Gallium Containing Patents (Class 136/262)
  • Publication number: 20110030800
    Abstract: This invention relates to methods for making materials using compounds, polymeric compounds, and compositions for semiconductor and optoelectronic materials and devices including thin film and band gap materials. This invention provides a range of compounds, polymeric compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, transparent conductive materials, as well as devices and systems for energy conversion, including solar cells. This invention further relates to methods for making a CAIGS, CAIS or CAGS material by providing one or more polymeric precursor compounds or inks thereof, providing a substrate, depositing the compounds or inks onto the substrate; and heating the substrate at a temperature of from about 20° C. to about 650° C.
    Type: Application
    Filed: August 26, 2010
    Publication date: February 10, 2011
    Applicant: PRECURSOR ENERGETICS, INC.
    Inventors: Kyle L. Fujdala, Wayne A. Chomitz, Zhongliang Zhu, Matthew C. Kuchta, Qinglan Huang
  • Publication number: 20110030795
    Abstract: This invention relates to methods and articles using a range of compounds, polymeric compounds, and compositions used to prepare semiconductor and optoelectronic materials and devices including thin film and band gap materials for photovoltaic applications including devices and systems for energy conversion and solar cells. In particular, this invention relates to polymeric precursor compounds and precursor materials for preparing photovoltaic layers. A compound may contain repeating units {MA(ER)(ER)} and {MB(ER)(ER)}, wherein each MA is Cu, each MB is In or Ga, each E is S, Se, or Te, and each R is independently selected, for each occurrence, from alkyl, aryl, heteroaryl, alkenyl, amido, silyl, and inorganic and organic ligands.
    Type: Application
    Filed: August 20, 2010
    Publication date: February 10, 2011
    Applicant: PRECURSOR ENERGETICS, INC.
    Inventors: Kyle L. Fujdala, Wayne A. Chomitz, Zhongliang Zhu, Matthew C. Kuchta
  • Publication number: 20110030796
    Abstract: This invention relates to methods and articles using compounds, polymeric compounds, and compositions for semiconductor and optoelectronic materials and devices including thin film and band gap materials. This invention provides a range of compounds, polymeric compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, transparent conductive materials, as well as devices and systems for energy conversion, including solar cells. In particular, this invention relates to polymeric precursor compounds and precursor materials for preparing photovoltaic layers. A compound may contain repeating units {MB(ER)(ER)} and {MA(ER)(ER)}, wherein MA is a combination of Cu and Ag, each MB is In or Ga, each E is S, Se, or Te, and each R is independently selected, for each occurrence, from alkyl, aryl, heteroaryl, alkenyl, amido, silyl, and inorganic and organic ligands.
    Type: Application
    Filed: August 20, 2010
    Publication date: February 10, 2011
    Applicant: PRECURSOR ENERGETICS, INC.
    Inventors: Kyle L. Fujdala, Wayne A. Chomitz, Zhongliang Zhu, Matthew C. Kuchta, Qinglan Huang
  • Publication number: 20110030799
    Abstract: This invention relates to processes for materials using a range of compounds, polymeric compounds, and compositions used to prepare semiconductor and optoelectronic materials and devices including thin film and band gap materials for photovoltaic applications including devices and systems for energy conversion and solar cells. In particular, this invention relates to CIGS, CIS or CGS materials made by a process of providing one or more polymeric precursor compounds or inks thereof, providing a substrate, depositing the compounds or inks onto the substrate; and heating the substrate, thereby producing a material.
    Type: Application
    Filed: August 26, 2010
    Publication date: February 10, 2011
    Applicant: PRECURSOR ENERGETICS, INC.
    Inventors: Kyle L. Fujdala, Wayne A. Chomitz, Zhongliang Zhu, Matthew C. Kuchta
  • Publication number: 20110030797
    Abstract: This invention relates to methods and articles using compounds, polymeric compounds, and compositions used to prepare semiconductor and optoelectronic materials and devices including thin film and band gap materials. This invention provides a range of compounds, polymeric compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, transparent conductive materials, as well as devices and systems for energy conversion, including solar cells. In particular, this invention relates to polymeric precursor compounds and precursor materials for preparing photovoltaic layers. A compound may contain repeating units {MB(ER)(ER)} and {MA(ER)(ER)}, wherein MA is Ag, each MB is In or Ga, each E is S, Se, or Te, and each R is independently selected, for each occurrence, from alkyl, aryl, heteroaryl, alkenyl, amido, silyl, and inorganic and organic ligands.
    Type: Application
    Filed: August 20, 2010
    Publication date: February 10, 2011
    Applicant: PRECURSOR ENERGETICS, INC.
