate to form a resist pattern; supplying a cleaning liquid to the surface of the substrate to remove a residue generated in the developing step from the substrate; supplying a replacing liquid to the surface of the substrate to replace the cleaning liquid existing on the substrate with the replacing liquid, the replacing liquid having a surface tension of 50 mN/m or less and containing a percolation inhibitor for restraining the replacing liquid from percolating into a resist wall portion constituting the resist pattern; and forming a dry region by supplying a gas to a central portion of the substrate while rotating the substrate so as to dry the surface of the substrate by expanding the dry region to a peripheral edge portion of the substrate with a centrifugal force.
    Type: Application
    Filed: April 7, 2014
    Publication date: October 9, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Keiichi TANAKA, Kousuke YOSHIHARA, Tomohiro ISEKI
  • Publication number: 20140299162
    Abstract: Objects with complex surface profiles can be cleaned effectively using hyperbaric pressures. A high temperature high pressure liquid or vapor can be introduced to a sealed chamber containing an object to be cleaned, forming a thin liquid layer on the object. The pressure in the sealed chamber can be quickly reduced, evaporating the thin liquid layer, which can remove surface contaminants from the object. The process can be repeated until the object is cleaned.
    Type: Application
    Filed: June 18, 2014
    Publication date: October 9, 2014
    Inventor: Richard W. Plavidal
  • Patent number: 8851092
    Abstract: A cleaning apparatus includes a first substrate-holding portion configured to hold a first area of a back surface of the substrate so that the top surface is kept face up; a second substrate-holding portion configured to hold a second area of the back surface of the substrate, the second area being not overlapped with the first area, and rotate the substrate; a top-surface cleaning nozzle configured to supply a top surface cleaning fluid to a top surface of the substrate; a bevel cleaning nozzle configured to supply a bevel cleaning fluid to a bevel portion of the substrate; a cleaning fluid supplying portion configured to supply a back surface cleaning fluid to the back surface of the substrate held by the first or the second substrate-holding portion; and a cleaning member configured to clean the back surface of the substrate held by the first or the second-substrate holding portion.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: October 7, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Taro Yamamoto, Naoto Yoshitaka, Shuichi Nishikido, Yoichi Tokunaga
  • Publication number: 20140290702
    Abstract: A method for cleaning a component of a nitride semiconductor manufacturing apparatus to which has adhered deposits containing nitride semiconductor comprises a step for chemically treating the component of the nitride semiconductor manufacturing apparatus with a cleaning gas containing a chlorine-based gas, and a step for removing the deposits from the component of the nitride semiconductor manufacturing apparatus by spraying with a sublimable solid substance.
    Type: Application
    Filed: September 25, 2012
    Publication date: October 2, 2014
    Inventors: Tadanobu Arimura, Toshiya Tabuchi
  • Publication number: 20140261569
    Abstract: A method and apparatus are disclosed for optimizing a rinsing and drying process in semiconductor manufacturing. The optimization seeks to maximize processing throughput while maintaining low defect counts and high device yields, and utilizes simulation and experimental data to set the optimal process parameters for the rinsing and drying process. Improved methods of rinse liquid and purge gas nozzle movement are also disclosed.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Carlos A. FONSECA, Michael A. CARCASI
  • Publication number: 20140261568
    Abstract: The present invention provides a local clean microenvironment near optical surfaces of an extreme ultraviolet (EUV) optical assembly maintained in a vacuum process chamber and configured for EUV lithography, metrology, or inspection. The system includes one or more EUV optical assemblies including at least one optical element with an optical surface, a supply of cleaning gas stored remotely from the one or more optical assemblies and a gas delivery unit comprising: a plenum chamber, one or more gas delivery lines connecting the supply of gas to the plenum chamber, one or more delivery nozzles configured to direct cleaning gas from the plenum chamber to a portion of the EUV assembly, and one or more collection nozzles for removing gas from the EUV optical assembly and the vacuum process chamber.
