Copper, Lead, Or Zinc Containing Patents (Class 136/265)
  • Patent number: 6441301
    Abstract: A solar cell with good characteristics and high reliability is provided that includes a semiconductor comprising at least one element from each of groups Ib, IIIb, and VIb. A method of manufacturing the same also is provided. The solar cell includes a conductive base, a first insulating layer formed on one principal plane of the base, a second insulating layer formed on a second principal plane of the base, and a light-absorption layer disposed above the first insulating layer. The light-absorption layer is formed of a semiconductor comprising at least one element from each of groups Ib, IIIb, and VIb.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: August 27, 2002
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Takuya Satoh, Takayuki Negami, Shigeo Hayashi, Yasuhiro Hashimoto, Shinichi Shimakawa
  • Patent number: 6429369
    Abstract: The invention relates to a thin-film solar cell on the basis of IB-IIIA-VIA compound semiconductors and a method for producing such a solar cell. Between the polycrystalline IB-IIIA-VIA absorber layer of the p-type conductivity and the carrier film serving as a substrate, a back electrode of intermetallic phases of the same IB- and IIIA-metals are located which are deposited for the generation of the absorber layer. The absorber layer and the back electrode are produced in such a way that the precursor consisting of IB-IIIA-metals is vertically only incompletely converted into the photovoltaicly active absorber material from the side opposite to the carrier film by reaction with chalcogen such that intermetallic phases of the IB- and IIIA-metals are directly located on the carrier film, which metals serve as back electrode of the solar cell structure.
    Type: Grant
    Filed: May 10, 2000
    Date of Patent: August 6, 2002
    Assignee: IST-Institut fur Solartechnologies GmbH
    Inventors: Olaf Tober, Jürgen Penndorf, Michael Winkler, Klaus Jacobs, Thomas Koschack
  • Publication number: 20020062858
    Abstract: A solar energy device comprising: a substrate; a photovoltaic layer on said substrate; a back conductor in contact with said substrate; a grid conductor in contact with said substrate; said photovoltaic layer being of a material selected from the class consisting of: monoclinic zinc diphosphide (also referred to as beta zinc diphosphide and indicated by &bgr;-ZnP2); copper diphosphide (CuP2); magnesium tetraphosphide (MgP4); &ggr;-iron tetraphosphide (&ggr;-FeP4) and mixed crystals formed from these four materials.
    Type: Application
    Filed: October 29, 2001
    Publication date: May 30, 2002
    Inventor: Thomas Mowles
  • Publication number: 20020043278
    Abstract: A solar cell includes a first semiconductor layer that is p-type, and a second semiconductor layer that is n-type formed over the first semiconductor layer. The solar cell includes a layer A made of a semiconductor different from the first semiconductor layer and the second semiconductor layer or an insulator between the first semiconductor layer and the second semiconductor layer. The band gap Eg1 of the first semiconductor layer and the band gap Eg2 of the second semiconductor layer satisfy the relationship Eg1<Eg2. The electron affinity &khgr;1 (eV) of the first semiconductor layer and the electron affinity &khgr;2 (eV) of the second semiconductor layer satisfy the relationship 0≦(&khgr;1−&khgr;2)<0.5, and the average layer thickness of the layer A is 1 nm or more and 20 nm or less.
    Type: Application
    Filed: October 5, 2001
    Publication date: April 18, 2002
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yasuhiro Hashimoto, Takayuki Negami, Shigeo Hayashi, Takuya Satoh
  • Publication number: 20020043279
    Abstract: The invention relates to a diode structure, especially for thin film solar cells. The aim of the invention is to provide a diode structure for thin film solar cells. Said structure allows for an assembly of a thin film solar cell, whereby said assembly is as flexible as possible, efficiency is high, and utilizing materials that are as environmentally friendly as possible. A diode structure comprising a p-conducting layer, which consists of a chalcopyrite compound, and a n-conducting layer, which is adjacent to the p-conducting layer and consists of a compound that contains titanium and oxygen, is provided.
    Type: Application
    Filed: July 25, 2001
    Publication date: April 18, 2002
    Inventor: Franz Karg
  • Patent number: 6355874
    Abstract: The present invention provides a semiconductor device and a solar cell, which may be low-cost, highly efficient, safe, and last long. The semiconductor device has a compound semiconductor layer as a window layer including nitride compound semiconductor of at least one element selected from a group of Al, Ga and In and nitrogen, formed on a semiconductor substrate. The solar cell has a compound semiconductor layer containing a nitride compound semiconductor defined by a composition formula AlXGaYNW on a semiconductor substrate, where X, Y, Z and W represent a composition ratio, and satisfy 0.8≦(X+Y+Z)/W≦1.2 and 0.1≦Z/(X+Y+Z)≦1.0.
