Silicon Or Germanium Containing Patents (Class 136/261)
  • Patent number: 9212254
    Abstract: A copolymer containing a repeating unit having a dioxopyrrole condensed ring skeleton and a repeating unit having a dithieno condensed ring skeleton and also having a specific substituent is provided.
    Type: Grant
    Filed: December 1, 2014
    Date of Patent: December 15, 2015
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Junya Kawai, Rieko Fujita, Wataru Sato, Mitsunori Furuya, Kenichi Satake, Maki Oba
  • Patent number: 9214577
    Abstract: Methods for forming a photovoltaic device include forming a buffer layer between a transparent electrode and a p-type layer. The buffer layer includes a work function that falls substantially in a middle of a barrier formed between the transparent electrode and the p-type layer to provide a greater resistance to light induced degradation. An intrinsic layer and an n-type layer are formed over the p-type layer.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: December 15, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Keith E. Fogel, Augustin J. Hong, Jeehwan Kim, Devendra K. Sadana
  • Patent number: 9166073
    Abstract: The invention addresses a problem of obtaining a conjugated polymer having a higher molecular weight through coupling reaction of monomers using a transition metal catalyst. The invention relates to a method for producing a conjugated polymer, which comprises polymerizing one or more monomers through a coupling reaction, wherein the coupling reaction of the monomer is carried out by using one or more kinds of homogeneous transition metal complex catalysts and one or more kinds of heterogeneous transition metal complex catalysts in combination.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: October 20, 2015
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Wataru Sato, Rieko Fujita, Jyunya Kawai, Kenichi Satake, Mitsunori Furuya
  • Patent number: 9159862
    Abstract: A solar cell is formed to have a silicon semiconductor substrate of a first conductive type; an emitter layer having a second conductive type opposite the first conductive type and formed on a first surface of the silicon semiconductor substrate; a back surface field layer having the first conductive type and formed on a second surface of the silicon semiconductor substrate opposite to the first surface; and wherein the emitter layer includes at least a first shallow doping area and the back surface field layer includes at least a second shallow doping area, and wherein a thickness of the first shallow doping area of the emitter layer is different from a thickness of the second shallow doping area of the back surface field layer.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: October 13, 2015
    Assignee: LG ELECTRONICS INC.
    Inventors: Yoonsil Jin, Hyunjung Park, Youngho Choe, Changseo Park
  • Patent number: 9123652
    Abstract: A method for producing patterns includes inclined flanks from a face of a substrate. A protective mask is formed covering at least two masked areas of the face of the substrate and defining at least one intermediate space. An inclined flank is plasma etched from each masked area, wherein the etching forms continuous passivation layer on the inclined flanks producing autolimitation of the etching when the inclined flanks join each other. The etching is carried out in a chamber and includes the introduction into the chamber of a gas additional to the plasma. The additional gas includes molecules of a chemical species participating in the formation of the passivation layer, the quantity of gas in the chamber being controlled so that the chamber contains a quantity of molecules of the species sufficient to form the passivation layer continuously.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: September 1, 2015
    Assignees: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, CNRS-Centre National de la Recherche Scientifique
    Inventors: Olivier Desplats, Thierry Chevolleau, Maxime Darnon, Cecile Gourgon
  • Patent number: 9099657
    Abstract: Provided is a photoelectric conversion element containing at least: a semiconductor layer containing a semiconductor and a dye which is supported by the semiconductor, and a hole transport layer containing a hole transport compound, wherein the dye is a compound represented by Formula (1), and the hole transport compound is a polymer made from 3,4-ethylenedioxythiophene:
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: August 4, 2015
    Assignee: KONICA MINOLTA BUSINESS TECHNOLOGIES, INC.
    Inventors: Kazuya Isobe, Kenichi Onaka, Hidekazu Kawasaki
  • Patent number: 9064698
    Abstract: Thin film gallium nitride structures are fabricated by providing a semiconductor-carbon alloy substrate having a dielectric layer on a surface of the substrate, forming trenches in the dielectric layer to expose surface portions of the surface of the substrate, and forming an epitaxial graphene layer on the exposed surface portions of the surface of the substrate. A buffer layer of rare earth metal oxide material is grown epitaxially on the graphene layer. Gallium nitride structures are formed epitaxially on the metal oxide/graphene layers and within the trenches of the dielectric layer, limiting defects by aspect ratio trapping. A stressor layer is formed over the nitride structures. Removing the substrate below the graphene layer allows the nitride structures to be placed on a surrogate substrate.