    Inventors: Kyle L. Fujdala, Wayne A. Chomitz, Zhongliang Zhu, Matthew C. Kuchta, Qinglan Huang
  • Publication number: 20110023963
    Abstract: There is provided a solar cell in which a lower electrode layer, a photoelectric conversion layer having a chalcopyrite structure that includes a Group Ib element, a Group IIIb element, and a Group VIb element, and an upper electrode layer are sequentially formed on top of a substrate, wherein the solar cell is provided with a silicate layer between the substrate and the lower electrode layer.
    Type: Application
    Filed: March 19, 2009
    Publication date: February 3, 2011
    Inventors: Shogo Ishizuka, Shigeru Niki, Nobuaki Kido, Hiroyuki Honmoto
  • Publication number: 20110017297
    Abstract: Sodium containing aluminosilicate and boroaluminosilicate glasses are described herein. The glasses can be used as substrates or superstrates for photovoltaic devices, for example, thin film photovoltaic devices such as CIGS photovoltaic devices. These glasses can be characterized as having strain points?535° C., for example, ?570° C., thermal expansion coefficients of from 8 to 9 ppm/° C., as well as liquidus viscosities in excess of 50,000 poise. As such they are ideally suited for being formed into sheet by the fusion process.
    Type: Application
    Filed: July 21, 2010
    Publication date: January 27, 2011
    Inventors: Bruce Gardiner Aitken, James Edward Dickingson, JR., Timothy J. Kiczenski
  • Publication number: 20110017296
    Abstract: The present invention discloses a solar cell having light condensing device such as micro lens. The solar cell includes a substrate, a solar energy converting layer is formed over the substrate, and a plurality of light condensing device is formed over the solar energy converting layer. The material of the light condensing device includes organic material including photo-resist or inorganic material including silicon dioxide or silicon nitride.
    Type: Application
    Filed: July 23, 2010
    Publication date: January 27, 2011
    Inventors: Kuo-Ching Chiang, Hung-Huei Tseng
  • Publication number: 20110011983
    Abstract: The present invention provides a photovoltaic cell comprising a GaInP subcell comprising a disordered group-III sublattice, a Ga(In)As subcell disposed below the GaInP subcell, and a Ge substrate disposed below the Ga(In)As subcell comprising a surface misoriented from a (100) plane by an angle from about 8 degrees to about 40 degrees toward a nearest (111) plane.
    Type: Application
    Filed: September 1, 2010
    Publication date: January 20, 2011
    Inventors: Richard R. King, James H. Ermer, Peter C. Coller, Chris Fetzer
  • Patent number: 7871502
    Abstract: A method for fabricating a chalcopyrite-type thin film solar cell includes a first step of forming onto a Mo electrode layer 2 a precursor including an In metal layer and a Cu—Ga alloy layer by sputtering, a second step of attaching an alkali-metal solution onto the precursor, a selenization step of subjecting the substrate 1 which has undergone both the first and the second steps to a selenization treatment, and a transparent electrode forming step of depositing an optically transparent conductive layer. As the alkali-metal solution, an aqueous solution of an alkali metal compound, such as sodium tetraborate, sodium sulfide, and sodium aluminum sulfate, can be used.
    Type: Grant
    Filed: April 12, 2005
    Date of Patent: January 18, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventor: Satoshi Aoki
  • Publication number: 20110005589
    Abstract: Photovoltaic devices and methods of making the same, are disclosed herein. The cell comprises: a first electrically conductive layer; at least one photoelectrochemical layer comprising metal-oxide particles, an electrolyte solution, an asphaltene dye, and a second electrically conductive layer.
    Type: Application
    Filed: July 9, 2010
    Publication date: January 13, 2011
    Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Russell R. Chianelli, Karina Castillo, Vipin Gupta, Ali M. Qudah, Brenda Torres
  • Publication number: 20110005585
    Abstract: The present invention discloses a laser-scribing method to make a bifacial thin film solar cell and the structure thereof. The laser-scribing method is to form scribing patterns that penetrate different structural layers during the process of forming various structural layers. After the laser-scribing, the top solar cell unit is attached with the bottom solar cell unit by various combining steps to form a solar cell assembly. The solar cell assembly can receive light from both sides via the absorber layers of both of the top solar cell unit and the bottom solar cell unit. The solar cell assembly has an increased output efficiency and a greater power density and the cost of the manufacturing is therefore reduced.
    Type: Application
    Filed: July 9, 2010
    Publication date: January 13, 2011
    Applicant: NEXPOWER TECHNOLOGY CORP.