    Type: Grant
    Filed: July 25, 2000
    Date of Patent: March 12, 2002
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Shigeru Yagi, Seiji Suzuki
  • Patent number: 6323417
    Abstract: Provided is a method for making layers of I-III-VI semiconductor materials for use in photovoltaic cells, and particularly for making CIS and variations on CIS, such as CIGS and CIGSS. The method includes formation of a plurality of precursor films of the elemental components and at least one final heat treatment step in which the final semiconductor material is formed, with the precursor film for at least one III component being deposited prior to any precursor film including the I component.
    Type: Grant
    Filed: September 28, 1999
    Date of Patent: November 27, 2001
    Assignee: Lockheed Martin Corporation
    Inventors: Timothy J. Gillespie, Craig H. Marshall, Bruce R. Lanning
  • Patent number: 6310281
    Abstract: A new, large-area, thin-film, flexible photovoltaic structure is disclosed, as well as a general fabrication procedure, including a preferably roll-to-roll-type, process-chamber-segregated, “continuous-motion”, method for producing such a structure. A special multi-material vapor-deposition environment is disclosed to implement an important co-evaporation, layer-deposition procedure performed in and as part of the fabrication procedure. A structural system adapted to create a vapor environment generally like that just referred to is disclosed, as is an organization of method steps involved in the generation of such a vapor environment. Also, a unique, vapor-creating, materials-distributing system, which includes specially designed heated crucibles with carefully arranged, spatially distributed, localized and generally point-like, heated-nozzle sources of different metallic vapors, and a special multi-fingered, comb-like, vapor-delivering manifold structure is shown.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: October 30, 2001
    Assignee: Global Solar Energy, Inc.
    Inventors: Robert G. Wendt, Gregory M. Hanket, Robert W. Birkmire, T. W. Fraser Russell, Scott Wiedeman
  • Patent number: 6307148
    Abstract: An indium layer and a copper layer, and whenever necessary, a gallium layer or a gallium-alloy layer, are laminated on an electrode film formed on one of the surfaces of a substrate to form a metallic film. The metallic film is then subjected to sulfurization treatment or selenization treatment to form a p-type semiconductor layer made of “CuInS2 or CuInSe2” or “Cu(In, Ga)S2 or Cu(In, Ga)Se2”. This p-type semiconductor layer is subjected to KCN treatment, for removing impurities such as copper sulfide, copper selenide, etc., by a KCN solution, and an n-type semiconductor layer is formed on this p-type semiconductor layer to form a solar cell. In this instance, the indium layer is formed under heating, or is heat-treated by heat-treatment while the surface of the indium layer is exposed.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: October 23, 2001
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Kenji Takeuchi, Yoshio Onuma, Sumihiro Ichikawa
  • Patent number: 6297442
    Abstract: It is to provide an essentially transparent solar cell of high efficiency that can be used by accumulating with a display device to generate electricity simultaneously with utilization of the display function, a self-power-supply display device comprising the same, and a process for producing the solar cell. The solar cell comprises at least a transparent conductive substrate having thereon a photoconductor layer that is transparent to a visible ray and has an absorbance of 0.8 or less at a wavelength of from 400 to 800 nm, and a transparent conductive electrode in this order. An embodiment, in which the photoconductor layer contains at least one element selected from Group IIIA elements and at least one element selected from Group VA elements in the Periodic Table, and an embodiment, in which the photoconductor layer contains a metallic oxide semiconductor, are preferred.
    Type: Grant
    Filed: October 7, 1999
    Date of Patent: October 2, 2001
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Shigeru Yagi, Seiji Suzuki, Nobuyuki Torigoe
  • Patent number: 6291762
    Abstract: The present invention discloses a dust-proof and weather resistant photovoltaic module, including (a) a front substrate of light transmittable safety glass plate, wherein a photo-catalyst composition is applied to the safety glass plate; (b) a back substrate of weather resistant polyester polymer; and (c) a photosensitizer including electrical circuit copper foils and polymeric enclosing material (EVA) which is located between the front substrate and the back substrate. The method for fabricating a front substrate of a photovoltaic module includes applying a photo-catalyst composition onto a safety glass plate; evaporating the photo-catalyst composition to a gel; and seating the gel to Rutile titanium dioxide. The photo-catalyst composition includes a metal oxide, an acid regent and a surfactant.
    Type: Grant
    Filed: December 8, 1999
    Date of Patent: September 18, 2001
    Assignee: Industrial Technology Research Institute
    Inventors: Yih-Song Jan, Jong-Min Liu, Chih-Chiang Chen, Lee-Ching Kuo
  • Patent number: 6281036
    Abstract: A method of fabricating Cu&agr;(InxGa1−x)&bgr;(SeyS1−y)&ggr; films for solar cells includes forming an electrode on a substrate and supplying the substrate and electrode with Cu, In, Ga, Se, and S to form a Cu&agr;(InxGa1−x)&bgr;(SeyS1−y)&ggr; film. Simultaneously with the supplying of Cu, In, Ga, Se and S, the substrate is supplied with water vapor or a gas that contains a hydroxyl group.