    Type: Grant
    Filed: March 30, 2014
    Date of Patent: June 23, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Khakifirooz, Davood Shahrjerdi
  • Publication number: 20150144195
    Abstract: Photovoltaic devices such as solar cells, hybrid solar cell-batteries, and other such devices may include an active layer having perovskite material and copper-oxide or other metal-oxide charge transport material. Such charge transport material may be disposed adjacent to the perovskite material such that the two are adjacent and/or in contact. Inclusion of both materials in an active layer of a photovoltaic device may improve device performance. Other materials may be included to further improve device performance, such as, for example: one or more interfacial layers, one or more mesoporous layers, and one or more dyes.
    Type: Application
    Filed: March 13, 2014
    Publication date: May 28, 2015
    Inventors: Michael D. Irwin, Robert D. Maher, III, Jerred A. Chute, Vivek V. Dhas
  • Publication number: 20150144197
    Abstract: A method for manufacturing high efficiency solar cells is disclosed. The method comprises providing a thin dielectric layer and a doped polysilicon layer on the back side of a silicon substrate. Subsequently, a high quality oxide layer and a wide band gap doped semiconductor layer can both be formed on the back and front sides of the silicon substrate. A metallization process to plate metal fingers onto the doped polysilicon layer through contact openings can then be performed. The plated metal fingers can form a first metal gridline. A second metal gridline can be formed by directly plating metal to an emitter region on the back side of the silicon substrate, eliminating the need for contact openings for the second metal gridline. Among the advantages, the method for manufacture provides decreased thermal processes, decreased etching steps, increased efficiency and a simplified procedure for the manufacture of high efficiency solar cells.
    Type: Application
    Filed: February 4, 2015
    Publication date: May 28, 2015
    Inventors: Peter J. Cousins, David D. Smith, Seung Bum Rim
  • Publication number: 20150144174
    Abstract: A crystalline silicon ingot is produced using a directional solidification process. In particular, a crucible is loaded with silicon feedstock above a seed layer of uniform crystalline orientation. The silicon feedstock and an upper part of the seed layer are melted forming molten material in the crucible. This molten material is then solidified, during which process a crystalline structure based on that of the seed layer is formed in a silicon ingot. The seed layer is arranged such that a {110} crystallographic plane is normal to the direction of solidification and also so that a peripheral surface of the seed layer predominantly also lies in a {110} crystallographic plane. It is found that this arrangement offers a substantial improvement in the proportion of mono-crystalline silicon formed in the ingot as compared to alternative crystallographic orientations.
    Type: Application
    Filed: May 15, 2013
    Publication date: May 28, 2015
    Inventors: Oleg Fefelov, Erik Sauar, Egor Vladimirov
  • Publication number: 20150144196
    Abstract: Photovoltaic devices such as solar cells, hybrid solar cell-batteries, and other such devices may include an active layer disposed between two electrodes, the active layer having perovskite material and other material such as mesoporous material, interfacial layers, thin-coat interfacial layers, and combinations thereof. The perovskite material may be photoactive. The perovskite material may be disposed between two or more other materials in the photovoltaic device. Inclusion of these materials in various arrangements within an active layer of a photovoltaic device may improve device performance. Other materials may be included to further improve device performance, such as, for example: additional perovskites, and additional interfacial layers.
    Type: Application
    Filed: July 31, 2014
    Publication date: May 28, 2015
    Inventors: Michael D. Irwin, Jerred A. Chute
  • Patent number: 9040812
    Abstract: A photovoltaic device including a substrate; a first electrode placed on the substrate; a second electrode which is placed opposite to the first electrode and which light is incident on; a first unit cell being placed between the first electrode and the second electrode, and including an intrinsic semiconductor layer including crystalline silicon grains making the surface of the intrinsic semiconductor layer toward the second electrode textured; and a second unit cell placed between the first unit cell and the second electrode.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: May 26, 2015
    Assignee: Intellectual Discovery Co., Ltd.
    Inventor: Seung-Yeop Myong
  • Publication number: 20150136218
    Abstract: A solar cell and a method of fabricating the same are provided. The solar cell includes a substrate, a back electrode layer on the substrate, a light absorbing layer on the back electrode layer, and a buffer layer on the light absorbing layer. The back electrode layer, the light absorbing layer, and the buffer layer are formed therein with a first through hole formed through the back electrode layer, the light absorbing layer, and the buffer layer, and an insulating member is deposited in the first through hole.