    Type: Application
    Filed: April 5, 2013
    Publication date: September 18, 2014
    Applicant: KLA-Tencor Corporation
    Inventors: Gildardo Delgado, Francis Chilese, Rudy F. Garcia, Mohammed Tahmassebpur, Salam Harb
  • Publication number: 20140251386
    Abstract: According to one embodiment, a processing apparatus includes a rinsing section configured to rinse a processing liquid on a surface of a workpiece with a rinse liquid and a drying section configured to dry the surface of the workpiece. The drying section includes a chamber, a nozzle provided inside the chamber and configured to jet a gas toward the surface of the workpiece, an air flow control unit provided between the rinsing section and a space inside the chamber provided with the nozzle, and a plurality of transport rollers arranged along a transport direction of the workpiece. The air flow control unit includes a first opening provided on a side of receiving the workpiece and a second opening provided on a side of releasing the workpiece. Opening area of the second opening is smaller than opening area of the first opening.
    Type: Application
    Filed: March 6, 2014
    Publication date: September 11, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Shinichi Sasaki, Katsuyuki Soeda, Yukinobu Nishibe
  • Publication number: 20140227442
    Abstract: Provided is a thin film deposition device including a deposition-preventing unit and a method of removing deposits thereof. The method includes: separating a deposition-preventing unit including at least one deposition-preventing plate and a deformation unit coupled to an outer surface of the at feast one deposition-preventing plate from a chamber of the thin film deposition device; and removing a film formation layer from the deposition-preventing plate.
    Type: Application
    Filed: June 21, 2013
    Publication date: August 14, 2014
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventors: Myung-Soo Huh, Sun-Ho Kim, Cheol-Rae Jo, Hyun-Woo Joo
  • Publication number: 20140224281
    Abstract: An apparatus for cleaning flip chip assemblies is provided. The apparatus comprises: a chuck assembly; a motor coupled to the chuck assembly by a spindle; at least one carrier for holding flip chips; at least one spray nozzle for directing DIW, a cleaning solution, a gas or a vapor. Apparatus of the invention further provides a method for cleaning flip chip assemblies. The method comprises: loading at least one flip chip to the flip chip carriers; rotating the chuck assembly at a rotation speed; flowing DIW for rinsing the flip chips; flowing a cleaning solution for removing the contaminants; applying ultrasonic/megasonic energy to the flip chips; blowing a gas or a vapor via the spray nozzles for drying the flip chips; bringing the flip chips out of the flip chip carriers.
    Type: Application
    Filed: September 22, 2011
    Publication date: August 14, 2014
    Applicant: ACM Research (Shanghai) Inc.
    Inventors: Xiaoyan Zhang, Fuping Chen, Hui Wang
  • Patent number: 8801867
    Abstract: A method for cleaning process apparatus used for production of liquids, especially for cleaning filters, for example membrane filters. The apparatus is contacted with a solution of periodate. It is especially preferred that the cleaning process is carried out at a temperature between 15 and 95° C.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: August 12, 2014
    Assignee: X-Flow B.V.
