Silicon Containing Patents (Class 148/307)
  • Publication number: 20140216606
    Abstract: The present invention relates to a non-oriented electrical steel strip, which is used as a core for electrical devices such as motors and transformers, and a production method thereof. In accordance with one embodiment of the invention, there is provided a method for producing a (100) [0vw] non-oriented electrical steel strip having excellent magnetic properties, in which a slab having a composition comprising 0.0001-0.035 wt % of S and the balance of Fe and inevitable impurities, thereby showing a ferrite structure throughout the entire temperature range, is hot-rolled, pickled and cold-rolled, and the cold-rolled steel strip is annealed so that the selective growth of (100) grains on the surface of the cold-rolled steel strip occurs and the surface of the annealed steel strip is composed of the (100) [0vw] orientation.
    Type: Application
    Filed: January 17, 2013
    Publication date: August 7, 2014
    Inventors: Yoon-Jung Heo, Nam-Hoe Heo, Kyoung-Soon Park, Dong-Hoe Heo, Sun-Mi Kwoun, Hyuk-Ki Kwoun
  • Patent number: 8790471
    Abstract: A silicon steel sheet (1) containing Si is cold-rolled. Next, a decarburization annealing (3) of the silicon steel sheet (1) is performed so as to cause a primary recrystallization. Next, the silicon steel sheet (1) is coiled so as to obtain a steel sheet coil (31). Next, an annealing (6) of the steel sheet coil (31) is performed through batch processing so as to cause a secondary recrystallization. Next, the steel sheet coil (31) is uncoiled and flattened. Between the cold-rolling and the obtaining the steel sheet coil (31), a laser beam is irradiated a plurality of times at predetermined intervals on a surface of the silicon steel sheet (1) from one end to the other end of the silicon steel sheet (1) along a sheet width direction (2). When the secondary recrystallization is caused, grain boundaries passing from a front surface to a rear surface of the silicon steel sheet (1) along paths of the laser beams are generated.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: July 29, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Tatsuhiko Sakai, Koji Hirano, Satoshi Arai, Yoshiyuki Ushigami
  • Publication number: 20140166159
    Abstract: The invention provides a La(Fe,Si)13-based magnetic refrigeration material prepared from industrial-pure mischmetal as the raw material, wherein the industrial-pure mischmetal is impurity-containing and naturally proportionated La—Ce—Pr—Nd mischmetal or LaCe alloy which, as the intermediate product during rare earth extraction, is extracted from light rare earth ore. The invention further provides the preparation method and use of the material, wherein the preparation method comprises the steps of smelting and annealing industrial-pure mischmetal as the raw material to prepare the La(Fe,Si)13-based magnetic refrigeration material. The presence of impurities in the industrial-pure mischmetal has no impact on the formation of the 1:13 phase, the presence of the first-order phase-transition property and metamagnetic behavior, and thus maintains the giant magnetocaloric effect of the magnetic refrigeration material.
    Type: Application
    Filed: July 13, 2012
    Publication date: June 19, 2014
    Inventors: Ling Chen, Fengxia Hu, Jing Wang, Lifu Bao, Yingying Zhao, Baogen Shen, Jirong Sun, Huayang Gong
  • Patent number: 8715430
    Abstract: The present invention provides high strength steel plate and high strength welded pipe excellent in ductile fracture characteristic and methods of production of the same, that is, high strength steel plate excellent in ductile fracture characteristic, and high strength welded pipe using that steel plate as a base material, having a tensile strength corresponding to the X100 class of the API standard, containing, by mass %, C: 0.01 to 0.5%, Si: 0.01 to 3%, Mn: 0.1 to 5%, P: 0.03% or less, and S: 0.03% or less and a balance of Fe and unavoidable impurities, having a microstructure comprised of, by area ratio, 1 to 60% of ferrite and the balance of bainite and martensite, having a maximum value of the {100} accumulation degree of the cross-section rotated 20 to 50° from the plate thickness cross-section about the rolling direction as an axis of 3 or less, and having plate thickness parallel cracks measured by ultrasonic flaw detection of less than 1 mm.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: May 6, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Takuya Hara, Yasuhiro Shinohara, Hitoshi Asahi, Yoshio Terada
  • Patent number: 8657968
    Abstract: This method of manufacturing a grain-oriented electrical steel sheet includes, between a cold rolling process and a winding process, a groove formation process of irradiating the surface of a silicon steel sheet with a laser beam multiple times at predetermined intervals in a sheet passing direction, over an area from one end edge to the other end edge, in a sheet width direction of the silicon steel sheet, thereby forming a groove along a locus of the laser beam.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: February 25, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Tatsuhiko Sakai, Hideyuki Hamamura
  • Patent number: 8591671
    Abstract: A non-oriented electrical steel sheet contains Cr: 0.3 mass % to 5.3 mass %, Si: 1.5 mass % to 4 mass %, Al: 0.4 mass % to 3 mass %, and W: 0.0003 mass % to 0.01 mass %. A C content is 0.006 mass % or less, a Mn content is 1.5 mass % or less, a S content is 0.003 mass % or less, and a N content is 0.003 mass % or less, and the balance is composed of Fe and inevitable impurities.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: November 26, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Takahide Shimazu, Hotaka Honma, Yousuke Kurosaki, Hisashi Mogi, Kenji Kosuge, Takeaki Wakisaka
  • Publication number: 20130292006
    Abstract: A grain-oriented electrical steel sheet being a grain-oriented electrical steel sheet containing Si of 0.8 mass % to 7 mass %, Mn of 0.05 mass % to 1 mass %, B of 0.0005 mass % to 0.0080 mass %, each content of Al, C, N, S, and Se of 0.005 mass % or less, and a balance being composed of Fe and inevitable impurities and having a glass coating film made of composite oxide mainly composed of forsterite on the steel sheet surface, in which when glow discharge optical emission spectrometry (GDS) to the surface of a secondary coating film formed on the surface of the glass coating film under a predetermined condition is performed, a peak, of B, in emission intensity having a peak position in emission intensity different from a peak position, of Mg, in emission intensity is obtained and the peak position, of B, in emission intensity from the steel sheet surface is deeper than the peak position, of Mg, in emission intensity.