    Type: Application
    Filed: June 26, 2013
    Publication date: May 21, 2015
    Applicant: LG INNOTEK CO., LTD.
    Inventor: Jin Ho Gwon
  • Patent number: 9035174
    Abstract: A PV panel uses an array of small silicon sphere diodes (10-300 microns in diameter) connected in parallel. The spheres are embedded in an uncured aluminum-containing layer, and the aluminum-containing layer is heated to anneal the aluminum-containing layer as well as p-dope the bottom surface of the spheres. A phosphorus-containing layer is deposited over the spheres to dope the top surface n-type, forming a pn junction. The phosphorus layer is then removed. A conductor is deposited to contact the top surface. Alternatively, the spheres are deposited with a p-type core and an n-type outer shell. After deposition, the top surface is etched to expose the core. A first conductor layer contacts the bottom surface, and a second conductor layer contacts the exposed core. A liquid lens material is deposited over the rounded top surface of the spheres and cured to provide conformal lenses designed to increase the PV panel efficiency.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: May 19, 2015
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventors: Tricia A. Youngbull, William J. Ray, Lixin Zheng, Mark D. Lowenthal, Vera N. Lockett, Theodore I. Kamins, Neil O. Shotton
  • Patent number: 9035015
    Abstract: Novel photoactive polymers, as well as related photovoltaic cells, articles, systems, and methods, are disclosed.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: May 19, 2015
    Assignee: MERCK PATENT GmbH
    Inventors: Li Wen, David P. Waller, Paul Byrne, Nicolas Drolet, Gilles Herve Regis Dennler, Kap-Soo Cheon
  • Publication number: 20150129034
    Abstract: The invention provides an optoelectronic device comprising a porous material, which porous material comprises a semiconductor comprising a perovskite. The porous material may comprise a porous perovskite. Thus, the porous material may be a perovskite material which is itself porous. Additionally or alternatively, the porous material may comprise a porous dielectric scaffold material, such as alumina, and a coating disposed on a surface thereof, which coating comprises the semiconductor comprising the perovskite. Thus, in some embodiments the porosity arises from the dielectric scaffold rather than from the perovskite itself. The porous material is usually infiltrated by a charge transporting material such as a hole conductor, a liquid electrolyte, or an electron conductor. The invention further provides the use of the porous material as a semiconductor in an optoelectronic device. Further provided is the use of the porous material as a photosensitizing, semiconducting material in an optoelectronic device.
    Type: Application
    Filed: May 20, 2013
    Publication date: May 14, 2015
    Applicant: ISIS INNOVATION LIMITED
    Inventors: Henry Snaith, Michael Lee
  • Publication number: 20150129037
    Abstract: A solar cell is discussed. The solar cell according to an embodiment includes a photoelectric conversion unit including a first conductive type region and a second conductive type region formed on the same side of the photoelectric conversion unit; and an electrode formed on the photoelectric conversion unit and including an adhesive layer formed on the photoelectric conversion unit and an electrode layer formed on the adhesive layer, wherein the adhesive layer has a coefficient of thermal expansion that is greater than a coefficient of thermal expansion of the photoelectric conversion unit and is less than a coefficient of thermal expansion of the electrode layer.
    Type: Application
    Filed: November 7, 2014
    Publication date: May 14, 2015
    Applicant: LG ELECTRONICS INC.
    Inventors: Jeongbeom NAM, Doohwan YANG, Eunjoo LEE, Ilhyoung JUNG
  • Patent number: 9029686
    Abstract: Improved silicon solar cells, silicon image sensors and like photosensitive devices are made to include strained silicon at or sufficiently near the junctions or other active regions of the devices to provide increased sensitivity to longer wavelength light. Strained silicon has a lower band gap than conventional silicon. One method of making a solar cell that contains tensile strained silicon etches a set of parallel trenches into a silicon wafer and induces tensile strain in the silicon fins between the trenches. The method may induce tensile strain in the silicon fins by filling the trenches with compressively strained silicon nitride or silicon oxide. A deposited layer of compressively strained silicon nitride adheres to the walls of the trenches and generates biaxial tensile strain in the plane of adjacent silicon fins.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: May 12, 2015
    Assignee: Acorn Technologies, Inc.