    Inventors: Arie Cornelis Besemer, Elmar Van Mastrigt, André Mepschen
  • Patent number: 8795436
    Abstract: A cleaning liquid is pressurized and superheated to a condition, in which temperature of the cleaning liquid is above an atmospheric boiling point. A product to be cleaned is interposed between a pair of liquid holding blocks, so that gaps are respectively formed between side surfaces of the product and the liquid holding blocks. The pressurized and superheated liquid is injected to the product so that layers of condensate of vapor of injected cleaning liquid are formed in the gaps. Contamination on the surface of the product is removed by the cleaning liquid and the surface is dried by latent heat of the condensate of the vapor of the cleaning liquid.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: August 5, 2014
    Assignee: Denso Corporation
    Inventor: Keita Yanagawa
  • Patent number: 8790467
    Abstract: An apparatus for cleaning an article may include a cleaning head. The cleaning head may have a lower edge and may include an annular steam chamber and a steam nozzle. The annular steam chamber may define a vacuum chamber that may be configured to receive the article therewithin. The annular steam chamber may have a plurality of discrete apertures positioned in vertically spaced relation to the lower edge. The steam nozzle may be configured to provide steam to the annular steam chamber for discharge through the apertures into the vacuum chamber.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: July 29, 2014
    Assignee: The Boeing Company
    Inventor: Sergey G. Ponomarev
  • Patent number: 8784568
    Abstract: In one embodiment, a method of cleaning a semiconductor manufacturing apparatus includes supplying a cleaning gas for removing a deposition film deposited on an inside wall of a treatment chamber through a supply pipe of the treatment chamber so that a supply amount of the cleaning gas from the supply pipe per unit time is greater than an exhaust amount of the cleaning gas from an exhaust pipe of the treatment chamber per unit time. The method further includes supplying an inert gas to fill the supply pipe with the inert gas.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: July 22, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenichiro Toratani, Takashi Nakao
  • Patent number: 8778092
    Abstract: There is provided a substrate processing method including cleaning a substrate by immersing the substrate in a cleaning solution in a longitudinal direction while the cleaning solution is supplied to a cleaning tank; transferring the substrate picked up from the cleaning tank to a drying chamber while holding the substrate in a longitudinal direction; and drying the substrate in the drying chamber communicating with an upper area of the cleaning tank by alternately supplying a first drying gas containing vapor of a solvent for removing a liquid and a second drying gas without containing the vapor of the solvent for removing the liquid to an area where the substrate is exposed between the upper area of the cleaning tank and the drying chamber after an upper end of the cleaned substrate is picked up from a liquid surface of the cleaning solution.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: July 15, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Hiroshi Tanaka, Hironobu Hyakutake, Takashi Uno
  • Patent number: 8771429
    Abstract: According to one embodiment, a supercritical drying method for a semiconductor substrate, comprises introducing the semiconductor substrate into a chamber in a state, a surface of the semiconductor substrate being wet with alcohol, substituting the alcohol on the semiconductor substrate with a supercritical fluid of carbon dioxide by impregnating the semiconductor substrate to the supercritical fluid in the chamber, and discharging the supercritical fluid and the alcohol from the chamber and reducing a pressure inside the chamber. The method further comprises performing a baking treatment by supplying an oxygen gas or an ozone gas to the chamber after the reduction of the pressure inside the chamber.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: July 8, 2014
    Assignees: Kabushiki Kaisha Toshiba, Tokyo Electron Limited
    Inventors: Linan Ji, Hidekazu Hayashi, Hiroshi Tomita, Hisashi Okuchi, Yohei Sato, Takayuki Toshima, Mitsuaki Iwashita, Kazuyuki Mitsuoka, Gen You, Hiroki Ohno, Takehiko Orii
  • Patent number: 8764905
    Abstract: A method and system for cleaning lithography components including contacting a substrate having residue including organic compounds and graphitic carbon deposited on a surface thereof with hydrogen peroxide vapor. The hydrogen peroxide vapor is irradiated with electromagnetic radiation having a wavelength in the range of 100 nm to 350 nm forming hydroxyl radicals. The hydroxyl radicals react with the residue to remove the residue from the surface of the substrate.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: July 1, 2014
    Assignee: Intel Corporation
    Inventors: Paul A. Zimmerman, Christof G. Krautschik
  • Publication number: 20140174465
    Abstract: A cleaning agent for a silicon wafer (a first cleaning agent) contains at least a water-based cleaning liquid and a water-repellent cleaning liquid for providing at least a recessed portion of an uneven pattern with water repellency during a cleaning process. The water-based cleaning liquid is a liquid in which a water-repellent compound having a reactive moiety chemically bondable to Si element in the silicon wafer and a hydrophobic group, and an organic solvent including at least an alcoholic solvent are mixed and contained. With this cleaning agent, the cleaning process which tends to induce a pattern collapse can be improved.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 26, 2014
    Applicant: Central Glass Company, Limited
    Inventors: Soichi KUMON, Takashi SAIO, Shinobu ARATA, Hidehisa NANAI, Yoshinori AKAMATSU, Shigeo HAMAGUCHI, Kazuhiko MAEDA
  • Publication number: 20140174482
    Abstract: In one embodiment, after rinsing a semiconductor substrate having a fine pattern formed thereon with pure water, the pure water staying on the semiconductor substrate is substituted with a water soluble organic solvent, and then, the semiconductor substrate is introduced into a chamber in a state wet with the water soluble organic solvent. Then, the water soluble organic solvent is turned into a supercritical state by increasing a temperature inside of the chamber. Thereafter, the inside of the chamber is reduced in pressure while keeping the inside of the chamber at a temperature enough not to liquefy the pure water (i.e., rinsing pure water mixed into the water soluble organic solvent), and further, the water soluble organic solvent in the supercritical state is changed into a gaseous state, to be discharged from the chamber, so that the semiconductor substrate is dried.