    Type: Application
    Filed: January 12, 2012
    Publication date: November 7, 2013
    Inventors: Fumiaki Takahashi, Yoshiyuki Ushigami, Kazumi Mizukami, Shuichi Nakamura, Norikazu Fujii, Norihiro Yamamoto, Masahide Urago
  • Patent number: 8568857
    Abstract: A grain oriented electrical steel sheet has grooves on one surface of the steel sheet formed for magnetic domain refining, the steel sheet including a forsterite film and a tension coating on front and back surfaces of the steel sheet, wherein the tension coating is applied on a surface with the grooves in a coating amount A (g/m2) and is applied on a surface with no grooves in a coating amount B (g/m2), the coating amounts A and B satisfying (1) and (2): 3?A?8??(1); and 1.0<B/A?1.8??(2).
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: October 29, 2013
    Assignee: JFE Steel Corporation
    Inventors: Minoru Takashima, Hirotaka Inoue, Seiji Okabe
  • Patent number: 8557058
    Abstract: The invention provides a non-oriented electrical steel sheet excellent in yield strength for use as an iron core material for high rpm motors that does not sacrifice yield or productivity in motor core punching or steel sheet production, which non-oriented electrical steel sheet is given a chemical composition of, in mass %, C: 0.01 to 0.05%, Si: 2.0 to 4.0%, Mn: 0.05 to 0.5%, Al: 3.0% or less and Nb: 0.01 to 0.05%, and optionally Ni at a preferable content of more than 0.5% and less than 3.0%, the balance being Fe and unavoidable impurities, Mn and C contents expressed in mass % are made to satisfy Mn?0.6-10×C, recrystallized portion area fraction is made 50% or greater, yield strength in tensile testing is made 650 MPa or greater, and average-grain diameter viewed in steel sheet cross-section is made 40 ?m or less, and electrical steel sheet production is conducted using a hot-rolled sheet whose transition temperature in impact testing is 70° C. or less.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: October 15, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Yoshihiro Arita, Hidekuni Murakami, Yutaka Matsumoto, Saori Haranaka, Takeshi Kubota
  • Publication number: 20130228251
    Abstract: A grain oriented electrical steel sheet includes forsterite film on a surface of base steel sheet and a selenium-concentrated portion in at least one of the forsterite film and an interface between the forsterite film and the base steel sheet by a presence ratio expressed as area-occupying ratio of the Se-concentrated portion, of at least 2%, per 10000 ?m2 of the surface of the base steel sheet, which has been subjected to magnetic domain refinement treatment by electron beam irradiation.
    Type: Application
    Filed: August 4, 2011
    Publication date: September 5, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Yukihiro Shingaki, Noriko Makiishi, Makoto Watanabe
  • Patent number: 8491731
    Abstract: An alloy composition of FeaBbSicPxCyCuz. Parameters meet the following conditions: 79?a?86 atomic %; 5?b?13 atomic %; 0?c?8 atomic %; 1?x?8 atomic %; 0?y?5 atomic %, 0.4?z?1.4 atomic %; and 0.08?z/x?0.8. Or, parameters meet the following conditions: 81?a?86 atomic %; 6?b?10 atomic %; 2?c?8 atomic %; 2?x?5 atomic %; 0?y?4 atomic %; 0.4?z?1.4 atomic %, and 0.08?z/x?0.8.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: July 23, 2013
    Inventor: Akihiro Makino
  • Publication number: 20130180634
    Abstract: Provided is a grain-oriented electric steel sheet and a method for manufacturing same, the steel sheet having superior magnetic properties. The method comprises heating a slab comprising 2.0 to 4.5 weight % of Si, 0.001 to 0.10 weight % of C, 0.010 weight % or lower of Al, 0.08 weight % or lower of Mn, 0.005 weight % or lower of N, 0.002 to 0.050 weight % of S, the remainder being Fe and other unavoidable impurities, performing hot-rolling of the heated slab, performing cold-rolling one time or two or more times including an intermediate annealing, performing decarbonization and re-crystallizing annealing, and performing secondary re-crystallizing annealing.