    Inventor: Paul A Clifton
  • Patent number: 9029184
    Abstract: To provide a resource-saving photoelectric conversion device with excellent photoelectric conversion characteristics. Thin part of a single crystal semiconductor substrate, typically a single crystal silicon substrate, is detached to structure a photoelectric conversion device using a thin single crystal semiconductor layer, which is the detached thin part of the single crystal semiconductor substrate. The thin part of the single crystal semiconductor substrate is detached by a method in which a substrate is irradiated with ions accelerated by voltage, or a method in which a substrate is irradiated with a laser beam which makes multiphoton absorption occur. A so-called tandem-type photoelectric conversion device is obtained by stacking a unit cell including a non-single-crystal semiconductor layer over the detached thin part of the single crystal semiconductor substrate.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: May 12, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Akihisa Shimomura
  • Patent number: 9029693
    Abstract: This invention is directed to a flexible solar cell photovoltaic module with high light transmittance based on modified substrate, which belongs to the field of thin-film solar cell technology. The objective of the present invention to provide a technical solution for a transparent flexible solar cell module and its fabrication method. Technical features include using a stainless steel template to mold a modified polyimide PI substrate (the PI substrate). The PI substrate has light-passing through-holes, including draining holes and convergence holes, through and distributed on the PI substrate, a conductive film layer, and various stacked photoelectric conversion film layers.
    Type: Grant
    Filed: February 20, 2012
    Date of Patent: May 12, 2015
    Assignee: Shenzhen Trony Science & Technology Development Co., Ltd.
    Inventor: Yi Li
  • Patent number: 9029688
    Abstract: Disclosed is a photovoltaic device. The photovoltaic device includes: a substrate; a first electrode placed on the substrate; a second electrode which is placed opposite to the first electrode and which light is incident on; a first unit cell being placed between the first electrode and the second electrode, and including an intrinsic semiconductor layer including crystalline silicon grains making the surface of the intrinsic semiconductor layer toward the second electrode textured; and a second unit cell placed between the first unit cell and the second electrode.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: May 12, 2015
    Assignee: Intellectual Discovery Co., Ltd.
    Inventor: Seung-Yeop Myong
  • Patent number: 9023254
    Abstract: The present invention is directed to an electroconductive silver thick film paste composition comprising Ag, a glass frit and rhodium resinate, Cr2O3 or a mixture thereof all dispersed in an organic medium. The present invention is further directed to an electrode formed from the paste composition and a semiconductor device and, in particular, a solar cell comprising such an electrode. The paste is particularly useful for forming a tabbing electrode.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: May 5, 2015
    Assignee: E I du Pont de Nemours and Company
    Inventors: Kenneth Warren Hang, Yu-Cheng Lin, Yueli Wang
  • Patent number: 9018517
    Abstract: A photovoltaic device including a single junction solar cell provided by an absorption layer of a type IV semiconductor material having a first conductivity, and an emitter layer of a type III-V semiconductor material having a second conductivity, wherein the type III-V semiconductor material has a thickness that is no greater than 50 nm.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: April 28, 2015
    Assignee: International Business Machines Corporation
    Inventors: Bahman Hekmatshoar-Tabari, Ali Khakifirooz, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 9018516
    Abstract: Solar cells with silicon oxynitride dielectric layers and methods of forming silicon oxynitride dielectric layers for solar cell fabrication are described. For example, an emitter region of a solar cell includes a portion of a substrate having a back surface opposite a light receiving surface. A silicon oxynitride (SiOxNy, 0<x, y) dielectric layer is disposed on the back surface of the portion of the substrate. A semiconductor layer is disposed on the silicon oxynitride dielectric layer.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: April 28, 2015
    Assignee: SunPower Corporation
    Inventors: Michael Shepherd, David D. Smith
  • Patent number: 9018521
    Abstract: A multijunction solar cell comprising an upper first solar subcell having a first band gap; a middle second solar subcell adjacent to the first solar subcell and having a second band gap smaller than the first band gap; a graded interlayer adjacent to the second solar subcell; the graded interlayer having a third band gap greater than the second band gap; a third solar subcell adjacent to the interlayer, the third subcell having a fourth band gap smaller than the second band gap such that the third subcell is lattice mismatched with respect to the second subcell; and a distributed Bragg reflector (DBR) layer adjacent to the upper first subcell.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: April 28, 2015
    Assignee: SolAero Technologies Corp.