    Inventors: Feng-Chien Hsieh, Gwo-Sen Lin, Chien-Pang Yang, Bing-Yi Hou
  • Patent number: 7867551
    Abstract: A method of forming a doped Group IBIIIAVIA absorber layer for solar cells by reacting a partially reacted precursor layer with a dopant structure. The precursor layer including Group IB, Group IIIA and Group VIA materials such as Cu, Ga, In and Se are deposited on a base and partially reacted. After the dopant structure is formed on the partially reacted precursor layer, the dopant structure and partially reacted precursor layer is fully reacted. The dopant structure includes a dopant material such as Na.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: January 11, 2011
    Assignee: SoloPower, Inc.
    Inventor: Bulent M. Basol
  • Patent number: 7863516
    Abstract: A monolithic semiconductor photovoltaic solar cell comprising a plurality of subcells disposed in series on an electrically conductive substrate. At least one subcell of the plurality of subcells includes an epitaxially grown self-assembled quantum dot material. The subcells are electrically connected via tunnel junctions. Each of the subcells has an effective bandgap energy. The subcells are disposed in order of increasing effective bangap energy, with the subcell having the lowest effective bandgap energy being closest to the substrate. In certain cases, each subcell is designed to absorb a substantially same amount of solar photons.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: January 4, 2011
    Assignee: Cyrium Technologies Incorporated
    Inventor: Simon Fafard
  • Publication number: 20100326496
    Abstract: A photovoltaic cell comprising having improved absorption of electromagnetic radiation is disclosed. The photovoltaic cell can include a rear contact, a first cell having a first band-gap energy, and a rear contact in electrical communication with an electromechanical device. The first cell can include InxGaySbz, where x+y+z=1 and z ranges from 0.00001 to 0.025. the photovoltaic cell can also include a second cell having a second band-gap energy, and a first tunnel disposed between the first and second cells. The photovoltaic cell can include at least a third cell and a second tunnel disposed between the second and third cells. The uppermost cell can include GaP or InP.
    Type: Application
    Filed: June 24, 2010
    Publication date: December 30, 2010
    Applicant: Florida State University Research Foundation, Inc.
    Inventors: Indranil Bhattacharya, Simon Y. Foo
  • Publication number: 20100319777
    Abstract: A solar cell and method of fabricating the same are provided. The solar cell includes a metal electrode layer, an optical absorption layer, a buffer layer, and a transparent electrode layer. The metal electrode layer is disposed on a substrate. The optical absorption layer is disposed on the metal electrode layer. The buffer layer is disposed on the optical absorption layer and includes an indium gallium nitride (InxGa1-xN). The transparent electrode layer is disposed on the buffer layer.
    Type: Application
    Filed: October 23, 2009
    Publication date: December 23, 2010
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sung-Bum BAE, Yong-Duck Chung, Won Seok Han, Dae-Hyung Cho, Je Ha Kim
  • Publication number: 20100319776
    Abstract: Disclosed are an ink containing nanoparticles for formation of thin film of a solar cell and its preparation method, CIGS thin film solar cell having at least one light absorption layer formed by coating or printing the above ink containing nanoparticles on a rear electrode, and a process for manufacturing the same. More particularly, the above absorption layer comprises Cu, In, Ga and Se elements as constitutional ingredients thereof and such elements exist in the light absorption layer by coating or printing an ink that contains Cu2Se nanoparticles and (In,Ga)2Se3 nanoparticles on the rear electrode, and heating the treated electrode with the ink. According to the present invention, since Cu(In,Ga)Se2, that is, CIGS, thin film is formed using the ink containing nanoparticles, a simple process is preferably used without requirement of vacuum processing or complex equipment and particle size of the thin film, Ga doping concentration, etc. can be easily regulated.
    Type: Application
    Filed: April 11, 2008
    Publication date: December 23, 2010
    Applicant: LG ELECTRONICS INC.
    Inventors: Young-Ho Choe, Young-Hee Lee, Yong-Woo Choi, Hyung-Seok Kim, Ho-Gyoung Kim
  • Publication number: 20100307591
    Abstract: A method for forming a single-junction photovoltaic cell includes forming a dopant layer on a surface of a semiconductor substrate; diffusing the dopant layer into the semiconductor substrate to form a doped layer of the semiconductor substrate; forming a metal layer over the doped layer, wherein a tensile stress in the metal layer is configured to cause a fracture in the semiconductor substrate; removing a semiconductor layer from the semiconductor substrate at the fracture; and forming the single junction photovoltaic cell using the semiconductor layer. A single-junction photovoltaic cell includes a doped layer comprising a dopant diffused into a semiconductor substrate; a patterned conducting layer formed on the doped layer; a semiconductor layer comprising the semiconductor substrate located on the doped layer on a surface of the doped layer opposite the patterned conducting layer; and an ohmic contact layer formed on the semiconductor layer.