    Type: Grant
    Filed: October 8, 1999
    Date of Patent: August 28, 2001
    Assignee: Agency of Industrial Science & Technology, Ministry of International Trade & Industry
    Inventors: Shigeru Niki, Akimasa Yamada, Paul Fons, Hiroyuki Oyanagi
  • Publication number: 20010013362
    Abstract: Provided are a zinc oxide thin film having an X-ray diffraction peak of the plane of zinc oxide crystal, a photoelectric conversion element having the zinc oxide thin film, and production processes thereof. By these, the texture level of the zinc oxide thin film is increased and the photoelectric conversion element is provided with excellent short circuit current density (Jsc).
    Type: Application
    Filed: April 6, 2001
    Publication date: August 16, 2001
    Inventor: Takaharu Kondo
  • Patent number: 6259016
    Abstract: The present invention includes a substrate, a lower electrode film, a p-type semiconductor layer (a second semiconductor layer), an n-type semiconductor layer (a first semiconductor layer), an upper electrode film and an anti-reflection film, which are stacked sequentially on the substrate in this order, and an interconnection electrode formed on the upper electrode film. The first semiconductor layer is free from Cd, and the second semiconductor layer is a light-absorption layer. The band gap Eg1 of the first semiconductor layer and the band gap Eg2 of the second semiconductor layer satisfy a relationship: Eg1>Eg2. The electron affinity &khgr;1 (eV) of the first semiconductor layer and an electron affinity &khgr;2 (eV) of the second semiconductor layer satisfy a relationship: 0≦(&khgr;2−&khgr;1)<0.5.
    Type: Grant
    Filed: February 29, 2000
    Date of Patent: July 10, 2001
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Takayuki Negami, Yasuhiro Hashimoto, Shigeo Hayashi
  • Patent number: 6251701
    Abstract: An all dry method for producing solar cells is provided comprising first heat-annealing a II-VI semiconductor; enhancing the conductivity and grain size of the annealed layer; modifying the surface and depositing a tellurium layer onto the enhanced layer; and then depositing copper onto the tellurium layer so as to produce a copper tellurium compound on the layer.
    Type: Grant
    Filed: March 1, 2000
    Date of Patent: June 26, 2001
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Brian E. McCandless
  • Patent number: 6238808
    Abstract: Provided are a substrate with a zinc oxide layer, in which at least a zinc oxide layer is provided on a support substrate, wherein the zinc oxide layer comprises a zinc oxide layer having the c axis perpendicular to the support substrate and a zinc oxide layer having the c axis slantindicular to the support substrate in the order from the side of the support substrate; and a photovoltaic device in which a semiconductor layer is formed on the substrate with the zinc oxide layer. Thus provided is the inexpensive photovoltaic device with excellent reflective performance and optical confinement effect and with high photoelectric conversion efficiency.
    Type: Grant
    Filed: January 20, 1999
    Date of Patent: May 29, 2001
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kozo Arao, Hideo Tamura, Noboru Toyama, Yuichi Sonoda, Yusuke Miyamoto
  • Patent number: 6187150
    Abstract: A method for manufacturing a thin film photovoltaic device comprising a transparent conductive film, a thin film photovoltaic unit, and a back transparent conductive film and a back metal electrode which are successively formed on a substrate, wherein the back transparent conductive film is formed by sputtering comprising steps of forming an initial back transparent conductive film under a pressure of 5×10−2 Torr or more for 1 to 30 seconds in the initial stage and forming a main back transparent conductive film having the remainder thickness under a pressure reduced to {fraction (1/10)} the initial pressure or less.
    Type: Grant
    Filed: October 7, 1999
    Date of Patent: February 13, 2001
    Assignee: Kaneka Corporation
    Inventors: Masashi Yoshimi, Kenji Yamamoto
  • Patent number: 6169246
    Abstract: A photovoltaic device has a buffer layer zinc stannate Zn2SnO4 disposed between the semiconductor junction structure and the transparent conducting oxide (TCO) layer to prevent formation of localized junctions with the TCO through a thin window semiconductor layer, to prevent shunting through etched grain boundaries of semiconductors, and to relieve stresses and improve adhesion between these layers.
    Type: Grant
    Filed: September 8, 1998
    Date of Patent: January 2, 2001
    Assignee: Midwest Research Institute
    Inventors: Xuanzhi Wu, Peter Sheldon, Timothy J. Coutts
  • Patent number: 6140570
    Abstract: A photovoltaic element having a specific transparent and electrically conductive layer on a back reflecting layer, said transparent and electrically conductive layer comprising a zinc oxide material and having a light incident side surface region with a cross section having a plurality of arcs arranged while in contacted with each other, said arcs having a radius of curvature in the range of 300 .ANG. to 6 .mu.m and an angle of elevation from the center of the curvature in the range of 30 to 155.degree., and said cross section containing regions comprising said plurality of arcs at a proportion of 80% or more, compared to the entire region of the cross section.