    Inventor: Arthur Cornfeld
  • Patent number: 9018520
    Abstract: Disclosed is a solar cell having a silicon monocrystal substrate surface with a textured structure and, near the surface of said substrate, a damage layer reflecting the slice processing history from the time of manufacture of the silicon monocrystal substrate. The damage layer near the surface of the silicon monocrystal substrate is derived from the slice processing history at the time of manufacture of the substrate and functions as a gettering site, contributing to a longer lifetime of the substrate minority carriers. Thanks to this effect, the solar cell characteristics are dramatically increased. Further, new damage need be inflicted, and no additional work is required because damage from the slicing is used.
    Type: Grant
    Filed: September 5, 2011
    Date of Patent: April 28, 2015
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Shun Moriyama, Takenori Watabe, Takashi Murakami, Shintarou Tsukigata, Mitsuhito Takahashi, Hiroyuki Otsuka
  • Publication number: 20150107659
    Abstract: Electrically conductive polymeric compositions adapted for use in forming electronic devices are disclosed. The compositions are thermally curable at temperatures less than about 250° C. Compositions are provided which may be solvent-free and so can be used in processing or manufacturing operations without solvent recovery concerns. The compositions utilize (i) fatty acid modified epoxy acrylate and/or methacrylate monomer(s) and/or oligomer(s), (ii) fatty acid modified polyester acrylate and/or methacrylate monomer(s) and/or oligomer(s), or combinations of (i) and (ii). Also described are electronic assemblies such as solar cells using the various compositions and related methods.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 23, 2015
    Applicant: Heraeus Precious Metals North America Conshohocken LLC
    Inventors: Hong JIANG, Aziz S. SHAIKH
  • Patent number: 9012769
    Abstract: Provided is a photoelectric conversion device characterized by a lattice-shaped current-collection metal electrode and a depressed portion provided in opening regions of a lattice structured by the lattice-shaped current collection electrode. This structure results in the reduction in the area of a heterojunction containing a highly-doped semiconductor layer, which decreases the influence of carrier recombination promoted by the high concentration of an impurity and leads to the improved electric characteristic of the photoelectric conversion device. The lattice shape of the current collection electrode also makes it possible to exclude the use of a light-transmitting current collection electrode and allows a protective insulating layer having a high light-transmitting property to be formed over the current collection electrode, which contributes to the reduction of the light absorption loss.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: April 21, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 9012766
    Abstract: One embodiment of the present invention provides a solar cell. The solar cell includes a substrate, a first heavily doped crystalline-Si (c-Si) layer situated above the substrate, a lightly doped c-Si layer situated above the first heavily doped crystalline-Si layer, a second heavily doped c-Si layer situated above the lightly doped c-Si layer, a front side electrode grid situated above the second heavily doped c-Si layer, and a backside electrode grid situated on the backside of the substrate.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: April 21, 2015
    Assignee: Silevo, Inc.
    Inventors: Chentao Yu, Zheng Xu, Jiunn Benjamin Heng, Jianming Fu
  • Patent number: 8999740
    Abstract: A solar cell according to an embodiment of the invention includes a substrate configured to have a plurality of via holes and a first conductive type, an emitter layer placed in the substrate and configured to have a second conductive type opposite to the first conductive type, a plurality of first electrodes electrically coupled to the emitter layer, a plurality of current collectors electrically coupled to the first electrodes through the plurality of via holes, and a plurality of second electrodes electrically coupled to the substrate. The plurality of via holes includes at least two via holes having different angles.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: April 7, 2015
    Assignee: LG Electronics Inc.
    Inventors: Daehee Jang, Jihoon Ko, Juwan Kang, Jonghwan Kim
  • Publication number: 20150090335
    Abstract: The present invention provides a solar cell substrate having a transparent conductive film formed on a glass substrate, wherein the thermal expansion coefficient of the glass substrate is from 50×10?7 to 110×10?7/° C. The present invention also provides a solar cell substrate having a conductive film of fluorine-doped tin oxide or antimony-doped tin oxide formed on a glass substrate having a thickness of from 0.05 to 2 mm, wherein the strain point of the glass substrate is 525° C. or higher.