    Type: Application
    Filed: February 26, 2010
    Publication date: December 9, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Norma E. Sosa Cortes, Keith E. Fogel, Devendra Sadana, Davood Shahrjerdi, Brent A. Wacaser
  • Publication number: 20100307561
    Abstract: A photovoltaic device can include a second metal layer adjacent to a first layer, where the first layer is positioned adjacent to a substrate, and where the second metal layer includes a dopant; and a copper-indium-gallium diselenide (CIGS) layer adjacent to the second metal layer.
    Type: Application
    Filed: June 3, 2010
    Publication date: December 9, 2010
    Applicant: First Solar, Inc.
    Inventors: Benyamin Buller, Long Cheng, Akhlesh Gupta, Anke Abken
  • Patent number: 7842882
    Abstract: The present invention describes a method of obtaining an absorber layer for a solar cell, That method includes depositing a preparatory material comprising a melt of at least one Group IIIA material on a base to form a precursor layer, and reacting the precursor layer with at least one Group VIA material to form a dense Group IBIIIAVIA absorber layer. The method described above can further include forming the preparatory material, the preparatory material comprising the melt of at least one Group IIIA material and a solid phase in the form of particles, such that the solid phase in the form of particles is included within the melt during the step of depositing. Various techniques for applying the preparatory material to the base as a melt are also described.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: November 30, 2010
    Inventor: Bulent M. Basol
  • Patent number: 7838763
    Abstract: A method of manufacturing improved thin-film solar cells entirely by sputtering includes a high efficiency back contact/reflecting multi-layer containing at least one barrier layer consisting of a transition metal nitride. A copper indium gallium diselenide (Cu(InxGa1-x)Se2) absorber layer (X ranging from 1 to approximately 0.7) is co-sputtered from specially prepared electrically conductive targets using dual cylindrical rotary magnetron technology. The band gap of the absorber layer can be graded by varying the gallium content, and by replacing the gallium partially or totally with aluminum. Alternately the absorber layer is reactively sputtered from metal alloy targets in the presence of hydrogen selenide gas. RF sputtering is used to deposit a non-cadmium containing window layer of ZnS. The top transparent electrode is reactively sputtered aluminum doped ZnO. A unique modular vacuum roll-to-roll sputtering machine is described.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: November 23, 2010
    Assignee: MiaSole
    Inventor: Dennis Hollars
  • Patent number: 7838063
    Abstract: Provided is a process for preparing an absorption layer of a solar cell composed of a 1B-3A-Se compound, comprising applying a metal selenide nanoparticle as a precursor material to a base material and subjecting the applied nanoparticle to thermal processing, whereby the crystal size of the 1B-3A-Se compound can be increased as compared to a conventional method using a metal in the form of an oxide as a precursor material, consequently resulting in an enhanced efficiency of the solar cell, and the manufacturing process can be simplified with omission of hydrogen reduction and selenidation processes.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: November 23, 2010
    Assignee: LG Chem, Ltd.
    Inventor: Seokhyun Yoon
  • Publication number: 20100282309
    Abstract: A photovoltaic element (110) for converting electromagnetic radiation into electrical energy is provided, which has a tandem cell structure.
    Type: Application
    Filed: July 22, 2008
    Publication date: November 11, 2010
    Applicant: BASF SE
    Inventors: Neil Gregory Pschirer, Felix Eickemeyer, Jan Schoeneboom, Jae Hyung Hwang, Martin Karlsson, Ingmar Bruder
  • Publication number: 20100282304
    Abstract: A bi-functional photovoltaic device is provided. The bi-functional photovoltaic device includes at least one solar cell and a control device. Each of the solar cell includes a multilayer semiconductor layer of group III-V compound semiconductor, a first electrode disposed on the back of the multilayer semiconductor layer, and a second electrode disposed on the front of the multilayer semiconductor layer. The control device connects with the at least one solar cell in order to control them functioning as solar cell or light emitting diode.