    Type: Application
    Filed: February 28, 2014
    Publication date: June 26, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yohei Sato, Hisashi Okuchi, Hiroshi Tomita, Hidekazu Hayashi, Yukiko Kitajima
  • Publication number: 20140174483
    Abstract: A rinsing liquid (DIW) is discharged from a rinsing liquid discharge port formed in a blocking member to perform rinsing processing to a substrate surface while a nitrogen gas is supplied into a clearance space, and a liquid mixture (IPA+DIW) is discharged from a liquid mixture discharge port formed in the blocking member to replace the rinsing liquid adhering to the substrate surface with the liquid mixture while the nitrogen gas is supplied into the clearance space. Thus, an increase of the dissolved oxygen concentration of the liquid mixture can be suppressed upon replacing the rinsing liquid adhering to the substrate surface with the liquid mixture, which makes it possible to securely prevent from forming an oxide film or generating watermarks on the substrate surface.
    Type: Application
    Filed: February 28, 2014
    Publication date: June 26, 2014
    Applicant: DAINIPPON SCREEN MFG. CO., LTD.
    Inventors: Katsuhiko MIYA, Akira IZUMI
  • Patent number: 8747569
    Abstract: Apparatus and methods are disclosed for cleaning interiors of passageways in endoscopes or other luminal medical devices by flow of liquid and gas therethrough. The liquid flow may include rivulets, droplets or other liquid entities which move on the internal surfaces of the passageways, and may include a three-phase contact interface between liquid and dry solid and gas.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: June 10, 2014
    Assignee: Princeton Trade & Technology, Inc.
    Inventors: Mohamed Emam Labib, Ching-Yue Lai, Yacoob Tabani, Ziye Qian, Stanislav S. Dukhin, Joseph J. Murawski
  • Patent number: 8747567
    Abstract: A hard floor surface care process comprising a process of identifying, cleaning, polishing, and protecting manmade and natural stone hard floor surfaces having a single surface or multi-surface quality. The hard floor surface care process comprising an acid reactive or nonreactive hard floor surface identifying process; an emulsifying solution, agitating, and toweling cleaning process; a polishing process utilizing a lubricating solution with a polishing chemistry or pad, and a protecting process utilizing a protecting chemistry selected as a function of the identifying process.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: June 10, 2014
    Inventor: Steven D. Azevedo
  • Publication number: 20140137893
    Abstract: In example embodiments, a supply flow rate of a clean gas can be reduced without decreasing process performance. A flow rate of a clean gas 78, having a low humidity, supplied from a clean gas supply device 70 or 78 when a drying process is performed on a substrate is set to be smaller than a flow rate of a clean gas 70 supplied from the clean gas supply device 70 or 78 into an internal space within a housing 60 when a liquid process is performed onto the substrate W, and a flow rate of a gas exhausted through the housing exhaust path when the drying process is performed is set to be smaller than a flow rate of a gas exhausted through the housing exhaust path 64 when the liquid process is performed.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 22, 2014
    Applicant: Tokyo Electron Limited
    Inventors: Takahisa Otsuka, Nobuhiro Ogata, Hiroshi Marumoto, Terufumi Wakiyama
  • Patent number: 8728247
    Abstract: There is provided a substrate processing method capable of preventing pattern collapse when a rinse solution is removed from a substrate on which a microscopic resist pattern is formed and also capable of reducing cost for processing the substrate by decreasing an amount of usage of a hydrophobicizing agent. The substrate processing method includes a rinse solution supply process (step S12) for supplying the rinse solution onto the substrate on which the resist pattern is formed; and a rinse solution removing process (steps S14 to S16) for removing the rinse solution from the substrate in an atmosphere including vapor of a first processing solution that hydrophobicizes the resist pattern.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: May 20, 2014
    Assignee: Tokyo Electron Limited
    Inventor: Yuichiro Inatomi
  • Patent number: 8709170