    Type: Application
    Filed: December 8, 2014
    Publication date: April 2, 2015
    Inventors: Masahiro SAWADA, Tomohiro NAGAKANE, Akihiko SAKAMOTO, Tadashi SETO, Satoshi FUJIMOTO
  • Patent number: 8993879
    Abstract: A semiconductor structure including a bonding layer connecting a first semiconductor wafer layer to a second semiconductor wafer layer, the bonding layer including an electrically conductive carbonaceous component and a binder component.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: March 31, 2015
    Assignee: The Boeing Company
    Inventors: Andreea Boca, Daniel C. Law, Joseph Charles Boisvert, Nasser H. Karam
  • Patent number: 8987038
    Abstract: A method for forming a solar cell with selective emitters is disclosed, including selectively removing a portion of a barrier layer on a substrate to form an opening, performing a texture etching process to the substrate to form a second texture structure in a second region under the opening of the barrier layer, wherein the substrate surface in the first region does not change from the first texture structure. The first texture structure and the second texture structure include a plurality of protruding portions and recessing portions. The distance between neighboring protruding portions of the first texture structure is L1, the distance between neighboring protruding portions of the second texture structure is L2, and L1 is 2˜20 times that of L2. The method for forming a solar cell with selective emitters further comprises removing the barrier layer and performing a doping process.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: March 24, 2015
    Assignee: Industrial Technology Research Institute
    Inventors: Dimitre Zahariev Dimitrov, Ching-Hsi Lin, Chung-Wen Lan, Der-Chin Wu
  • Patent number: 8981203
    Abstract: A thin film solar cell module includes a substrate, at least one first cell positioned in a central area of the substrate, and at least one second cell positioned in an edge area of the substrate. Each of the first and second cells includes a first electrode, a second electrode, and at least one photoelectric conversion unit positioned between the first electrode and the second electrode. An amount of germanium contained in the photoelectric conversion unit of the first cell is less than an amount of germanium contained in the photoelectric conversion unit of the second cell positioned on the same level layer as the photoelectric conversion unit of the first cell.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: March 17, 2015
    Assignee: LG Electronics Inc.
    Inventors: Suntae Hwang, Dongjoo You, Sungeun Lee, Seungyoon Lee
  • Publication number: 20150068604
    Abstract: A method cleaving a semiconductor material that includes providing a germanium substrate having a germanium and tin alloy layer is present therein. A stressor layer is deposited on a surface of the germanium substrate. A stress from the stressor layer is applied to the germanium substrate, in which the stress cleaves the germanium substrate to provide a cleaved surface. The cleaved surface of the germanium substrate is then selective to the germanium and tin alloy layer of the germanium substrate. In another embodiment, the germanium and tin alloy layer may function as a fracture plane during a spalling method.
    Type: Application
    Filed: November 13, 2014
    Publication date: March 12, 2015
    Inventors: Stephen W. Bedell, Devendra K. Sadana, Davood Shahrjerdi
  • Patent number: 8969711
    Abstract: A solar cell employing nanocrystalline superlattice material and amorphous structure and method of constructing the same provides improved efficiency when converting sunlight to power. The photovoltaic (PV) solar cell includes an intrinsic superlattice material deposited between the p-doped layer and the n-doped layer. The superlattice material is comprised of a plurality of sublayers which effectively create a graded band gap and multi-band gap for the superlattice material. The sublayers can include a nanocrystalline Si:H layer, an amorphous SiGe:H layer and an amorphous SiC:H layer. Varying the thickness of each layer results in an effective energy gap that is graded as desired for improved efficiency. Methods of constructing single junction and parallel configured two junction solar cells include depositing the various layers on a substrate such as stainless steel or glass.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: March 3, 2015
    Assignee: Magnolia Solar, Inc.