    Type: Application
    Filed: November 18, 2008
    Publication date: November 11, 2010
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ming-Hsien Wu, Wen-Yung Yeh, Rong Xuan, Wen-Yih Liao, Jung-Tsung Hsu, Mu-Tao Chu
  • Patent number: 7825328
    Abstract: A backside illuminated multi-junction solar cell module includes a substrate, multiple multi-junction solar cells, and a cell interconnection that provides a series connection between at least two of the multi-junction solar cells. The substrate may include a material that is substantially transparent to solar radiation. Each multi-junction solar cell includes a first active cell, grown over the substrate, for absorbing a first portion of the solar radiation for conversion into electrical energy and a second active cell, grown over the first active cell, for absorbing a second portion of the solar radiation for conversion into electrical energy. At least one of the first and second active cells includes a nitride.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: November 2, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jizhong Li
  • Patent number: 7812249
    Abstract: The present invention provides a photovoltaic cell comprising a GaInP subcell comprising a disordered group-III sublattice, a Ga(In)As subcell disposed below the GaInP subcell, and a Ge substrate disposed below the Ga(In)As subcell comprising a surface misoriented from a (100) plane by an angle from about 8 degrees to about 40 degrees toward a nearest (111) plane.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: October 12, 2010
    Assignee: The Boeing Company
    Inventors: Richard R. King, James H. Ermer, Peter C. Colter, Chris Fetzer
  • Patent number: 7807921
    Abstract: A multijunction solar cell includes a first photoactive subcell layer having a first-subcell lattice parameter and a composition including (a) at least one Group III element, at least one Group V element other than (nitrogen, phosphorus), and (nitrogen, phosphorus), or (b) a material selected from the group including GaInAsBi, GaInAsSb, GaInAsP, ZnGeAs2, or BGaInAs. The multijunction solar cell also has a substrate having a substrate lattice parameter different from the first-subcell lattice parameter, and a composition-graded buffer layer between the first photoactive subcell layer and the substrate and having a buffer-layer lattice parameter graded between the first-subcell lattice parameter and the substrate lattice parameter.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: October 5, 2010
    Assignee: The Boeing Company
    Inventors: Christopher M. Fetzer, Richard R. King, Peter C. Colter
  • Publication number: 20100243044
    Abstract: A photovoltaic cell structure includes a substrate, a metal layer, a p-type semiconductor layer, an n-type semiconductor layer, a transparent conductive layer and a high resistivity layer. The metal layer is formed on the substrate. The p-type semiconductor layer is formed on the metal layer and may include a compound of copper indium gallium selenium sulfur (CIGSS), copper indium gallium selenium (CIGS), copper indium sulfur (CIS), copper indium selenium (CIS) or a compound of at least two of copper, selenium or sulfur. The n-type semiconductor layer exhibits photo catalyst behavior that can increase carrier mobility by receiving light, and is formed on the p-type semiconductor layer, thereby forming a p-n junction. The transparent conductive layer is formed on the n-type semiconductor layer. The high resistivity layer is formed between the metal layer and the transparent conductive layer.
    Type: Application
    Filed: July 23, 2009
    Publication date: September 30, 2010
    Inventors: FENG FAN CHANG, HSIN HUNG LIN, HSIN CHIH LIN, CHI HAU HSIEH, TZUNG ZONE LI
  • Publication number: 20100236630
    Abstract: The subject application relates to a chemical vapor (CV) deposition technique to form CuInxGa1-x(SeyS1-y)2, compounds. As a copper source, solid copper can be used with a HCl transport gas and Cu3Cl3 is expected to be a major Cu-containing vapor species in this system, Liquid indium and HCl transport gas are appropriate for the indium source to provide InCl vapor species. Since selenium and sulphur are relatively highly volatile, their vapor can be carried by an inert gas without an additional transport gas, although H2Se and H2S can be used. Each source temperature can be controlled separately so as to provide a sufficient and stable vapor flux. Also provided by the subject application are CV-deposited substrates and devices, such as electronic devices or solar cells, that contain CV-deposited CuInxGa1-x(SeyS1-y)2 substrates.
    Type: Application
    Filed: May 30, 2008
    Publication date: September 23, 2010
    Applicant: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION INC.
    Inventors: W.K. KIM, Tim Anderson
  • Publication number: 20100236629
    Abstract: A copper/indium/gallium/selenium (CIGS) solar cell structure and a method for fabricating the same are provided. The CIGS solar cell structure includes a substrate, a molybdenum thin film layer, an alloy thin film layer, and a CIGS thin film layer. According to the present invention, the alloy thin film layer is provided between the molybdenum thin film layer and the CIGS thin film layer, serving as a conductive layer of the CIGS solar cell structure. The alloy thin film layer is composed of a variety of high electrically conductive materials (such as molybdenum, copper, aluminum, and silver) in different proportions.
    Type: Application
    Filed: March 19, 2009
    Publication date: September 23, 2010
    Inventor: Chuan-Lung Chuang
  • Publication number: 20100236628
    Abstract: A solar cell includes a first electrode located over a substrate, at least one p-type semiconductor absorber layer located over the first electrode, the p-type semiconductor absorber layer comprising a copper indium selenide (CIS) based alloy material, an n-type semiconductor layer located over the p-type semiconductor absorber layer, an insulating aluminum zinc oxide layer located over the n-type semiconductor layer, the insulating aluminum zinc oxide having an aluminum content of 100 ppm to 5000 ppm and a second electrode over the insulating aluminum layer, the second electrode being transparent and electrically conductive. The insulating aluminum zinc oxide having an aluminum content of 100 ppm to 5000 ppm, may be deposited by pulsed DC, non-pulsed DC, or AC sputtering from an aluminum doped zinc oxide having an aluminum content of 100 ppm to 5000 ppm.