    Abstract: In one embodiment, after rinsing a semiconductor substrate having a fine pattern formed thereon with pure water, the pure water staying on the semiconductor substrate is substituted with a water soluble organic solvent, and then, the semiconductor substrate is introduced into a chamber in a state wet with the water soluble organic solvent. Then, the water soluble organic solvent is turned into a supercritical state by increasing a temperature inside of the chamber. Thereafter, the inside of the chamber is reduced in pressure while keeping the inside of the chamber at a temperature enough not to liquefy the pure water (i.e., rinsing pure water mixed into the water soluble organic solvent), and further, the water soluble organic solvent in the supercritical state is changed into a gaseous state, to be discharged from the chamber, so that the semiconductor substrate is dried.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: April 29, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yohei Sato, Hisashi Okuchi, Hiroshi Tomita, Hidekazu Hayashi, Yukiko Kitajima
  • Patent number: 8709167
    Abstract: A method of warewashing for the removal of starch is described herein. The method includes applying an alkaline composition to a dish, then applying an acidic composition to a dish, and then applying a second alkaline composition to the dish. The method may include additional steps. Compositions for using with the method are also disclosed. Finally, dish machines that may be used in accordance with the method are disclosed.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: April 29, 2014
    Assignee: Ecolab USA Inc.
    Inventors: Werner Strothoff, Winfried Troll, Helmut Maier, John P. Furber, Bryan A. Maser, Michael E. Besse
  • Patent number: 8702871
    Abstract: A method includes generating a solvent-containing vapor that contains a solvent. The solvent-containing vapor is conducted to a package assembly to clean the package assembly. The solvent-containing vapor condenses to form a liquid on a surface of the package assembly, and flows off from the surface of the package assembly.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: April 22, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Li Hsiao, Bor-Ping Jang, Kuei-Wei Huang, Lin-Wei Wang, Chien Ling Hwang, Chung-Shi Liu
  • Publication number: 20140102474
    Abstract: A substrate cleaning apparatus for cleaning a substrate back surface includes a first substrate supporting portion supporting the substrate at a first area of the substrate back surface, the back surface facing down; a second substrate supporting portion supporting the substrate at a second area of the substrate back surface, the second area being separated from the first area; a cleaning liquid supplying portion supplying cleaning liquid to the substrate back surface; a drying portion drying the second area of the substrate back surface; and a cleaning portion cleaning a third area of the substrate back surface when the substrate is supported by the first substrate supporting portion, the third area including the second area, and cleaning a fourth area of the substrate back surface when the substrate is supported by the second substrate supporting portion, the fourth area excluding the second area.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 17, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Yasushi TAKIGUCHI, Taro YAMAMOTO, Akihiro FUJIMOTO, Shuuichi NISHIKIDO, Dai KUMAGAI, Naoto YOSHITAKA, Takahiro KITANO, Yoichi TOKUNAGA
  • Patent number: 8696824
    Abstract: A dishwasher, a door assembly for the dishwasher and a method of drying the dishware in the dishwasher are provided. The dishwasher may include a sensor configured to measure the turbidity of the water in the dishwasher which is used to determine a wash load size. A control unit of the dishwasher may determine and control cycle times, temperatures, heating elements and a blower of the dishwasher based on the wash load size. The dishwasher may include a humidity level determination that may also be used by the control unit to control the operations of the dishwasher. The door assembly may include a duct configured to receive moisture-laden air creating during the drying cycle and encourage the condensation of the water from the air such that the water may be redirected back to the tub portion of the dishwasher and the dry air may be directed out of the dishwasher.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: April 15, 2014
    Assignee: Electrolux Home Products, Inc.