    Inventors: Gopal G. Pethuraja, Roger E. Welser, Elwood J. Egerton, Ashok K. Sood
  • Patent number: 8969508
    Abstract: Photoactive polymers are provided, as well as related photovoltaic cells, articles, systems, and methods comprising these photoactive polymers.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: March 3, 2015
    Assignee: Merck Patent GmbH
    Inventors: Li Wen, David P. Waller, Paul Byrne, Nicolas Drolet, Gilles Herve Regis Dennler, Kap-Soo Cheon
  • Patent number: 8969713
    Abstract: Disclosed herein is a photoelectric conversion device having a semiconductor substrate including a front side and back side, a protective layer formed on the front side of the semiconductor substrate, a first non-single crystalline semiconductor layer formed on the back side of the semiconductor substrate, a first conductive layer including a first impurity formed on a first portion of a back side of the first non-single crystalline semiconductor layer, and a second conductive layer including the first impurity and a second impurity formed on a second portion of the back side of the first non-single crystalline semiconductor layer.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: March 3, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Min-Seok Oh, Jung-Tae Kim, Nam-Kyu Song, Min Park, Yun-Seok Lee, Czang-Ho Lee, Myung-Hun Shin, Byoung-Kyu Lee, Yuk-Hyun Nam, Seung-Jae Jung, Mi-Hwa Lim, Joon-Young Seo, Dong-Uk Choi, Dong-Seop Kim, Byoung-June Kim
  • Patent number: 8962783
    Abstract: Photovoltaic cells with silole-containing polymers, as well as related systems, methods and components are disclosed.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: February 24, 2015
    Assignee: Merck Patent GmbH
    Inventors: Russell Gaudiana, Richard Kingsborough, Xiaobo Shi, David Waller, Zhengguo Zhu
  • Patent number: 8962978
    Abstract: A semiconductor structure is described, including a semiconductor substrate and a semiconductor layer disposed on the semiconductor substrate. The semiconductor layer is both compositionally graded and structurally graded. Specifically, the semiconductor layer is compositionally graded through its thickness from substantially intrinsic at the interface with the substrate to substantially doped at an opposite surface. Further, the semiconductor layer is structurally graded through its thickness from substantially crystalline at the interface with the substrate to substantially amorphous at the opposite surface. Related methods are also described.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: February 24, 2015
    Assignee: General Electric Company
    Inventors: Bastiaan Arie Korevaar, James Neil Johnson, Todd Ryan Tolliver, Theodore Carlton Kreutz, Xiaolan Zhang
  • Publication number: 20150047708
    Abstract: An organic-inorganic hybrid photoelectric conversion device comprising: an inorganic photoelectric conversion device comprising an inorganic semiconductor; and an organic photoelectric conversion device which is connected in series to the inorganic photoelectric conversion device and is superimposed on the inorganic photoelectric conversion device, wherein the organic photoelectric conversion device comprises an active layer comprising an electron-accepting compound and an electron-donating compound and has an absorption edge at a wavelength shorter than that at which the inorganic photoelectric conversion device has. This photoelectric conversion device is capable of obtaining high open end voltage, and can be fabricated simply.
    Type: Application
    Filed: March 14, 2013
    Publication date: February 19, 2015
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yasunori Uetani, Masahiko Hata
  • Publication number: 20150047704
    Abstract: Solar cell structures that have improved carrier collection efficiencies at a heterointerface are provided by low temperature epitaxial growth of silicon on a III-V base. Additionally, a solar cell structure having improved open circuit voltage includes a shallow junction III-V emitter formed by epitaxy or diffusion followed by the epitaxy of SixGe1?x passivated by amorphous SiyGe1?y:H.
    Type: Application
    Filed: September 29, 2014
    Publication date: February 19, 2015
    Inventors: Stephen W. Bedell, Bahman Hekmatshoartabari, Devendra K. Sadana, Davood Shahrjerdi
  • Publication number: 20150040979
    Abstract: High efficiency silicon solar cells, including IBC cells, may be formed from lightly doped p-n sandwich structures fabricated in-situ by epitaxial growth. For example, the solar cell may comprise: an n-type silicon layer greater than or equal to 20 microns thick, with a dopant concentration between 1E15/cm3 and 5E16/cm3 and a bulk silicon carrier lifetime greater than 50 microseconds; a p-type silicon layer greater than 10 microns thick, with a dopant concentration between 1E16/cm3 and 5E18/cm3, and a bulk silicon carrier lifetime greater than 10 microseconds; wherein the n-type and p-type silicon layers were fabricated by epitaxial deposition, one after the other, on a reusable single crystal silicon substrate. The ideality factor of the silicon solar cell may be approximately 1.0. The epitaxial deposition may be in a reactor with low auto-doping and low oxygen incorporation.
    Type: Application
    Filed: August 12, 2014
    Publication date: February 12, 2015
    Inventors: Tirunelveli S. Ravi, Ruiying Hao
  • Publication number: 20150040983
    Abstract: The present invention relates to a method for acidic surface etching of a silicon wafer, such as those used for solar cells, comprising contacting at least one surface of a silicon wafer as cut with an acidic etching agent, provided that the wafer is, prior to the acidic etching, not subjected to an alkaline etching step or process. Further, the present invention is directed to Si wafer, photovoltaic cells, PERC photovoltaic cells and solar modules produced according to the method of the present invention.