    Type: Grant
    Filed: October 28, 1998
    Date of Patent: October 31, 2000
    Assignee: Canon Kabushiki Kaisha
    Inventor: Toshimitsu Kariya
  • Patent number: 6136162
    Abstract: A deposition method is adapted to deposit a zinc oxide film that has a high light transmittance, an adequate specific electric resistance and a large thickness at a high deposition rate and at low cost in a process that may last long but is stable. The method for depositing a zinc oxide film on a substrate held in an inert gas atmosphere is conducted by magnetron sputtering so that the maximum magnetic flux density in a direction parallel to the surface of the zinc oxide target is held to be not higher than 350 gauss.
    Type: Grant
    Filed: February 17, 1999
    Date of Patent: October 24, 2000
    Assignee: Canon Kabushiki Kaisha
    Inventors: Atsushi Shiozaki, Ako Omata, Yumi Yoshida
  • Patent number: 6137048
    Abstract: A novel, simplified method for fabricating a thin-film semiconductor heterojunction photovoltaic device includes initial steps of depositing a layer of cadmium stannate and a layer of zinc stannate on a transparent substrate, both by radio frequency sputtering at ambient temperature, followed by the depositing of dissimilar layers of semiconductors such as cadmium sulfide and cadmium telluride, and heat treatment to convert the cadmium stannate to a substantially single-phase material of a spinel crystal structure. Preferably, the cadmium sulfide layer is also deposited by radio frequency sputtering at ambient temperature, and the cadmium telluride layer is deposited by close space sublimation at an elevated temperature effective to convert the amorphous cadmium stannate to the polycrystalline cadmium stannate with single-phase spinel structure.
    Type: Grant
    Filed: December 22, 1998
    Date of Patent: October 24, 2000
    Assignee: Midwest Research Institute
    Inventors: Xuanzhi Wu, Peter Sheldon
  • Patent number: 6107562
    Abstract: A semiconductor thin film comprises an n-type compound semiconductor layer including at least one element from each of groups Ib, IIIb, VIb and II. A solar cell using this semiconductor thin film comprises a substrate and a rear electrode, a p-type compound semiconductor layer, an n-type compound semiconductor layer, an n-type semiconductor layer, a window layer, and a transparent conductive film, formed in this order on the substrate. The n-type compound semiconductor layer including at least one element from each of groups Ib, IIIb, VIb and II has a high carrier density.
    Type: Grant
    Filed: March 18, 1999
    Date of Patent: August 22, 2000
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yasuhiro Hashimoto, Takayuki Negami, Shigeo Hayashi, Takahiro Wada
  • Patent number: 6084176
    Abstract: A photoelectric conversion device has a layer of dye-sensitized nanoparticulate semiconductor and a hole transporting layer containing an organic hole transporting agent. The dye-sensitized photoelectric conversion device is fully durable. A solar cell comprising the photoelectric conversion device is also provided.
    Type: Grant
    Filed: September 2, 1998
    Date of Patent: July 4, 2000
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Kentaro Shiratsuchi, Hiroo Takizawa
  • Patent number: 6057507
    Abstract: A TPV cell apparatus with a base region of GaSb crystals. The GaSb crystals are of varying orientations and joined at grain boundaries. A surface region is provided on the GaSb crystals. The GaSb crystals are Tellurium doped N-type GaSb and the surface region is thin Zinc doped P-type GaSb cells. The surface region faces an infrared source. A bus region is connected to a metal grid connected which is in contact with the surface region of the cell. A continuous metal layer is in contact with the GaSb crystals. A multilayer coating is provided on a front side of the cell. The multilayer coating forms an infrared filter for transmitting convertible infrared energy to the cell and for reflecting as much of non-convertible infrared energy back to the IR source as possible. A TPV generator may be provided with the TPV cells.
    Type: Grant
    Filed: September 1, 1999
    Date of Patent: May 2, 2000
    Assignee: JX Crystals Inc.
    Inventors: Lewis M. Fraas, Han-Xiang Huang
  • Patent number: 6040521
    Abstract: Transparent conductive ZnO films are formed at a high rate, are equal in performance to those formed by MOCVD and have a large area, while the influence of sputtering bombardment is reduced. A method for producing transparent conductive ZnO films is used to produce the window layer of a CIGS thin-film solar cell. A first conductive film functioning as an interface-protective film is formed on a high-resistance-buffer (interfacial) layer by low-output (100 W or lower) RF sputtering using a ZnO target while reducing sputtering bombardment. Second and third conductive films for the window layer are then formed by DC magnetron sputtering in steps using a ZnO--Al target in each step.
    Type: Grant
    Filed: May 9, 1997
    Date of Patent: March 21, 2000
    Assignee: Showa Shell Sekiyu K.K.