    Type: Application
    Filed: December 21, 2011
    Publication date: July 18, 2013
    Applicant: POSCO
    Inventors: Kyu-Seok Han, Jae-Soo Lim, Byung-Deug Hong, Chan-Hee Han
  • Publication number: 20130167987
    Abstract: Provided is a low iron loss high strength non-oriented electromagnetic steel sheet and a method for manufacturing the same. The method comprises hot-rolling a slab comprising 0.005 weight % or less of C, 4.0 weight % or less of Si, 0.1 weight % or less of P, 0.03 weight % or less of S, 0.1 to 2.0 weight % of Mn, 0.3 to 2.0 weight % of Al, 0.003 weight % or less of N, 0.005 weight % or less of Ti, the remainder being Fe and unavoidable impurities, cold-rolling the slab, and finally annealing the slab such that the fractional area of the non-recrystallization tissue at the cross sectional surface of the steel sheet is 50% or lower (not including 0%).
    Type: Application
    Filed: December 22, 2011
    Publication date: July 4, 2013
    Applicant: POSCO
    Inventors: Jae-Song Kim, Jae-Kwan Kim, Su-Yong Sin, Yong-Soo Kim
  • Publication number: 20130139932
    Abstract: This method of manufacturing a grain-oriented electrical steel sheet includes, between a cold rolling process and a winding process, a groove formation process of irradiating the surface of a silicon steel sheet with a laser beam multiple times at predetermined intervals in a sheet passing direction, over an area from one end edge to the other end edge, in a sheet width direction of the silicon steel sheet, thereby forming a groove along a locus of the laser beam.
    Type: Application
    Filed: September 9, 2011
    Publication date: June 6, 2013
    Inventors: Tatsuhiko Sakai, Hideyuki Hamamura
  • Publication number: 20130133783
    Abstract: A grain oriented electrical steel sheet has a magnetic domain structure modified by strain introduction without a trace of treatment, in which noise generated when the grain oriented electrical steel sheet is used laminated on an iron core of a transformer is effectively reduced by: setting a magnetic flux density B8 to 1.92 T or higher; then setting a ratio of average magnetic domain width of treated surface after strain-introducing treatment Wa to average magnetic domain width before strain-introducing treatment W0 as Wa/W0<0.4; and setting a ratio of Wa to average magnetic domain width of untreated surface Wb as Wa/Wb>0.7; and further setting a ratio of average width of magnetic domain discontinuous portion in the untreated surface to average width of magnetic domain discontinuous portion in treated surface resulting from strain-introducing treatment Wc as Wd/Wc>0.8; and setting Wc<0.3.5 mm.
    Type: Application
    Filed: August 4, 2011
    Publication date: May 30, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Hiroi Yamaguchi, Seiji Okabe, Takeshi Omura, Tadashi Nakanishi
  • Publication number: 20130112319
    Abstract: A grain oriented electrical steel sheet is subjected to magnetic domain refinement by laser irradiation and has magnetic flux density B8 of at least 1.91 T, wherein the nitrogen content in the forsterite coating is 3.0 mass % or less. The grain oriented electrical steel sheet satisfies recent demand for iron loss reduction.
    Type: Application
    Filed: June 28, 2011
    Publication date: May 9, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Takeshi Omura, Hiroaki Toda, Hiroi Yamaguchi, Seiji Okabe
  • Publication number: 20130098507
    Abstract: A grain oriented electrical steel sheet is subjected to magnetic domain refinement by laser irradiation or electron irradiation and exhibits excellent low noise properties and low iron-loss properties when assembled into a real transformer device, by setting: the total tension (A) in rolling direction imparted to the steel sheet by the forsterite coating and the tension coating to be equal to or higher than 10.0 MPa; setting the total tension (B) in a direction orthogonal to the rolling direction imparted to the steel sheet by the forsterite coating and the tension coating to be equal to or higher than 5.0 MPa; and setting the total tension (A) and the total tension (B) to satisfy a formula shown below. 1.0?A/B?5.
    Type: Application
    Filed: June 28, 2011
    Publication date: April 25, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Takeshi Omura, Hiroi Yamaguchi, Seiji Okabe
  • Publication number: 20130098508
    Abstract: A grain oriented electrical steel sheet (1) suppresses the content of Cr in the grain oriented electrical steel sheet to 0.1 mass % or less; (2) sets the coating weight of a forsterite coating, in terms of basis weight of oxygen therein, to at least 3.0 g/m2 and thickness of an anchor portion as a lower portion of forsterite coating to 1.5 ?m or less; and (3) controls setting the magnitude of deflection of a test specimen having length: 280 mm to at least 10 mm when the forsterite coating is provided on only one surface thereof and at least 20 mm when forsterite coating and the tension coating are provided on the surface.