    Type: Application
    Filed: August 7, 2013
    Publication date: February 12, 2015
    Applicant: SolarWorld Industries America, Inc.
    Inventor: Konstantin Holdermann
  • Patent number: 8951827
    Abstract: Manufacture of multi-junction solar cells, and devices thereof, are disclosed. The architectures are also adapted to provide for a more uniform and consistent fabrication of the solar cell structures, leading to improved yields and lower costs. Certain solar cells may further include one or more compositional gradients of one or more semiconductor elements in one or more semiconductor layers, resulting in a more optimal solar cell device.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: February 10, 2015
    Assignee: EpiWorks, Inc.
    Inventors: David Ahmari, Swee Lim, Shiva Rai, David Forbes
  • Publication number: 20150034159
    Abstract: A hole-blocking silicon/titanium-oxide heterojunction for silicon photovoltaic devices and methods of forming are disclosed. The electronic device includes at least two electrodes having a current path between the two electrodes. The electronic device also includes a heterojunction formed of a titanium-oxide layer deposited over a Si layer and being disposed in the current path. The heterojunction is configured to function as a hole blocker. The first electrode may be electrically coupled to the Si layer and a second electrode may be electrically coupled to the titanium-oxide layer. The device may also include a PN junction disposed in the Si layer, in the current path. The device may also include an electron-blocking heterojunction on silicon in the current path.
    Type: Application
    Filed: March 14, 2013
    Publication date: February 5, 2015
    Applicant: The Trustees of Princeton University
    Inventors: Sushobhan Avasthi, James C. Sturm, William E. McClain, Jeffrey Schwartz
  • Patent number: 8946547
    Abstract: Fabrication methods and structures relating to backplanes for back contact solar cells that provide for solar cell substrate reinforcement and electrical interconnects are described. The method comprises depositing an interdigitated pattern of base electrodes and emitter electrodes on a backside surface of a semiconductor substrate, forming electrically conductive emitter plugs and base plugs on the interdigitated pattern, and attaching a backplane having a second interdigitated pattern of base electrodes and emitter electrodes at the conductive emitter and base plugs to form electrical interconnects.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: February 3, 2015
    Assignee: Solexel, Inc.
    Inventors: Mehrdad M. Moslehi, David Xuan-Qi Wang, Karl-Josef Kramer, Sean M. Seutter, Sam Tone Tor, Anthony Calcaterra
  • Patent number: 8946545
    Abstract: Disclosed is a photovoltaic device. The photovoltaic device includes: a substrate; a first electrode placed on the substrate; a second electrode which is placed opposite to the first electrode and which light is incident on; a first unit cell being placed between the first electrode and the second electrode, and including an intrinsic semiconductor layer including crystalline silicon grains making the surface of the intrinsic semiconductor layer toward the second electrode textured; and a second unit cell placed between the first unit cell and the second electrode.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: February 3, 2015
    Assignee: Intellectual Discovery Co., Ltd.
    Inventor: Seung-Yeop Myong
  • Patent number: 8945794
    Abstract: A process is provided for etching a silicon-containing substrate. In the process, the surface of the substrate is cleaned. A film of alumina is deposited on the cleaned substrate surface. A silver film is deposited above the film of alumina. An etchant comprising HF is contacted with the silver film.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: February 3, 2015
    Inventors: Faris Modawar, Jeff Miller, Mike Jura, Brian Murphy, Marcie Black, Brent A. Buchine
  • Publication number: 20150027513
    Abstract: A semiconductor substrate and a photovoltaic power module incorporating the semiconductor substrate. The substrate includes one or more bypass diodes formed integrally in the semiconductor substrate, each bypass diode corresponding to a respective one or more photovoltaic cells, and metallised zones being electrically and thermally coupled to the bypass diodes. The substrate enables photovoltaic cells to be placed close together, and has low thermal resistance. Methods of manufacturing the substrate and module are provided.
    Type: Application
    Filed: November 21, 2012
    Publication date: January 29, 2015
    Applicant: Solar Systems Pty Ltd
    Inventors: William Ring, Joel Goodrich, Zhen Mu, Robert Musk