    Inventors: Katsumi Kushiya, Daisuke Okumura, Ichiro Sugiyama
  • Patent number: 6036822
    Abstract: A base is provided with a gas outlet pipe and a gas inlet pipe. A bell jar is placed on top of the base with an O-ring interposed between them. Thin-film solar cells and a Se powder are placed in a recess formed in a lower heating jig, and the lower heating jig is positioned on the base. An upper heating jig is placed on top of the lower heating jig. The upper heating jig is vertically moved by a vertically actuating mechanism. The upper and lower heating jigs are heated with a heater so as to react Se with the thin-film solar cells, whereby a CuInSe.sub.2 alloy film is formed. In a method of manufacturing a thin-film solar cell, a molybdenum layer and a copper layer are formed on a substrate by sputtering. A selenium-dispersed indium layer is formed on the copper layer in a solution, which includes indium ions and dispersed selenium colloid, by electrodeposition. The thus formed selenium-dispersed indium layer and the selenium are heated in a sealed container.
    Type: Grant
    Filed: January 20, 1998
    Date of Patent: March 14, 2000
    Assignee: Yazaki Corporation
    Inventors: Takeshi Ikeya, Kenji Sato, Kazuhiro Toyoda, Takeshi Kamiya
  • Patent number: 6028265
    Abstract: The photo-semiconducting electrode of the present invention comprises a semiconducting substrate, a chemically adsorbed film formed thereon composed of at least one compound selected from the compounds represented by the formulas: formulas (I) R.sup.1 M.sup.1 Y.sub.1.sub.3, (II) R.sup.1 R.sup.2 M.sup.1 Y.sup.1.sub.2, (III) R.sup.1 R.sup.2 R.sup.3 M.sup.1 Y.sup.1 and (IV) R.sup.1 --SH, respectively, and a dye which is fixed to the surface of the chemically adsorbed film and has a functional group capable of reacting with a halogen atom. Because of this, the photo-semiconductor electrode of the present invention is capable of efficiently absorbing solar light and performing energy conversion and superior in photoelectric conversion efficiency, stability and durability. In addition, it can be easily produced.
    Type: Grant
    Filed: December 10, 1997
    Date of Patent: February 22, 2000
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Yoshiyuki Ono, Akira Imai, Hidekazu Hirose, Katsuhiro Sato
  • Patent number: 6023020
    Abstract: A solar cell utilizing a chalcopyrite semiconductor and reducing the density of defects on the junction interface of pn junctions is provided. This solar cell includes a substrate, a back electrode formed on the substrate, a p-type chalcopyrite semiconductor thin film formed on the back electrode, an n-type semiconductor thin film formed so as to constitute a pn junction with the p-type chalcopyrite semiconductor thin film, and a transparent electrode formed on the n-type semiconductor thin film. A material having a higher resistivity than the p-type chalcopyrite semiconductor is formed between the p-type chalcopyrite semiconductor thin film and the n-type semiconductor thin film. A thin film made of this material may be formed by deposition from a solution. For example, CuInS.sub.2 is formed on the surface of a p-type chalcopyrite based semiconductor such as CuInSe.sub.
    Type: Grant
    Filed: October 14, 1997
    Date of Patent: February 8, 2000
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mikihiko Nishitani, Takayuki Negami, Naoki Kohara, Takahiro Wada, Yasuhiro Hashimoto
  • Patent number: 6018124
    Abstract: A selenium photovoltaic cell has a top electrode formed of lemon juice or another fluid which enters into a chemical reaction with the selenium which produces a sulfur compound. A contact disk fixed to the selenium surface makes reliable contact to the fluid top electrode and provides a connection point for a top electrode lead.
    Type: Grant
    Filed: January 15, 1998
    Date of Patent: January 25, 2000
    Inventor: Nicholai Hart Lidow
  • Patent number: 5986205
    Abstract: The stainless steel sheet useful as a substrate for non-single crystalline semiconductor solar cells has minute ripples with undulations along a rolling direction, and its surface roughness is controlled in the range of R.sub.z 0.3-1.4 .mu.m and R.sub.max 0.5-1.7 .mu.m. It is manufactured by finish cold rolling a stainless steel strip with a reduction ratio of at least 20% at a rolling speed of at least 400 m/min. using work rolls polished with abrasives of gage #100-#400 at a final pass, annealing the rolled strip in an open-air atmosphere and then electrolytically pickling the annealed strip in a nitric acid solution. Since minute ripples with undulations are formed on the surface of the stainless steel sheet, an energy conversion efficiency is increased by acceleration of scattering and multiple reflection of incident light rays projected into a non-single crystalline semiconductor layer.
