Beryllium Or Boron Containing Patents (Class 148/330)
  • Patent number: 10550962
    Abstract: The steel material according to this invention contains, in mass %, C: 0.15 to 0.45%, Si: 0.10 to 1.0%, Mn: 0.10 to less than 0.90%, P: 0.05% or less, S: 0.01% or less, Al: 0.01 to 0.1%, N: 0.01% or less, Cr: 0.1 to 2.5%, Mo: 0.35 to 3.0%, and Co: 0.50 to 3.0%, and satisfies expressions (1) and (2), and contains 90% or more of tempered martensite by volume ratio: C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15?Co/6+??0.50??(1 ) (3C+Mo+3Co)/(3Mn+Cr)?1.0??(2 ) Effective B=B?11(N?Ti/3.4)/14??(3 ) where, ? in expression (1) is 0.250 when effective B (mass %) defined by expression (3) is 0.0003% or more, and is 0 when the effective B is less than 0.0003.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: February 4, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventor: Yuji Arai
  • Patent number: 10443114
    Abstract: A steel material for oil country tubular goods that has a high strength and excellent SSC resistance is provided. The steel material according to this invention contains, in mass %, C: more than 0.45 to 0.65%, Si: 0.10 to 1.0%, Mn: 0.1 to 1.0%, P: 0.050% or less, S: 0.010% or less, Al: 0.01 to 0.1%, N: 0.01% or less, Cr: 0.1 to 2.5%, Mo: 0.25 to 5.0%, and Co: 0.05 to 5.0%, and satisfies expressions (1) and (2), and contains 90% or more of tempered martensite by volume ratio: C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15?Co/6+??0.70??(1) (3C+Mo+3Co)/(3Mn+Cr)?1.0??(2) Effective B=B?11(N?Ti/3.4)/14??(3) where, ? in expression (1) is 0.250 when effective B (mass %) defined by expression (3) is 0.0003% or more, and is 0 when effective B is less than 0.0003%.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: October 15, 2019
    Assignee: NIPPON STEEL CORPORATION
    Inventor: Yuji Arai
  • Patent number: 10391742
    Abstract: A steel for a carburizing and a carburized steel component having a steel portion and a carburized layer with a thickness of more than 0.4 mm to less than 2 mm which is formed on an outside of the steel portion. A chemical composition of the steel for the carburizing and the steel portion of the carburized steel component satisfies simultaneously equations of a hardness parameter, a hardenability parameter, and an AlN precipitation parameter.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: August 27, 2019
    Assignee: NIPPON STEEL CORPORATION
    Inventor: Manabu Kubota
  • Patent number: 10392707
    Abstract: A steel for a carburizing and a carburized steel component having a steel portion and a carburized layer with a thickness of more than 0.4 mm to less than 2 mm which is formed on an outside of the steel portion. A chemical composition of the steel for the carburizing and the steel portion of the carburized steel component satisfies simultaneously equations of a hardness parameter, a hardenability parameter, and a TiC precipitation parameter.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: August 27, 2019
    Assignee: NIPPON STEEL CORPORATION
    Inventor: Manabu Kubota
  • Patent number: 10301703
    Abstract: Disclosed is a high-strength welded steel pipe for airbag inflators that has high toughness and workability. A base material portion of the steel pipe has a composition containing, in mass %, C: 0.02 to 0.08%, Si: 0.001 to 1.0%, Mn: 0.1 to 2.0%, P: 0.1% or less, Al: 0.01 to 0.1%, N: 0.01% or less, Ti: 0.01 to 0.20%, and V: 0.01 to 0.50%, with the balance being Fe and incidental impurities. The base material portion has a structure that includes a ferrite phase having an average grain size of 10 ?m or less at an area fraction of 90% or more and a Ti, V-based carbide having an average grain size of 10 nm or less and dispersed in the ferrite phase. The welded steel pipe has a high tensile strength TS of 780 MPa or more and a strength-elongation balance TS×El of 15,000 MPa % or more. The difference ?HV in Vickers hardness between the base material portion and the welded portion is 60 points or less.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: May 28, 2019
    Assignee: JFE STEEL CORPORATION
    Inventors: Masatoshi Aratani, Yoshikazu Kawabata, Kenichi Iwazaki, Ryoji Matsui
  • Patent number: 10227682
    Abstract: An object of the present invention is to provide at a low cost a low-alloy steel having a high strength and excellent high-pressure hydrogen environment embrittlement resistance characteristics under a high-pressure hydrogen environment. The invention is a high-strength low-alloy steel having high-pressure hydrogen environment embrittlement resistance characteristics, which has a composition comprising C: 0.10 to 0.20% by mass, Si: 0.10 to 0.40% by mass, Mn: 0.50 to 1.20% by mass, Ni: 0.75 to 1.75% by mass, Cr: 0.20 to 0.80% by mass, Cu: 0.10 to 0.50% by mass, Mo: 0.10 to 1.00% by mass, V: 0.01 to 0.10% by mass, B: 0.0005 to 0.005% by mass and N: 0.01% by mass or less, and further comprising one or two of Nb: 0.01 to 0.10% by mass and Ti: 0.005 to 0.050% by mass, with the balance consisting of Fe and unavoidable impurities.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: March 12, 2019
    Assignee: THE JAPAN STEEL WORKS, LTD.