    Type: Application
    Filed: March 17, 2009
    Publication date: September 23, 2010
    Inventors: Chris Schmidt, Bruce Hachtmann
  • Patent number: 7777127
    Abstract: The present invention relates to a flexible solar cell (10). The flexible solar cell includes a Al—Mg alloy substrate (11) having a first surface (110) and an opposing second surface (111). A first electrode layer (12), a semiconductor layer (13), and a second electrode layer (14), are sequentially formed on the first surface of the Al—Mg alloy substrate.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: August 17, 2010
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Ga-Lane Chen
  • Publication number: 20100170564
    Abstract: A high-throughput method of forming a semiconductor precursor layer by use of a chalcogen-rich chalcogenides is disclosed. The method comprises forming a precursor material comprising group IB-chalcogenide and/or group IIIA-chalcogenide particles, wherein an overall amount of chalcogen in the particles relative to an overall amount of chalcogen in a group IB-IIIA-chalcogenide film created from the precursor material, is at a ratio that provides an excess amount of chalcogen in the precursor material. The excess amount of chalcogen assumes a liquid form and acts as a flux to improve intermixing of elements to form the group IB-IIIA-chalcogenide film at a desired stoichiometric ratio, wherein the excess amount of chalcogen in the precursor material is an amount greater than or equal to a stoichiometric amount found in the IB-IIIA-chalcogenide film.
    Type: Application
    Filed: September 3, 2009
    Publication date: July 8, 2010
    Inventors: Jeroen K. J. Van Duren, Matthew R. Robinson, Craig Leidholm
  • Patent number: 7750235
    Abstract: Nanocomposite photovoltaic devices are provided that generally include semiconductor nanocrystals as at least a portion of a photoactive layer. Photovoltaic devices and other layered devices that comprise core-shell nanostructures and/or two populations of nanostructures, where the nanostructures are not necessarily part of a nanocomposite, are also features of the invention. Varied architectures for such devices are also provided including flexible and rigid architectures, planar and non-planar architectures and the like, as are systems incorporating such devices, and methods and systems for fabricating such devices. Compositions comprising two populations of nanostructures of different materials are also a feature of the invention.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: July 6, 2010
    Assignee: Nanosys, Inc.
    Inventors: Erik C. Scher, Mihai Buretea, Calvin Y. H. Chow, Stephen A. Empedocles, Andreas P. Meisel, J. Wallace Parce
  • Patent number: 7744705
    Abstract: This invention relates to group IB-IIIA. VIA quaternary or higher alloys. More particularly, this invention relations to group IB-IIIA-VIA quaternary or pentenary alloys which are suitable for use as semiconductor films. More specifically, the invention relates to quaternary or pentenary alloys which are substantially homogeneous and are characterized by an x-ray diffraction pattern (XRD) having a main [112] peak at a 2? angle (2?(112)) of from 26° to 28° for Cu radiation at 40 kV, wherein a glancing incidence x-ray diffraction pattern (GIXRD) for a glancing angle of from 0.2° to 10° reflects an absolute shift in the 2?(112) angle of less than 0.06°.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: June 29, 2010
    Assignee: University of Johannesburg
    Inventor: Vivian Alberts
  • Patent number: 7732706
    Abstract: The invention is a novel manufacturing method for making multi-junction solar cell circuits that addresses current problems associated with such circuits by allowing the formation of integral diodes in the cells and allows for a large number of circuits to readily be placed on a single silicon wafer substrate. The standard Ge wafer used as the base for multi-junction solar cells is replaced with a thinner layer of Ge or a II-V semiconductor material on a silicon/silicon dioxide substrate. This allows high-voltage cells with multiple multi-junction circuits to be manufactured on a single wafer, resulting in less array assembly mass and simplified power management.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: June 8, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Nick Mardesich
  • Publication number: 20100126587
    Abstract: A reusable transfer substrate member for forming a tiled substrate structure. The member including a transfer substrate, which has a surface region. The surface region comprises a plurality of donor substrate regions. Each of the donor substrate regions is characterized by a donor substrate thickness and a donor substrate surface region. Each of the donor substrate regions is spatially disposed overlying the surface region of the transfer substrate. Each of the donor substrate regions has the donor substrate thickness without a definable cleave region.