    Type: Application
    Filed: June 28, 2011
    Publication date: April 25, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Hiroi Yamaguchi, Hiroaki Toda, Takeshi Omura, Seiji Okabe
  • Patent number: 8372218
    Abstract: Magnet cores pressed using a powder of nanocrystalline or amorphous particles and a pressing additive should be characterized by minimal iron losses. These particles have first surfaces represented by the original strip surfaces and second surfaces represented by surfaces produced in a pulverization process, the overwhelming majority of these second particle surfaces being smooth cut or fracture surfaces without any plastic deformation, the proportion T of areas of plastic deformation of the second particle surfaces being 0?T?0.5.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: February 12, 2013
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Dieter Nuetzel, Markus Brunner
  • Patent number: 8361243
    Abstract: An iron or iron-base alloy sheet having high proportion of {100} texture and a method of manufacturing the same. A method of forming grains having {100} plane parallel to the sheet surface is disclosed. A Fe or Fe-base alloy sheet is annealed at austenite (?) temperature while minimizing an effect of oxygen in the sheet or on surfaces of the sheet or a heat treatment atmosphere, and then the above sheet is subject to phase transformation to ferrite (?). On surfaces of the resulting sheet, a high proportion of {100} texture develops. A method of manufacturing electrical steel sheet is disclosed. The grains with {100} texture on surfaces grow to have a grain size of at least half the thickness of the sheet by a ??? transformation. By adopting the above disclosed methods, an iron or iron-base alloy sheet with excellent texture can be simply manufactured within short time.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: January 29, 2013
    Inventor: Jin Kyung Sung
  • Patent number: 8361245
    Abstract: The present invention provides a steel material able to secure a superior corrosion resistance in a sulfuric acid dew point corrosive environment of exhaust gas obtained by burning high S-containing fuel, containing, by mass %, C: ?0.010%, Si: ?0.10%, Cu: 0.05 to 1.00%, P: ?0.030%, S: ?0.050%, and Al: ?0.10% and comprising a balance of Fe and unavoidable impurities. Further, this steel contains one type or two types or more of Sb, Sn, Cr, Mn, Mo, Ni, Nb, V, Ti, and B.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: January 29, 2013
    Assignee: Nippon Steel Corporation
    Inventors: Shunji Sakamoto, Satoshi Nishimura, Akira Usami
  • Publication number: 20120318411
    Abstract: A cold rolled electromagnetic steel sheet for rapid cycling synchrotron, and a manufacturing method thereof, the method includes the steps of 1) smelting and casting, the composition of the cold rolled electromagnetic steel sheet is C 0.001-0.003 wt %, Si 0.60%-0.90 wt %, Mn 0.40%-0.70 wt %, P?0.04 wt %, Al 0.60-0.80 wt %, S?0.0035 wt %, N?0.003 wt %, and the rest is Fe; smelting and RH refining, and then casting to form semi-finished product; 2) hot rolling; 3) normalizing, in which the normalizing temperature is controlled between 960° C.-980° C., and the normalizing time is 30-60 sec; 4) pickling and cold rolling; 5) annealing, wherein the annealing temperature is controlled to be between 850° C.-870° C., and the annealing time is 13-15 sec; 6) obtaining non-oriented silicon steel product after coating.
    Type: Application
    Filed: April 13, 2011
    Publication date: December 20, 2012
    Applicant: BAOSHAN IRON & STEEL CO., LTD.
    Inventors: Lingfeng Chen, Xiao Chen, Zhanyuan Hu
  • Patent number: 8333846
    Abstract: A manufacturing method of oriented Si steel with high electric-magnetic property comprises the following steps: smelting steel in converter or electric furnace; refining molten steel in two stages; continuous casting to obtain slab; hot rolling; first cold rolling; decarburizing annealing; secondary cold rolling; applying an annealing separator based on MgO and annealing at high temperature; applying an insulating coating and leveling tension annealing. The slab comprises (in wt %): C 0.020-0.050%, Si 2.6-3.6%, S 0.015-0.025%, Als 0.008-0.028%, N 0.005-0.020%, Mn 0.15-0.5%, Cu 0.3-1.2%, balance Fe and inevitable impurities, in which 10?Mn/S?20 and Cu/Mn?2. The method could produce oriented Si steel with high magnetic induction intensity and low iron loss at low cost.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: December 18, 2012
    Assignee: Baoshan Iron & Steel Co., Ltd.
    Inventors: Guohua Yang, Huande Sun, Yaming Ji, Guobao Li, Hongxu Hei
  • Patent number: 8304953
    Abstract: A rotating electrical machine includes: a rotor comprising a rotor core and a field winding wound round the rotor core; and a stator comprising a stator core and a stator winding wound round the stator core. The stator is arranged in opposition to the rotor with a predetermined spacing therebetween. the stator core is formed by punching a split piece, which comprises teeth for insertion of the stator winding thereinto and a core back on an outer periphery thereof, from a magnetic steel sheet, and laminating a plurality of those circular configurations in an axial direction, in which a plurality of the split pieces are arranged in a circle in a circumferential direction. The stator core has magnetic steel sheets, which are different in magnetic permeability in a diametrical direction, laminated at an axial end region of and in an axial central region of the stator core.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: November 6, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Akihito Nakahara, Hiroyuki Mikami, Kazumasa Ide, Kazuhiko Takahashi, Kenichi Hattori
  • Patent number: 8287665
    Abstract: A soft magnetic alloy contains P, B, and Cu as essential components. As a preferred example, an Fe-based alloy contains Fe of 70 atomic % or more, B of 5 atomic % to 25 atomic %, Cu of 1.5 atomic % or less (excluding zero), and P of 10 atomic or less (excluding zero).