    Inventors: Kouichi Takasawa, Yoru Wada, Ryoji Ishigaki, Yasuhiko Tanaka
  • Patent number: 9994940
    Abstract: This high carbon steel wire rod, which has excellent drawability in addition to high strength required for a wire rod, contains 0.6-1.5% of C, 0.1-1.5% of Si, 0.1-1.5% of Mn, 0.02% or less of P (excluding 0%), 0.02% or less of S (excluding 0%), 0.03-0.12% of Ti, 0.001-0.01% of B and 0.001-0.005% of N, with solid-solved B being 0.0002% or more, solid-solved N being 0.0010% or less, and the balance being made up of iron and inevitable impurities. In addition, the content of Ti solid-solved in the steel is 0.002% by mass or more, and the content of Ti that formed carbides is 0.020% by mass or more.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: June 12, 2018
    Assignee: Kobe Steel, Ltd.
    Inventors: Hiroshi Oura, Nao Yoshihara
  • Patent number: 9988697
    Abstract: This high-strength hot-rolled steel sheet having excellent local deformability contains, in mass %, C: 0.07% to 0.20%; Si: 0.001% to 2.5%; Mn: 0.01% to 4.0%; P: 0.001% to 0.15%; S: 0.0005% to 0.03%; Al: 0.001% to 2.0%; N: 0.0005% to 0.01%; and O: 0.0005% to 0.01%; and a balance being composed of iron and inevitable impurities, in which an area ratio of bainite in a metal structure is 95% or more, at a sheet thickness center portion being a range of ? to ? in sheet thickness from the surface of the steel sheet, an average value of pole densities of the {100}<011> to {223}<110> orientation group is 4.0 or less, and a pole density of the {332}<113> crystal orientation is 5.0 or less, and a mean volume diameter of crystal grains in the metal structure is 10 ?m or less.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: June 5, 2018
    Assignee: NIPPON STEEL AND SUMITOMO METAL CORPORATION
    Inventors: Yoshihiro Suwa, Kazuaki Nakano, Kunio Hayashi, Riki Okamoto, Nobuhiro Fujita, Kohichi Sano
  • Patent number: 9970088
    Abstract: A multi-phase steel including in % wt. C: 0.14-0.25%, Mn: 1.7-2.5%, Si: 0.2-0.7%, Al: 0.5-1.5%, Cr: <0.1%, Mo: <0.05%, Nb: 0.02-0.06%, S: up to 0.01%, P: up to 0.02%, N: up to 0.01% and optionally at least one of Ti, B, and V according to the following stipulation: Ti: up to 0.1%, B: up to 0.002%, V: up to 0.15%, with the remainder iron and unavoidable impurities, wherein the microstructure has at least 10% vol. ferrite and at least 6% vol. residual austenite and the steel has a tensile strength Rm of at least 950 MPa, a yield point ReL of at least 500 MPa and an elongation at break A80 measured in the transverse direction of at least 15%. A method of producing the multi-phase steel.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: May 15, 2018
    Assignee: ThyssenKrupp Steel Europe AG
    Inventors: Ekaterina Bocharova, Dorothea Mattissen, Roland Sebald, Daniel Krizan, Andreas Pichler
  • Patent number: 9914988
    Abstract: Provided are a high-strength cold-rolled steel sheet having excellent formability, excellent ductility, excellent hole expansibility, and high yield ratio and a method for producing the same. The high-strength cold-rolled steel sheet contains 0.05% to 0.15% C, 0.10% to 0.90% Si, 1.0% to 2.0% Mn, 0.005% to 0.05% P, 0.0050% or less S, 0.01% to 0.10% Al, 0.0050% or less N, and 0.010% to 0.100% Nb, which are chemical components, on a mass basis, the balance being Fe and unavoidable impurities; has a microstructure which is a multi-phase structure containing 90% or more of a ferrite phase and 0.5% to less than 5.0% of a martensite phase on a volume fraction basis, the remainder being low-temperature transformation phases; and has a yield ratio of 70% or more.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: March 13, 2018
    Assignee: JFE Steel Corporation
    Inventors: Katsutoshi Takashima, Yuki Toji, Kohei Hasegawa
  • Patent number: 9896736