    Type: Application
    Filed: January 27, 2010
    Publication date: May 27, 2010
    Applicant: Silicon Genesis Corporation
    Inventor: Francois J. Henley
  • Publication number: 20100116341
    Abstract: A method for fabricating a copper-gallium alloy sputtering target comprises forming a raw target; treating the raw target with at least one thermal treatment between 500° C.˜850° C. being mechanical treatment, thermal annealing treatment for 0.5˜5 hours or a combination thereof to form a treated target; and cooling the treated target to a room temperature to obtain the copper-gallium alloy sputtering target that has 71 atomic % to 78 atomic % of Cu and 22 atomic % to 29 atomic % of Ga and having a compound phase not more than 25% on its metallographic microstructure. Therefore, the copper-gallium alloy sputtering target does not induce micro arcing during sputtering so a sputtering rate is consistent and forms a uniform copper-gallium thin film. Accordingly, the copper-gallium thin film possesses improved quality and properties.
    Type: Application
    Filed: November 12, 2008
    Publication date: May 13, 2010
    Applicant: SOLAR APPLIED MATERIALS TECHNOLOGY CORP.
    Inventors: Wei-Chin Huang, Cheng-Hsin Tu
  • Patent number: 7709287
    Abstract: A method of forming a multijunction solar cell includes providing a substrate, forming a first subcell by depositing a nucleation layer over the substrate and a buffer layer including gallium arsenide (GaAs) over the nucleation layer, forming a middle second subcell having a heterojunction base and emitter disposed over the first subcell and forming first and second tunnel junction layers between the first and second subcells. The first tunnel junction layer includes GaAs over the first subcell and the second tunnel junction layer includes aluminum gallium arsenide (AlGaAs) over the first tunnel junction layer. The method further includes forming a third subcell having a homojunction base and emitter disposed over the middle subcell.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: May 4, 2010
    Assignee: Emcore Solar Power, Inc.
    Inventors: Navid Fatemi, Daniel J. Aiken, Mark A. Stan
  • Patent number: 7687707
    Abstract: A solar cell including a semiconductor body with a multijunction solar cell and an integral bypass diode, and a pair of vias extending between the upper and lower surfaces, forming determined on the lower surface and electrically coupling the anode of the bypass diode with the conductive grid on the upper surface.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: March 30, 2010
    Assignee: Emcore Solar Power, Inc.
    Inventors: Robert Meck, Paul R. Sharps
  • Publication number: 20100051105
    Abstract: A thin film solar including a II-VI compound semiconductor absorber layer and a stainless steel substrate is provided. The stainless steel flexible foil substrate includes about 10-25% chromium and about 0.50-2.25% molybdenum, and no nickel. Process yield of the solar cells manufactured on such stainless steel substrates is higher than 10% because of a very low defect density such as micro-cracks, pinholes, and adhesion failures between the substrate and the absorber layer.
    Type: Application
    Filed: August 26, 2008
    Publication date: March 4, 2010
    Inventor: Mustafa Pinarbasi
  • Patent number: 7663056
    Abstract: A chalcopyrite type solar cell has a mica aggregate substrate formed by binding mica particulates with a resin. A multilayer body consisting of a first electrode, a light absorption layer and a second electrode is formed on the mica aggregate substrate with a smoothing layer and a binder layer interposed between the substrate and the body. The smoothing layer is preferably made of SiN or SiO2, and the binder layer is made of TiN or TaN.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: February 16, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Satoshi Yonezawa, Tadashi Hayashida
  • Patent number: 7663057
    Abstract: An ink for forming CIGS photovoltaic cell active layers is disclosed along with methods for making the ink, methods for making the active layers and a solar cell made with the active layer. The ink contains a mixture of nanoparticles of elements of groups IB, IIIA and (optionally) VIA. The particles are in a desired particle size range of between about 1 nm and about 500 nm in diameter, where a majority of the mass of the particles comprises particles ranging in size from no more than about 40% above or below an average particle size or, if the average particle size is less than about 5 nanometers, from no more than about 2 nanometers above or below the average particle size. The use of such ink avoids the need to expose the material to an H2Se gas during the construction of a photovoltaic cell and allows more uniform melting during film annealing, more uniform intermixing of nanoparticles, and allows higher quality absorber films to be formed.
    Type: Grant
    Filed: February 19, 2004
    Date of Patent: February 16, 2010
    Assignee: Nanosolar, Inc.