    Type: Grant
    Filed: September 4, 1997
    Date of Patent: November 16, 1999
    Assignees: Nisshin Steel Co., Ltd., Canon Kabushiki Kaisha
    Inventors: Hisashi Matsune, Yasushi Nishimura, Takuji Okiyama, Masafumi Sano
  • Patent number: 5981868
    Abstract: A solar cell with a heightened open-circuit voltage and improved junction quality of the interface between an interfacial layer (or buffer layer) and a thin-film light absorbing layer is disclosed. A thin-film solar cell is fabricated on a glass substrate and includes a metallic back electrode, a light absorbing layer, an interfacial layer, a window layer, and an upper electrode. The solar cell is characterized by the light absorbing layer. The light absorbing layer is a thin film of p-type Cu(InGa)Se.sub.2 (CIGS) of the Cu-III-VI.sub.2 chalcopyrite structure and has such a gallium concentration gradient that the gallium concentration gradually (gradationally) increases from the surface thereof to the inside, thereby attaining a heightened open-circuit voltage. The light absorbing layer has on its surface an ultrathin-film surface layer of Cu(InGa)(SeS).sub.2 (CIGSS), which has such a sulfur concentration gradient that the sulfur concentration abruptly decreases from the surface thereof (i.e.
    Type: Grant
    Filed: April 30, 1997
    Date of Patent: November 9, 1999
    Assignee: Showa Shell Sekiyu K.K.
    Inventors: Katsumi Kushiya, Muneyori Tachiyuki, Takahisa Kase
  • Patent number: 5955772
    Abstract: A heterostructure thermionic cooler and a method for making thermionic coolers, employing a barrier layer of varying conduction bandedge for n-type material, or varying valence bandedge for p-type material, that is placed between two layers of material. The barrier layer has a high enough barrier for the cold side to only allow "hot" electrons, or electrons of high enough energy, across the barrier. The barrier layer is constructed to have an internal electric field such that the electrons that make it over the initial barrier are assisted in travel to the anode. Once electrons drop to the energy level of the anode, they lose energy to the lattice, thus heating the lattice at the anode. The barrier height of the barrier layer is high enough to prevent the electrons from traveling in the reverse direction.
    Type: Grant
    Filed: December 17, 1996
    Date of Patent: September 21, 1999
    Assignee: The Regents of the University of California
    Inventors: Ali Shakouri, John E. Bowers
  • Patent number: 5948176
    Abstract: The present invention provides an economical, simple, dry and controllable semiconductor layer junction forming process to make cadmium free high efficiency photovoltaic cells having a first layer comprised primarily of copper indium diselenide having a thin doped copper indium diselenide n-type region, generated by thermal diffusion with a group II(b) element such as zinc, and a halide, such as chlorine, and a second layer comprised of a conventional zinc oxide bilayer. A photovoltaic device according the present invention includes a first thin film layer of semiconductor material formed primarily from copper indium diselenide. Doping of the copper indium diselenide with zinc chloride is accomplished using either a zinc chloride solution or a solid zinc chloride material. Thermal diffusion of zinc chloride into the copper indium diselenide upper region creates the thin n-type copper indium diselenide surface.
    Type: Grant
    Filed: September 29, 1997
    Date of Patent: September 7, 1999
    Assignee: Midwest Research Institute
    Inventors: Kannan V. Ramanathan, Miguel A. Contreras, Raghu N. Bhattacharya, James Keane, Rommel Noufi
  • Patent number: 5935324
    Abstract: An apparatus for forming I-III-VI.sub.2 thin-film layers has a reaction chamber made of a carbon material in which a precursor for forming a I-III-VI.sub.2 thin-film layer and a vapor source of an element of group VI of the periodic table are placed. The precursor and vapor source are heated under vacuum to form the I-III-VI.sub.2 thin-film layer. The reaction chamber is divided into a reaction compartment A having the precursor placed therein and a reaction compartment B having the vapor element of group IV placed therein. A communication channel C is provided between the reaction compartments A and B, and a heating unit controlled by a temperature control unit is provided exterior to each of the reaction compartments A and B.
    Type: Grant
    Filed: April 28, 1997
    Date of Patent: August 10, 1999
    Assignee: Yazaki Corporation
    Inventors: Shinnichi Nakagawa, Kenji Sato, Masami Nakamura, Kazuhiro Toyoda, Takeshi Kamiya, Kazue Suzuki, Hiroki Ishihara, Takeshi Ikeya, Masaharu Ishida
  • Patent number: 5882435
    Abstract: Solar cells made of crystalline are metal coated. Combined front side and rear side metal coating based on a thick-film process is proposed, in which even very fine thick-film conductor track structures are sufficiently reinforced by photo-induced currentless deposition of a metal. Well adhering improved conductor track structures for the front side metal coating can be produced using the simplified process.
    Type: Grant
    Filed: July 7, 1997
    Date of Patent: March 16, 1999
    Assignee: Siemens Solar GmbH
    Inventor: Konstantin Holdermann
  • Patent number: 5871630
    Abstract: A photovoltaic cell exhibiting an overall conversion efficiency of 13.6% is prepared from a copper-indium-gallium-diselenide precursor thin film. The film is fabricated by first simultaneously electrodepositing copper, indium, gallium, and selenium onto a glass/molybdenum substrate (12/14). The electrodeposition voltage is a high frequency AC voltage superimposed upon a DC voltage to improve the morphology and growth rate of the film. The electrodeposition is followed by physical vapor deposition to adjust the final stoichiometry of the thin film to approximately Cu(In.sub.1-n Ga.sub.x)Se.sub.2, with the ratio of Ga/(In+Ga) being approximately 0.39.