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: October 16, 2012
    Assignees: NEC Tokin Corporation, Tohoku University
    Inventors: Akiri Urata, Hiroyuki Matsumoto, Akihiro Makino
  • Patent number: 8287666
    Abstract: A magnetic alloy having a composition represented by the general formula of Fe100-x-yCuxBy (atomic %), wherein x and y are numbers meeting the conditions of 0.1?x?3, and 10?y?20, or the general formula of Fe100-x-y-zCuxByXz (atomic %), wherein X is at least one element selected from the group consisting of Si, S, C, P, Al, Ge, Ga and Be, and x, y and z are numbers meeting the conditions of 0.1?x?3, 10?y?20, 0<z?10, and 10<y+z?24), the magnetic alloy having a structure containing crystal grains having an average diameter of 60 nm or less in an amorphous matrix, and a saturation magnetic flux density of 1.7 T or more.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: October 16, 2012
    Assignee: Hitachi Metals, Ltd.
    Inventors: Motoki Ohta, Yoshihito Yoshizawa
  • Patent number: 8287664
    Abstract: A magnet core is required to be particularly dense, made of alloys produced in a rapid solidification process and have a minimal coercitive field strength. To achieve these aims, a coarse-grain powder fraction is first produced from an amorphous strip of a soft magnetic alloy. In addition, at least one fine-grain powder fraction is produced from a nanocrystalline strip of a soft magnetic alloy. The particle fractions are then mixed to produce a multi-modal powder, wherein the particles of the coarse-grain particle fraction have an amorphous structure and the particles of the fine-grain powder fraction have a nanocrystalline structure. The multi-modal powder is then pressed to produce a magnet core.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: October 16, 2012
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventor: Markus Brunner
  • Patent number: 8277573
    Abstract: A process for the production of a grain oriented magnetic strip, made of steel containing 2.3 to 5.0% of silicon, obtained by producing a hot-rolled sheet containing a distribution of second phases capable of controlling the secondary recrystallization by means of a two-step hot-rolling with an intermediate annealing, and by changing it into the final product.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: October 2, 2012
    Assignee: Centro Sviluppo Materiali S.p.A.
    Inventors: Giuseppe Abbruzzese, Stefano Cicale', Stefano Fortunati
  • Patent number: 8277679
    Abstract: The object of the present invention is to provide a composite magnetic material having well-balanced magnetic properties and chemical properties, and a magnetic element using thereof. Concretely, the present provides the composite magnetic material comprising a binder and a magnetic powder contains followings: Mn not less than 0.25 wt % and not larger than 3 wt %, Si not less than 1 wt % and not larger than 7 wt %, Cr not less than 2 wt % and not larger than 8 wt %, and the rest of Fe and inevitable impurities with respect to the total weight of a magnetic powder material, and a ratio of powder particles having the major/minor axis is not less than 2 is not larger than 5% of the total powder particles.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: October 2, 2012
    Assignee: Sumida Corporation
    Inventors: Akihiko Nakamura, Keisuke Watanabe
  • Patent number: 8268097
    Abstract: A grain-oriented electrical steel sheet has a tension film that does not include chromium. In the present invention, the tension film, including a phosphate and silica as constituents, includes a manganese compound and a potassium compound. The mole ratio K/Mn of potassium to manganese in the film is set to a certain range. The film can be produced by preparing a coating solution by adding a compound, which includes the phosphate and the silica and also includes the potassium and the manganese, and applying the coating solution on a grain-oriented electrical steel sheet after final annealing is completed, followed by drying and baking.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: September 18, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Fumiaki Takahashi, Kazutoshi Takeda, Hiroyasu Fujii, Shuichi Yamazaki, Yoshiaki Natori
  • Patent number: 8216393
    Abstract: A powder composite core is to be particularly dense and strong while being produced from soft magnetic alloys. In particular, the expansion of the heat-treated core is to be avoided. To produce this core, a strip of a soft magnetic alloy is first comminuted to form particles. The particles are mixed with a first binder having a curing temperature T1,cure and a decomposition temperature T1,decompose and a second binder having a curing temperature T2,cure and a decomposition temperature T2,decompose, wherein T1,cure<T2,cure?T1,decompose<T2,decompose. The mix is pressed to produce a magnet core while the first binder is cured. The magnet core is then subjected to a heat treatment accompanied by the curing of the second binder at a heat treatment temperature TAnneal>T2,cure.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: July 10, 2012
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Markus Brunner, Georg Werner Reppel
  • Patent number: 8210231
    Abstract: There is produced a molten steel containing, in mass %, Si: not less than 0.1% nor more than 7.0%, Mn: 0.1% or more, Al: not less than 0.2% nor more than 5.0%, Cr: not less than 0.1% nor more than 10%, and the like, and a balance composed of Fe and inevitable impurities. To the molten steel, REM: not less than 0.0005% nor more than 0.03% is added. The molten steel to which REM has been added is casted. A cast slab of non-oriented electrical steel is manufactured as above.