    Abstract: The present invention provides a method for manufacturing a hot stamped body having a vertical wall, the method including: a hot-rolling step; a coiling step; a cold-rolling step; a continuous annealing step; and a hot stamping step, in which the continuous annealing step includes a heating step of heating the cold-rolled steel sheet to a temperature range of equal to or higher than Ac1° C. and lower than Ac3° C.; a cooling step of cooling the heated cold-rolled steel sheet from the highest heating temperature to 660° C. at a cooling rate of equal to or less than 10° C./s; and a holding step of holding the cooled cold-rolled steel sheet in a temperature range of 550° C. to 660° C. for one minute to 10 minutes.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: February 20, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Toshimasa Tomokiyo, Kunio Hayashi, Toshimitsu Aso
  • Patent number: 9883588
    Abstract: According to this invention, an oriented copper plate which has a highly developed cube texture and has strength and breaking elongation greater than those of a conventional material having a cube texture, a copper-clad laminate, a flexible circuit board that is excellent in terms of folding flexibility, and an electronic device are provided, and a process for producing the oriented copper plate is established. This invention relates: an oriented copper plate, which contains 0.03% by mass to 1.0% by mass of Cr, the remainder of which is composed of copper and inevitable impurities, wherein the copper plate has a <100> main orientation so that the area percentage of a <100> preferred orientation region is not less than 60.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: January 30, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Keiichi Kimura, Tomohiro Uno, Kazuaki Kaneko
  • Patent number: 9840751
    Abstract: Provided is a method for manufacturing a hot stamped body, the method including: a hot-rolling step; a coiling step; a cold-rolling step; a continuous annealing step; and a hot stamping step, in which the continuous annealing step includes a heating step of heating the cold-rolled steel sheet to a temperature range of equal to or higher than Ac1° C. and lower than Ac3° C.; a cooling step of cooling the heated cold-rolled steel sheet from the highest heating temperature to 660° C. at a cooling rate of equal to or less than 10° C./s; and a holding step of holding the cooled cold-rolled steel sheet in a temperature range of 550° C. to 660° C. for one minute to 10 minutes.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: December 12, 2017
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kunio Hayashi, Toshimitsu Aso, Toshimasa Tomokiyo, Hitoshi Tanino, Ryozo Wada
  • Patent number: 9797033
    Abstract: The invention provides a wear-resistant steel plate, which has the following chemical composition (wt. %): C: 0.08-0.21%, Si: 0.15-0.45%, Mn: 1.10-1.80%, P: ?0.015%, S: ?0.010%, Nb: 0.010-0.040%, Al: 0.010-0.080%, B: 0.0006-0.0014%, Ti: 0.005-0.050%, Ca: 0.0010-0.0080%, V?0.080%, Cr?0.60%, N?0.0080%, O?0.0060%, H?0.0004%, wherein 0.025%?Nb+Ti?0.080%, 0.030%?Al+Ti?0.12%, and the balance being Fe and unavoidable impurities. The invention also provides a method of manufacturing the wear-resistant steel plate, comprising smelting, casting, rolling, post-rolling direct cooling, inter alia. The wear-resistant steel plate obtained from the above composition and process has perfect weldability, high strength, high hardness, good low-temperature toughness, and excellent machinability, and is suitable for quick-wear devices in engineering and mining machinery, such as bucket, mining vehicle body and scraper transporter, etc.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: October 24, 2017
    Assignee: BAOSHAN IRON & STEELE CO., LTD.