    Type: Grant
    Filed: June 5, 1997
    Date of Patent: February 16, 1999
    Assignee: Davis, Joseph & Negley
    Inventors: Raghu N. Bhattacharya, Falah S. Hasoon, Holm Wiesner, James Keane, Rommel Noufi, Kannan Ramanathan
  • Patent number: 5868869
    Abstract: Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.
    Type: Grant
    Filed: October 7, 1997
    Date of Patent: February 9, 1999
    Assignee: Photon Energy, Inc.
    Inventors: Scot P. Albright, Rhodes Chamberlin
  • Patent number: 5858121
    Abstract: A thin film solar cell having high conversion efficiency is provided. The band gap of the thin film solar cell can be controlled while keeping the quality superior to conventional solar cells. The absorber layer for photovoltaic energy conversion is a Cu(In.sub.1-X Ga.sub.X)(Se.sub.1-Y S.sub.Y).sub.2 based solid solution where X and Y are in the range of the following Equation:0.317+0.176Y.gtoreq.X.gtoreq.0.117+0.176Y1>X+Y>0Y>0,The Cu(In.sub.1-X Ga.sub.X)(Se.sub.1-Y S.sub.Y).sub.2 based solid solution has a specific chalcopyrite type crystal structure and its lattice constant ratio of c-axis to a-axis is extremely close to two. It is most preferable that the band gap is 1.4 eV, X is 0.3, and Y is 0.4, since the conversion efficiency of a homojunction solar cell will then become a maximum.
    Type: Grant
    Filed: September 11, 1996
    Date of Patent: January 12, 1999
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Takahiro Wada, Mikihiko Nishitani, Naoki Kohara
  • Patent number: 5849108
    Abstract: A photovoltaic element has a substrate with a conductive surface, a zinc oxide layer containing fluorine and a non-single-crystal semiconductor layer, where the fluorine content of the zinc oxide layer (i) varies across the thickness of the layer, (ii) is at a minimum at the interface with the substrate and (iii) increases toward the semiconductor layer.
    Type: Grant
    Filed: April 26, 1996
    Date of Patent: December 15, 1998
    Assignee: Canon Kabushiki Kaisha
    Inventors: Toshimitsu Kariya, Keishi Saito
  • Patent number: 5804054
    Abstract: High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.
    Type: Grant
    Filed: November 26, 1997
    Date of Patent: September 8, 1998
    Assignee: Davis, Joseph & Negley
    Inventors: Raghu N. Bhattacharya, Miguel A. Contreras, James Keane, Andrew L. Tennant, John R. Tuttle, Kannan Ramanathan, Rommel Noufi
  • Patent number: 5785280
    Abstract: A hybrid solar panel array is mounted on a satellite sidewall for movement between a stowed position proximate the satellite sidewall and a deployed position extending away from the satellite sidewall. The array comprises a yoke pivotally mounted on the satellite sidewall and first and second rigid solar panels, the first panel being pivotally mounted to the yoke, the first and second panels being hinged together. In one embodiment, a plurality of semi-rigid solar panels are pivotally mounted to the first and second rigid solar panels. In another embodiment, a flexible solar panel is attached to the rigid solar panels. Drive mechanisms are operable for moving the array from a stowed position proximate a satellite sidewall to a deployed position extending away from the satellite sidewall. The rigid panels are so moved in a synchronous operation and the semi-rigid and flexible solar panels are so moved in a sequential operation.
    Type: Grant
    Filed: July 20, 1995
    Date of Patent: July 28, 1998
    Assignee: Space Systems/Loral, Inc.
    Inventor: Varouj G. Baghdasarian
  • Patent number: 5731031
    Abstract: A process for chemical bath deposition of selenide and sulfide salts as films and powders employable as precursors for the fabrication of solar cell devices. The films and powders include (1) Cu.sub.x Se.sub.n, wherein x=1-2 and n=1-3; (2) Cu.sub.x Ga.sub.y Se.sub.n, wherein x=1-2, y=0-1 and n=1-3; (3) Cu.sub.x In.sub.y Se.sub.n, wherein x=1-2.27, y=0.72-2 and n=1-3; (4) Cu.sub.x (InGa).sub.y Se.sub.n, wherein x=1-2.17, y=0.96-2 and n=1-3; (5) In.sub.y Se.sub.n, wherein y=1-2.3 and n=1-3; (6) Cu.sub.x S.sub.n, wherein x=1-2 and n=1-3; and (7) Cu.sub.x (InGa).sub.y (SeS).sub.n, wherein x=1-2, y=0.07-2 and n=0.663-3.