    Type: Grant
    Filed: July 3, 2009
    Date of Patent: July 3, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Masafumi Miyazaki, Yousuke Kurosaki, Takahide Shimazu, Kazuo Ohnuki
  • Patent number: 8177923
    Abstract: A magnetic alloy having a composition represented by the general formula of Fe100-x-yCuxBy (atomic %), wherein x and y are numbers meeting the conditions of 0.1?x?3, and 10?y?20, or the general formula of Fe100-x-y-zCuxByXz (atomic %), wherein X is at least one element selected from the group consisting of Si, S, C, P, Al, Ge, Ga and Be, and x, y and z are numbers meeting the conditions of 0.1?x?3, 10?y?20, 0<z?10, and 10<y+z?24), the magnetic alloy having a structure containing crystal grains having an average diameter of 60 nm or less in an amorphous matrix, and a saturation magnetic flux density of 1.7 T or more.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: May 15, 2012
    Assignee: Hitachi Metals, Ltd.
    Inventors: Motoki Ohta, Yoshihito Yoshizawa
  • Patent number: 8173093
    Abstract: Provided is an iron silicide sputtering target in which the oxygen as the gas component in the target is 1000 ppm or less, and a manufacturing method of such iron silicide sputtering target including the steps of melting/casting high purity iron and silicon under high vacuum to prepare an alloy ingot, subjecting the ingot to gas atomization with inert gas to prepare fine powder, and thereafter sintering the fine powder. With this iron silicide sputtering target, the amount of impurities will be reduced, the thickness of the ?FeSi2 film during deposition can be made thick, the generation of particles will be reduced, a uniform and homogenous film composition can be yielded, and the sputtering characteristics will be favorable. The foregoing manufacturing method is able to stably produce this target.
    Type: Grant
    Filed: September 1, 2003
    Date of Patent: May 8, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Kunihiro Oda, Ryo Suzuki
  • Patent number: 8157928
    Abstract: A main object thereof is to provide a non-oriented electrical steel sheet being excellent in surface characteristics and having both excellent mechanical characteristics and magnetic characteristics necessary for a rotor of rotating machines such as motors and generators which rotate at a high speed, and a method for producing the same. To achieve the object, the present invention provides a non-oriented electrical steel sheet comprising in % by mass: 0.06% or less of C; 3.5% or less of Si; from 0.05% or more to 3.0% or less of Mn; 2.5% or less of Al; 0.30% or less of P; 0.04% or less of S; 0.02% or less of N; at least one element selected from the group consisting of Nb, Ti, Zr and V in the predetermined range; and a balance consisting of Fe and impurities; and having a recrystallized fraction being less than 90%.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: April 17, 2012
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Ichirou Tanaka, Hiroshi Fujimura, Hirokatsu Nitomi, Hiroyoshi Yashiki, Kouji Nishida, Hiroki Takamaru
  • Patent number: 8158092
    Abstract: Provided is iron silicide powder in which the content of oxygen as the gas component is 1500 ppm or less, and a method of manufacturing such iron silicide powder including the steps of reducing iron oxide with hydrogen to prepare iron powder, heating the iron powder and Si powder in a non-oxidizing atmosphere to prepare synthetic powder containing FeSi as its primary component, and adding and mixing Si powder once again thereto and heating this in a non-oxidizing atmosphere to prepare iron silicide powder containing FeSi2 as its primary component. The content of oxygen as the gas component contained in the iron silicide powder will decrease, and the iron silicide powder can be easily pulverized as a result thereof. Thus, the mixture of impurities when the pulverization is unsatisfactory will be reduced, the specific surface area of the iron silicide powder will increase, and the density can be enhanced upon sintering the iron silicide powder.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: April 17, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Kunihiro Oda, Ryo Suzuki
  • Patent number: 8097094
    Abstract: The present invention has as its object to stably produce a high strength electrical steel sheet and a processed part of the same which is high in strength and has wear resistant and is superior in magnetic flux density and core loss without greatly changing the cold rollability and production processes from those of conventional electrical steel sheet and provides a high strength electrical steel sheet characterized by containing, by mass %, C: 0.06% or less, Si: 0.2 to 6.5%, Mn: 0.05 to 3.0%, P: 0.30% or less, S or Se: 0.040% or less, Al: 2.50% or less, Cu: 0.6 to 8.0%, N: 0.0400% or less, and a balance of Fe and unavoidable impurities and containing in the steel a metal phase composed of Cu of a size of 0.1 ?m or less. The method of production of the same comprises holding in a temperature range of 300° C. to 720° C. for 5 seconds or more for heat treatment.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: January 17, 2012
    Assignee: Nippon Steel Corporation
    Inventor: Hidekuni Murakami
  • Patent number: 8052811
    Abstract: A rapidly-solidified non-oriented electrical steel sheet having high magnetic flux density and low core loss is provided. The method of producing the non-oriented electrical steel sheet excellent in magnetic properties comprises casting a steel strip by using a traveling cooling roll surface(s) to solidify a steel melt of a prescribed chemical composition, which melt contains one or both of REM and Ca at a total content of 0.0020 to 0.01% and is cast in an atmosphere of Ar, He or a mixture thereof.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: November 8, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Yousuke Kurosaki, Takeshi Kubota, Masafumi Miyazaki
  • Publication number: 20110265915
    Abstract: An Fe-based soft magnetic alloy includes: Fe; and a component R, wherein the component R contains at least one of P, C, B, and Si, there is a temperature difference of equal to or greater than 20° C. between a precipitation temperature of an ?-Fe crystal phase and a precipitation temperature of an Fe compound, the Fe-based soft magnetic alloy is formed of a mixed-phase structure in which an amorphous phase and the ?-Fe crystal phase are mixed, and a diameter of a crystallite of the ?-Fe crystal phase is equal to or smaller than 50 nm, and a volume fraction of the ?-Fe crystal phase to the total is equal to or lower than 40%. In addition, the composition formula is represented by Fe100-x-uJxRu, a component J contains at least one of Cr, Co, Ni, and Nb, and 0 at %?x?6 at %, 17 at %?u?25 at %, and 17 at %?x+u?27.1 at % are satisfied.