    Inventors: Hongbin Li, Liandeng Yao, Yuchuan Miao
  • Patent number: 9790578
    Abstract: A steel for a tracked undercarriage component is used as a material constituting a track link (9), for example, and contains: not less than 0.39% by mass and not more than 0.45% by mass of carbon, not less than 0.2% by mass and not more than 1.0% by mass of silicon, not less than 0.10% by mass and not more than 0.90% by mass of manganese, not less than 0.002% by mass and not more than 0.005% by mass of sulfur, not less than 0.1% by mass and not more than 3.0% by mass of nickel, not less than 0.70% by mass and not more than 1.50% by mass of chromium, and not less than 0.10% by mass and not more than 0.60% by mass of molybdenum, with the balance made of iron and unavoidable impurities.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: October 17, 2017
    Assignee: KOMATSU LTD.
    Inventors: Eiji Amada, Kazuo Maeda, Takeji Kajiura
  • Patent number: 9791032
    Abstract: Systems and methods in accordance with embodiments of the invention implement bulk metallic glass-based strain wave gears and strain wave gear components. In one embodiment, a method of fabricating a strain wave gear includes: shaping a BMG-based material using a mold in conjunction with one of a thermoplastic forming technique and a casting technique; where the BMG-based material is shaped into one of: a wave generator plug, an inner race, an outer race, a rolling element, a flexspline, a flexspline without a set of gear teeth, a circular spline, a circular spline without a set of gear teeth, a set of gear teeth to be incorporated within a flexspline, and a set of gear teeth to be incorporated within a circular spline.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: October 17, 2017
    Assignee: California Institute of Technology
    Inventors: Douglas C. Hofmann, Brian H. Wilcox
  • Patent number: 9702031
    Abstract: The present invention provides a bake-hardenable high-strength cold-rolled steel sheet having excellent bake hardenability, cold aging resistance, and deep-drawability, and reduced planar anisotropy, containing chemical components in % by mass of: C: 0.0010% to 0.0040%, Si: 0.005% to 0.05%, Mn: 0.1% to 0.8%, P: 0.01% to 0.07%, S: 0.001% to 0.01%, Al: 0.01% to 0.08%, N: 0.0010% to 0.0050%, Nb: 0.002% to 0.020%, and Mo: 0.005% to 0.050%, a value of [Mn %]/[P %] being in the range of 1.6 to 45, where [Mn %] is an amount of Mn and [P %] is an amount of P, an amount of C in solid solution obtained from [C %]?(12/93)×[Nb %] being in the range of 0.0005% to 0.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: July 11, 2017
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Satoshi Akamatsu, Masaharu Oka
  • Patent number: 9695493
    Abstract: A dual phase or complex phase steel strip showing no tigerstripes. The steel strip having an ultimate tensile strength Rm classifying for 1000 MPa steel category, includes (in mass percent) C 0.09-0.19%; Mn 1.9-2.6%; Si at most 0.1%; Cr 0.4-0.8%; Mo at most 0.3%; Ni at most 0.4%; Al 0.02-1.3%; and optionally one or more of the following elements: Nb at most 0.08%; P equal to or more than 0.0005%; N equal to or less than 0.015%; Ti equal to or less than 0.1%; V equal to or less than 0.1%; B equal to or less than 0.01%; wherein the sum of Cr, Mo and Ni is at least 0.5%; the balance being Fe and inevitable impurities.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: July 4, 2017
    Assignee: TATA STEEL IJMUIDEN BV
    Inventors: Egbert Jansen, Edward Anton Frederik Span, Richard Mostert, Theo Arnold Kop
  • Patent number: 9593400
    Abstract: A dual phase or complex phase steel strip showing no tigerstripes. The steel strip includes, in mass percent, the following elements: C 0.08-0.11%; Mn 1.70-2.20%; Si at most 0.1%; Cr 0.40-0.70%; Mo at most 0.3%; Ni at most 1.0%, Al 0.01-1.50%; Nb at most 0.07%; P equal to or more than 0.005%; N equal to or less than 0.015%; Ti equal to or less than 0.1%; V equal to or less than 0.1%; B equal to or less than 0.01%; wherein the sum of Cr, Mo and Ni is at least 0.5%; the balance being Fe and inevitable impurities.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: March 14, 2017
    Assignee: TATA STEEL IJMUIDEN BV
    Inventors: Egbert Jansen, Edward Anton Frederik Span, Richard Mostert, Theo Arnold Kop
  • Patent number: 9592772
    Abstract: [Problem] To provide a steel sheet hot-dip-plated with a Zn—Al—Mg-based alloy coating, which is remarkably improved in point of all the burring workability, the liquid metal embrittlement cracking resistance and the corrosion resistance in the welded part thereof, as a steel material favorable for arc-welded structural members.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: March 14, 2017
    Assignee: NISSHIN STEEL CO., LTD.