    Inventors: Ashwin Jadhav, Jeffrey E. Nelson, Dennis A. Poyner, Van P. Beck
  • Patent number: 8696825
    Abstract: A rinsing liquid (DIW) is discharged from a rinsing liquid discharge port formed in a blocking member to perform rinsing processing to a substrate surface while a nitrogen gas is supplied into a clearance space, and a liquid mixture (IPA+DIW) is discharged from a liquid mixture discharge port formed in the blocking member to replace the rinsing liquid adhering to the substrate surface with the liquid mixture while the nitrogen gas is supplied into the clearance space. Thus, an increase of the dissolved oxygen concentration of the liquid mixture can be suppressed upon replacing the rinsing liquid adhering to the substrate surface with the liquid mixture, which makes it possible to securely prevent from forming an oxide film or generating watermarks on the substrate surface.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: April 15, 2014
    Assignee: Dainippon Screen Mfg. Co., Ltd.
    Inventors: Katsuhiko Miya, Akira Izumi
  • Patent number: 8691019
    Abstract: A process for cleaning a compound semiconductor wafer; the compound semiconductor wafer comprises, taking gallium arsenide (GaAs) as a representative, a group III-V compound semiconductor wafer. The process comprises the following steps: 1) treating the wafer with a mixture of dilute ammonia, hydrogen peroxide and water at a temperature not higher than 20° C.; 2) washing the wafer with deionized water; 3) treating the wafer with an oxidant; 4) washing the wafer with deionized water; 5) treating the wafer with a dilute acid solution or a dilute alkali solution; 6) washing the wafer with deionized water; and 7) drying the resulting wafer. The process can improve the cleanliness, micro-roughness and uniformity of the wafer surface.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: April 8, 2014
    Assignee: Beijing Tongmei Xtal Technology Co., Ltd.
    Inventors: Diansheng Ren, Qinghui Liu
  • Patent number: 8668778
    Abstract: The present invention provides methods of removing liquid from a barrier structure in the context of treating microelectronic workpieces with one or more treatment materials, including liquids, gases, fluidized solids, dispersions, combinations of these, and the like.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: March 11, 2014
    Assignee: TEL FSI, INc.
    Inventors: Jimmy D. Collins, David P. DeKraker, Tracy A. Gast, Alan D. Rose
  • Patent number: 8663397
    Abstract: The embodiments describe methods for controlling the particles generated when cleaning and drying a wafer in a spin rinse dryer (SRD) module. In some embodiments, the substrate surface is cooled by dispensing deionized (DI) water across the surface of the substrate, while the substrate rests on the SRD chuck. In addition, a method for controlling the particles generated when sleeves in a processing module or SRD contact a substrate surface during a clamping operation or when the sleeves are removed from the substrate surface is provided. A bottom edge or lip of the sleeves and/or the surface of the wafer contacting the sleeve is wetted during clamping/unclamping operations. Alternatively, the substrate may be wetted prior to clamping/unclamping operations.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: March 4, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Satbir Kahlon, Jeffrey Chih-Hou Lowe, Frank C. Ma, Sandeep Mariserla, Robert Anthony Sculac