    Type: Application
    Filed: July 11, 2011
    Publication date: November 3, 2011
    Applicant: ALPS GREEN DEVICES CO., LTD.
    Inventors: Keiko TSUCHIYA, Hisato KOSHIBA, Jun OKAMOTO, Takao MIZUSHIMA
  • Patent number: 8038806
    Abstract: A method, which makes it possible to economically produce high-quality grain oriented magnetic steel sheet, utilizes a steel alloy with (in wt %) Si: 2.5-4.0%, C: 0.01-0.10 %, Mn: 0.02-0.50%, S and Se in contents, whose total amounts to 0.005-0.04%. The method utilizes an operational sequence whose individual routine steps (secondary metallurgical treatment of the molten metal in a vacuum-or ladle facility, continuous casting of the molten metal into a strand, dividing of the strand, heating in a facility standing inline, continuous hot rolling in a multi-stand hot rolling mill standing inline, cooling, coiling, cold rolling, recrystallization and decarburization annealing, application of an annealing separator, final annealing to form a Goss texture) are harmonized with one another, so that a magnetic steel sheet with optimized electromagnetic properties is obtained using conventional apparatus.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: October 18, 2011
    Assignee: ThyssenKrupp Steel AG
    Inventors: Klaus Günther, Ludger Lahn, Andreas Ploch, Eberhard Sowka
  • Patent number: 8029627
    Abstract: A magnetic component for a magnetically actuated fuel injection device is formed of a corrosion resistant soft magnetic alloy consisting essentially of, in weight percent, 9%<Co<20%, 6%<Cr<15%, 0%?S?0.5%, 0%?Mn?4.5%, 0%?Al?2.5%, 0%?V?2.0%, 0%?Ti?2.0%, 0%?Mo?2.0%, 0%?Si?3.5%, 0%?C<0.05%, 0%?P<0.1%, 0%?N<0.5%, 0%?O<0.05%, 0%?B<0.01%, and the balance being essentially iron and having at least one of Al, V, Ti and Mo.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: October 4, 2011
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventor: Joachim Gerster
  • Publication number: 20110168799
    Abstract: A magnetic component for a magnetically actuated fuel injection device is formed of a corrosion resistant soft magnetic alloy consisting essentially of, in weight percent, 3%<Co<20%, 6%<Cr<15%, 0%?S?0.5%, 0%?Mo?3%, 0%?Si?3.5%, 0%?Al?4.5%, 0%?Mn?4.5%, 0%?Me?6%, where Me is one or more of the elements Sn, Zn, W, Ta, Nb, Zr and Ti, 0%?V?4.5%, 0%?Ni?5%, 0%?C<0.05%, 0%?Cu<1%, 0%?P<0.1%, 0%?N<0.5%, 0%?O<0.05%, 0%?B<0.01%, and the balance being essentially iron and the usual impurities.
    Type: Application
    Filed: January 18, 2011
    Publication date: July 14, 2011
    Applicant: Vacuumschmelze GmbH & Co. KG
    Inventor: Joachim GERSTER
  • Patent number: 7972583
    Abstract: An iron silicide sputtering target in which the oxygen as a gas component in the target is 1000 ppm or less and a method of manufacturing such an iron silicide sputtering target are provided. The method includes the steps of melting/casting high purity iron and silicon under high vacuum to prepare an alloy ingot, subjecting the ingot to gas atomization with inert gas to prepare fine powder, and thereafter sintering the fine powder. The amount of impurities in the target will be reduced, the thickness of a ?FeSi2 film during deposition can be made thick, the generation of particles will be reduced, a uniform and homogenous film composition can be yielded, and the sputtering characteristics will be favorable. The foregoing manufacturing method is able to stably produce the target.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: July 5, 2011
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Kunihiro Oda, Ryo Suzuki
  • Patent number: 7922834
    Abstract: A main object thereof is to provide a non-oriented electrical steel sheet being excellent in surface characteristics and having both excellent mechanical characteristics and magnetic characteristics necessary for a rotor of rotating machines such as motors and generators which rotate at a high speed, and a method for producing the same. To achieve the object, the present invention provides a non-oriented electrical steel sheet comprising in % by mass: 0.06% or less of C; 3.5% or less of Si; from 0.05% or more to 3.0% or less of Mn; 2.5% or less of Al; 0.30% or less of P; 0.04% or less of S; 0.02% or less of N; at least one element selected from the group consisting of Nb, Ti, Zr and V in the predetermined range; and a balance consisting of Fe and impurities; and having a recrystallized fraction being less than 90%.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: April 12, 2011
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Ichirou Tanaka, Hiroshi Fujimura, Hirokatsu Nitomi, Hiroyoshi Yashiki, Kouji Nishida, Hiroki Takamaru
  • Patent number: 7909945
    Abstract: Disclosed are soft magnetic alloys that consist essentially of 10% by weight ?Co?22% by weight, 0% by weight ?V?4% by weight, 1.5% by weight ?Cr?5% by weight, 1% by weight ?Mn?2% by weight, 0% by weight ?Mo?1% by weight, 0.5% by weight ?Si?1.5% by weight, 0.1% by weight ?Al?1.0% by weight, rest iron. Also disclosed are methods of making the alloys, and products containing them, such as actuator systems, electric motors, and the like.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: March 22, 2011
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Witold Pieper, Joachim Gerster
  • Publication number: 20110056588
    Abstract: A magnet core is required to be particularly dense, made of alloys produced in a rapid solidification process and have a minimal coercitive field strength. To achieve these aims, a coarse-grain powder fraction is first produced from an amorphous strip of a soft magnetic alloy. In addition, at least one fine-grain powder fraction is produced from a nanocrystalline strip of a soft magnetic alloy. The particle fractions are then mixed to produce a multi-modal powder, wherein the particles of the coarse-grain particle fraction have an amorphous structure and the particles of the fine-grain powder fraction have a nanocrystalline structure. The multi-modal powder is then pressed to produce a magnet core.