    Inventors: Kentaro Hirata, Yukio Katagiri, Susumu Fujiwara, Kazuaki Hosomi, Masaaki Uranaka
  • Patent number: 9499408
    Abstract: The invention relates to graphene sheets and to a method for making the same in which a solution of graphene or graphite oxide is applied to a blue steel substrate and dried.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: November 22, 2016
    Assignee: TRUE 2 MATERIALS PTE LTD
    Inventor: William Rieken
  • Patent number: 9394594
    Abstract: A steel contains, by weight: C: 0.3% to 0.5%, Si: 0.1% to 0.5%, Mn: 0.1% to 1%, P: 0.03% or less, S: 0.005% or less, Cr: 0.3% to 1.5%, Mo: 1.0% to 1.5%, Al: 0.01% to 0.1%, V: 0.03% to 0.06%, Nb: 0.04% to 0.15%, Ti: 0 to 0.015%, N: 0.01% or less, the remainder of the chemical composition of the steel being constituted by Fe and impurities or residuals resulting from or necessary to steel production and casting processes. The steel enables to produce seamless tubes with a yield strength after heat treatment of 862 MPa or more which are particularly SSC-resistant.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: July 19, 2016
    Assignee: VALLOUREC OIL AND GAS FRANCE
    Inventors: Christoph Bosch, Axel Kulgemeyer, Jean Leyer, Michel Piette
  • Patent number: 9212410
    Abstract: The present invention inexpensively provides with high productivity and good yield a steel rod superior in drawability and a steel wire superior in twistability using the same as a material, that is, draws a high strength steel rod superior in ductility where the chemical components contain C: 0.80 to 1.20%, Si: 0.1 to 1.5%, Mn: 0.1 to 1.0%, Al: 0.01% or less, Ti: 0.01% or less, one or both of W: 0.005 to 0.2% and Mo: 0.003 to 0.2%, N: 10 to 30 ppm, B: 4 to 30 ppm (of which, solute B is 3 ppm or more), and O: 10 to 40 ppm, which has a balance of Fe and unavoidable impurities, has an area percentage of pearlite structures of 97% or more, has a balance of non-pearlite structures, and has a total of the area percentage of the non-pearlite structures and the area percentage of the coarse pearlite structures of 15% or less, to obtain high strength steel wire superior in ductility having a tensile strength of 3600 MPa or more and a number density of voids of lengths of 5 ?m or more at the center of 100/mm2 or less.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: December 15, 2015
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Shingo Yamasaki, Seiki Nishida
  • Patent number: 9039962
    Abstract: A steel for an induction hardening including, by mass %, C: more than 0.75% to 1.20%, Si: 0.002 to 3.00%, Mn: 0.20 to 2.00%, S: 0.002 to 0.100%, Al: more than 0.050% to 3.00%, P: limited to 0.050% or less, N: limited to 0.0200% or less, O: limited to: 0.0030% or less, and the balance composing of iron and unavoidable impurities, wherein an Al content and a N content satisfy, by mass %, Al?(27/14)×N>0.050%.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: May 26, 2015
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Manabu Kubota, Toshiharu Aiso, Kei Miyanishi
  • Patent number: 9023158