    Inventors: Dong Yu, Jacqueline Fidanza, Martin R. Roscheisen, Brian M. Sager
  • Publication number: 20100006143
    Abstract: A solar cell device includes a p-n diode component over a substrate, the p-n diode component including at least one subcell, each subcell including an n-type semiconductor layer and a p-type semiconductor layer to form a p-n junction. The solar cell device further includes at least two features selected from: i) a nano-structured region between at the p-n junction of at least one subcell; ii) an n-type and/or a p-type layer of at least one subcell that includes a built-in quasi-electric field; and iii) a photon reflector structure. Alternatively, the solar cell device includes at least two subcells, and further includes a nano-structured region at the p-n junction of at least one of the subcells, wherein the subcells of the solar cell device are connected in parallel to each other by the p-type or the n-type semiconductor layer of each subcell.
    Type: Application
    Filed: April 23, 2008
    Publication date: January 14, 2010
    Inventor: Roger E. Welser
  • Publication number: 20090320924
    Abstract: A solar cell structure includes a substrate, a buffer layer on the substrate, a type II band alignment nanostructure layer on the buffer layer, a p-type area and an n-type area defined on the type II band alignment nanostructure layer, and a p-type metal electrode and an n-type metal electrode coated onto the p-type and n-type areas, respectively. The type II band alignment nanostructure layer is provided for distributing an electron current and a hole current in different channels to minimize the recombination of electrons and holes and improve the photoelectric conversion efficiency of the solar cell significantly.
    Type: Application
    Filed: August 7, 2008
    Publication date: December 31, 2009
    Inventors: Jen-inn CHYI, Cheng-yu Chen
  • Publication number: 20090320916
    Abstract: Techniques for improving energy conversion efficiency in photovoltaic devices are provided. In one aspect, an antimony (Sb)-doped film represented by the formula, Cu1-yIn1-xGaxSbzSe2-wSw, provided, wherein: 0?x?1, and ranges therebetween; 0?y?0.2, and ranges therebetween; 0.001?z?0.02, and ranges therebetween; and 0?w?2, and ranges therebetween. A photovoltaic device incorporating the Sb-doped CIGS film and a method for fabrication thereof are also provided.
    Type: Application
    Filed: May 9, 2008
    Publication date: December 31, 2009
    Applicant: International Business Machines Corporation
    Inventors: Min Yuan, David B. Mitzi, Wei Liu
  • Publication number: 20090301564
    Abstract: A semiconductor nanocrystal heterostructure has a core of a first semiconductor material surrounded by an overcoating of a second semiconductor material. Upon excitation, one carrier can be substantially confined to the core and the other carrier can be substantially confined to the overcoating.
    Type: Application
    Filed: June 12, 2008
    Publication date: December 10, 2009
    Applicant: Massachusetts Institute of Technology
    Inventors: Sungjee Kim, Moungi G. Bawendi
  • Patent number: 7626116
    Abstract: A method of reducing propagation of threading dislocations into active areas of an optoelectronic device having a III-V material system includes growing a metamorphic buffer region in the presence of an isoelectronic surfactant. A first buffer layer may be lattice matched to an adjacent substrate and a second buffer layer may be lattice matched to device layers disposed upon the second buffer layer. Moreover, multiple metamorphic buffer layers fabricated in this manner may be used in a single given device allowing multiple layers to have their band gaps and lattice constants independently selected from those of the rest of the device.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: December 1, 2009
    Assignee: The Boeing Company
    Inventors: Christopher M. Fetzer, James H. Ermer, Richard R. King, Peter C. Cotler
  • Patent number: 7604843
    Abstract: A compound film may be formed by formulating a mixture of elemental nanoparticles composed of the Ib, the IIIa, and, optionally, the VIa group of elements having a controlled overall composition. The nanoparticle mixture is combined with a suspension of nanoglobules of gallium to form a dispersion. The dispersion may be deposited onto a substrate to form a layer on the substrate. The layer may then be reacted in a suitable atmosphere to form the compound film. The compound film may be used as a light-absorbing layer in a photovoltaic device.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: October 20, 2009
    Assignee: Nanosolar, Inc.
    Inventors: Matthew R. Robinson, Martin R. Roscheisen
  • Patent number: 7605328
    Abstract: The metallic components of a IB-IIIA-VIA photovoltaic cell active layer may be directly coated onto a substrate by using relatively low melting point (e.g., less than about 500° C.) metals such as indium and gallium. Specifically, CI(G)S thin-film solar cells may be fabricated by blending molten group IIIA metals with solid nanoparticles of group IB and (optionally) group IIIA metals. The molten mixture may be coated onto a substrate in the molten state, e.g., using coating techniques such as hot-dipping, hot microgravure and/or air-knife coating. After coating, the substrate may be cooled and the film annealed, e.g., in a sulfur-containing or selenium-containing atmosphere.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: October 20, 2009
    Assignee: Nanosolar, Inc.
    Inventors: Brian M. Sager, Martin R. Roscheisen