    Type: Grant
    Filed: December 20, 1995
    Date of Patent: March 24, 1998
    Assignee: Midwest Research Institute
    Inventors: Raghu Nath Bhattacharya, Rommel Noufi, Li Wang
  • Patent number: 5730852
    Abstract: High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.
    Type: Grant
    Filed: December 12, 1995
    Date of Patent: March 24, 1998
    Assignee: Davis, Joseph & Negley
    Inventors: Raghu N. Bhattacharya, Miguel A. Contreras, James Keane, Andrew L. Tennant, John R. Tuttle, Kannan Ramanathan, Rommel Noufi
  • Patent number: 5728231
    Abstract: A precursor for manufacturing a semiconductor thin film in which an oxide thin film comprising at least one element as a dopant, selected from a group which consists of Groups IA, IIA, IIB, VA, and VB elements, and Groups IB and IIIA elements which are main components of the semiconductor thin film are deposited on a substrate, or a precursor for manufacturing a semiconductor thin film which is formed by depositing a thin film of oxide comprising the Groups IB and IIIA elements on the substrate wherein the content of at least one of the Groups IB and IIIA elements is varied in the direction of film thickness, and a method for manufacturing a semiconductor thin film comprising the step of heat treating the precursor for manufacturing the semiconductor thin film in an atmosphere containing a Group VIA element.
    Type: Grant
    Filed: May 15, 1996
    Date of Patent: March 17, 1998
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Takayuki Negami, Masaharu Terauchi, Mikihiko Nishitani, Takahiro Wada
  • Patent number: 5714391
    Abstract: This invention relates to a manufacturing method of a compound semiconductor thin film derived from a metal sulfide produced by thermal decomposition of a sulfur-containing metal organic compound, the compound containing at least one functional group having at least one metal atom selected from the group consisting of copper, zinc, cadmium, mercury, and lead, and the functional group also containing at least one sulfur atom. Since the obtained metal sulfides are of high-purity and dense, they can be utilized in various photoelectric devices. Particularly, the photoelectric conversion efficiency of a CdS/CdTe system thin film compound semiconductor solar cell can be improved remarkably by employing a layer made of a CdS thin film as a window of the solar cell.
    Type: Grant
    Filed: May 16, 1996
    Date of Patent: February 3, 1998
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kuniyoshi Omura, Tsuyoshi Nishio, Satoshi Shibutani, Shigeo Kondoh, Mikio Murozono, Akira Hanafusa, Hideaki Oyama
  • Patent number: 5712187
    Abstract: A method of depositing a semiconductor material on a substrate. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications.
    Type: Grant
    Filed: November 9, 1995
    Date of Patent: January 27, 1998
    Assignee: Midwest Research Institute
    Inventors: Xiaonan Li, Peter Sheldon
  • Patent number: 5695627
    Abstract: A process for producing a copper-indium-sulfur-selenium thin film which comprises subjecting an electro-conductive substrate to an electrodeposition treatment in the presence of copper sulfate, indium sulfate, selenium dioxide, and thiourea. A process for producing a chalcopyrite crystal which comprises subjecting an electro-conductive substrate to an electrodeposition treatment in the presence of copper sulfate, indium sulfate, selenium dioxide, and thiourea, and then conducting a heat treatment.
    Type: Grant
    Filed: July 26, 1996
    Date of Patent: December 9, 1997
    Assignee: Yazaki Corporation
    Inventors: Tatsuo Nakazawa, Tomio Hirano, Takeshi Kamiya
  • Patent number: 5676766
    Abstract: A solar cell has a chalcopyrite absorber layer that is applied on the substrate side over an adhesive layer which is chosen from chromium, titanium, tantalum, and titanium nitride.
    Type: Grant
    Filed: March 26, 1996
    Date of Patent: October 14, 1997
    Assignee: Siemens Aktiengesellschaft
    Inventors: Volker Probst, Franz Karg
  • Patent number: 5674325
    Abstract: Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 7, 1997
    Assignee: Photon Energy, Inc.
    Inventors: Scot P. Albright, Rhodes Chamberlin
  • Patent number: 5674555
    Abstract: Methods are provided for the production of supported monophasic group I-III-VI semiconductor films. In the subject methods, a substrate is coated with group I and III elements and then contacted with a reactive group VI element containing atmosphere under conditions sufficient to produce a substrate coated with a composite of at least two different group I-III-IV alloys. The resultant composite coated substrate is then annealed in an inert atmosphere under conditions sufficient to convert the composite coating to a monophasic group I-III-VI semiconductor film. The resultant supported semiconductor films find use in photovoltaic applications, particularly as absorber layers in solar cells.
    Type: Grant
    Filed: November 30, 1995
    Date of Patent: October 7, 1997
    Assignee: University of Delaware
    Inventors: Robert W. Birkmire, Jerold M. Schultz, Matheswaran Marudachalam, Habib Hichri