    Abstract: A steel material superior in high temperature characteristics and toughness is provided, that is, a steel material containing, by mass %, C: 0.005% to 0.03%, Si: 0.05% to 0.40%, Mn: 0.40% to 1.70%, Nb: 0.02% to 0.25%, Ti: 0.005% to 0.025%, N: 0.0008% to 0.0045%, B: 0.0003% to 0.0030%, restricting P: 0.030% or less, S: 0.020% or less, Al: 0.03% or less, and having a balance of Fe and unavoidable impurities, where the contents of C and Nb satisfy C—Nb/7.74?0.02 and Ti-based oxides of a grain size of 0.05 to 10 ?m are present in a density of 30 to 300/mm2.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: May 5, 2015
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Suguru Yoshida, Hiroshi Kita, Teruhisa Okumura, Hirokazu Sugiyama, Teruyuki Wakatsuki
  • Publication number: 20150114527
    Abstract: A steel for oil country tubular goods includes, as a chemical composition, by mass %, C, Si, Mn, Al, Mo, P, S, O, N, and a balance containing Fe and impurities, wherein a full width at half maximum HW of a crystal plane corresponding to a (211) crystal plane of an ? phase and a carbon content expressed in mass % in the chemical composition satisfy HW×C1/2?0.38, the carbon content and a molybdenum content expressed in mass % in the chemical composition satisfy C×Mo?0.6, a number of M2C carbides having a hexagonal crystal structure and having an equivalent circle diameter of 1 nm or more is 5 pieces or more per one square micron, and an yield strength is 758 MPa or more.
    Type: Application
    Filed: June 17, 2013
    Publication date: April 30, 2015
    Inventors: Tomohiko Omura, Yuji Arai, Kaori Kawano, Akihiro Sakamoto, Kazuo Okamura, Kenji Yamamoto, Keiichi Kondo, Koji Nagahashi, Masanao Seo
  • Publication number: 20150118518
    Abstract: A steel sheet for electroplating includes, by mass %, C: 0.0005% to 0.0050%, Si: 0.20% to 1.0%, Mn: 0.40% to 2.5%, P: 0.05% or less, Ti: 0.010% to 0.050%, Nb: 0.010% to 0.040%, B: 0.0005% to 0.0030%, S: 0.02% or less, Al: 0.01% to 0.30%, N: 0.0010% to 0.01%, and the balance including Fe and impurities, in which when Si content is represented by [Si] and Mn content is represented by [Mn], “[Mn]+5[Si]” is 2.0 to 7.0, and the steel sheet has surface property in which an average of displacements of a measurement point obtained based on a moving average of continuous 31 points in total including 15 front points and 15 back points in a cross-sectional profile of a surface obtained by measuring the average of displacements in an evaluation length of 10 ?m or more at an interval of 0.07 ?m, is 0.005 ?m to 0.10 ?m.
    Type: Application
    Filed: April 12, 2013
    Publication date: April 30, 2015
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hironori Sato, Masao Kurosaki, Masahiro Fuda, Natsuko Sugiura, Yuji Yamaguchi
  • Publication number: 20150107725
    Abstract: The present invention relates to a high carbon hot rolled steel sheet having excellent material uniformity and a method for manufacturing the same, in which components and structure of the steel are precisely controlled and manufacturing conditions are adjusted to achieve excellence in material uniformity among hot rolled structures, thereby improving the dimensional precision of parts after formation, preventing defects during processing, and obtaining uniform structures and hardness distribution even after a final heat treatment process.