    Type: Application
    Filed: July 11, 2007
    Publication date: March 10, 2011
    Applicant: VACUUMSHMELZE GMBH & CO.KG
    Inventor: Markus Brunner
  • Publication number: 20110024000
    Abstract: A powder for a dust core comprising a silicon-containing layer formed within a depth of less than 0.15 D from the surface of the surface layer of a soft magnetic metal powder having a particle diameter D and a method for producing the same are provided.
    Type: Application
    Filed: April 17, 2009
    Publication date: February 3, 2011
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, FINE SINTER CO., LTD.
    Inventors: Yusuke Oishi, Eisuke Hoshina, Toshiya Yamaguchi, Kazuhiro Kawashima
  • Patent number: 7854807
    Abstract: A metal magnetic powder for a magnetic recording medium is provided whose particles have a metal magnetic phase, composed mainly of Fe or Fe plus Co, and an oxide layer, wherein the average major axis length of the powder particles is 10-50 nm, the average particle volume including the oxide layer is 5,000 nm3 or less, the atomic ratio (R+Al+Si)/(Fe+Co) calculated using the content values (at. %) of the elements contained in the powder particles is 20% or less, where R is rare earth element (Y being treated as a rare earth element). The metal magnetic powder is obtained by using a complexing agent and a reducing agent to elute nonmagnetic constituents after firing. The metal magnetic powder exhibits a large saturation magnetization ?s for its particle volume while maintaining weatherability comparable to the conventional level and is suitable for a coated-type magnetic recording medium.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: December 21, 2010
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Takayuki Yoshida, Masatoshi Nakayama, Ryota Igarashi
  • Patent number: 7846271
    Abstract: The present invention relates to technology for manufacturing electrical steel sheets having excellent magnetic properties through the control of a hot-rolled texture using the phase transformation of steel. More particularly, it relates to a non-oriented electrical steel sheet that has reduced iron loss and increased magnetic flux density by controlling alloy component elements and optimizing hot-rolling conditions, even though hot-rolled sheet annealing is not carried out, as well as a manufacturing method thereof. More specifically, the invention provides a non-oriented electrical steel sheet which has excellent magnetic properties while hot-rolled sheet annealing can be omitted, the steel sheet being comprised of 0.005 wt % or less of C, 1.0-3.0 w % of Si, 0.1-2.0 wt % of Mn, 0.1 wt % or less of P, 0.1-1.5 wt % of Al, and a remainder of Fe and other inevitable impurities, in which the relationship between the elements Mn and Al satisfies an equation of ?0.2<m(=Mn?Al)<1.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: December 7, 2010
    Assignee: Posco Co., Ltd.
    Inventors: Jae-Young Choi, Byung-Keun Bae, Jong-Tae Park, Jae-Kwan Kim, Chel-Min Park
  • Patent number: 7819990
    Abstract: An iron-cobalt alloy containing in weight percentages: 10 to 22% of Co; traces to 2.5% of Si; traces to 2% of Al; 0.1 to 1% of Mn; traces to 0.0100% of C, a total of O, N and S content ranging between traces of 0.0070%; a total of Si, Al, Cr, Mo, V, Mn content ranging between 1.1 and 3.5%; a total of Cr, Mo and V content ranging between traces of 3%; a total of Ta and Nb content ranging between traces and 1%; and the rest being iron and impurities resulting from production wherein: 1.23×(Al+Mo) %+0.84 (Si+Cr+V) %?0.15×(Co %?15)?2.1, and 14.5×(Al+Cr) %+12×(V+Mo) %+25×Si %?21. The inventive alloy is useful for making electromagnetic actuator mobile cores.
    Type: Grant
    Filed: August 15, 2006
    Date of Patent: October 26, 2010
    Assignee: Imphy Ugine Precision
    Inventors: Thierry Waeckerle, Lucien Coutu, Marc Leroy, Laurent Chaput, Herve Fraisse