    Type: Application
    Filed: December 27, 2012
    Publication date: April 23, 2015
    Inventors: Young-Roc Im, Jea-Chun Jeon, Byoung-Ho Lee
  • Patent number: 9011614
    Abstract: A high-strength galvanized steel sheet has excellent mechanical properties such as a TS of 1200 MPa or more, an El of 13% or more, and a hole expansion ratio of 50% or more and a method for manufacturing the same. A high-strength galvanized steel sheet excellent in formability contains 0.05% to 0.5% C, 0.01% to 2.5% Si, 0.5% to 3.5% Mn, 0.003% to 0.100% P, 0.02% or less S, and 0.010% to 0.5% Al on a mass basis, the remainder being Fe and unavoidable impurities, and has a microstructure which contains 0% to 10% ferrite, 0% to 10% martensite, and 60% to 95% tempered martensite on an area basis as determined by structure observation and which further contains 5% to 20% retained austenite as determined by X-ray diffractometry.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: April 21, 2015
    Assignee: JFE Steel Corporation
    Inventors: Tatsuya Nakagaito, Saiji Matsuoka, Yoshitsugu Suzuki, Yuki Toji
  • Patent number: 9011615
    Abstract: Provided are a bake hardening steel having a crystalline grain size of ASTM No. 9 or more and a method for preparing the bake hardening steel by controlling the winding, rolling and cooling conditions. The bake hardening steel includes: C:0.0016˜0.0025%, Si:0.02% or less, P:0.01˜0.05%, S:0.01% or less, sol.Al:0.08˜0.12%, N:0.0025% or less, Ti:0.003% or less, Nb:0.003˜0.011%, Mo:0.01˜0.1%, B:0.0005˜0.0015% or less, balance Fe and other inevitable impurities, wherein % is weight %, and Mn and P satisfy the relation of ?30(° C.)?803P?24.4Mn?58.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: April 21, 2015
    Assignee: POSCO
    Inventors: Seong-Ho Han, Il-Ryoung Sohn, Shin-Hwan Kang, Min-Ki Seun
  • Publication number: 20150101715
    Abstract: A steel wire for spring is provided which exhibits high strength even without adding a large amount of alloy elements, and is for obtaining a cold winding spring having excellent coiling performance and improved hydrogen embrittlement resistance. The steel wire for spring is characterized in that C: 0.40-0.65% (mass %), Si: 1.0-3.0%, Mn: 0.6-2.0%, P: 0.015% or less (exclusive of 0%), S: 0.015% or less (exclusive of 0%), and Al: 0.015 percent by mass or less (excluding 0%) of S, and Al: 0.001-0.10% are satisfied, with the remainder consisting of iron and inevitable impurities, tempered martensite: 70 area % or more and retained austenite: 6-15 area % with respect to the total microstructure, the prior austenite grain size number obtained by a method stipulated in JIS G 0551 is No. 10.0 or more, and the tensile strength is 1,900 MPa or more.
    Type: Application
    Filed: May 20, 2013
    Publication date: April 16, 2015
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Atsuhiko Takeda, Nao Yoshihara
  • Patent number: 9005378
    Abstract: Disclosed is a spring steel wire rod that comprises C in a range of 0.35 to 0.65% (mass %, the same applies to respective elements described hereinafter), Si in a range of 1.4 to 2.2%, Mn in a range of 0.10 to 1.0%, Cr in a range of 0.1 to 2.0%, P not more than 0.025% (0% excluded), and S not more than 0.025% (0% excluded), balance comprising iron, and unavoidable impurities, wherein an average grain size Dc of a central part of the steel wire rod is not more than 80 ?m while an average grain size Ds of a surface layer part of the steel wire rod is not less than 3.0 ?m.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: April 14, 2015
    Assignee: Kobe Steel, Ltd.
    Inventors: Takuya Kochi, Shogo Murakami, Takeshi Kuroda, Hiromichi Tsuchiya
  • Publication number: 20150090377
    Abstract: A steel sheet for hot pressing use according to the present invention has a specified chemical component composition, wherein some of Ti-containing precipitates contained in the steel sheet, each of which having an equivalent circle diameter of 30 nm or less, have an average equivalent circle diameter of 6 nm or less, the precipitated Ti amount and the total Ti amount in the steel fulfill the relationship represented by formula (1) shown below, and the sum total of the fraction of bainite and the fraction of martensite in the metal microstructure is 80 area % or more. Precipitated Ti amount (mass %)?3.4[N]?0.5×[(total Ti amount (mass %))?3.4[N]]??(1) (In the formula (1), [N] represents the content (mass %) of N in the steel.
    Type: Application
    Filed: March 1, 2013
    Publication date: April 2, 2015
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Toshio Murakami, Junya Naitou, Keisuke Okita, Shushi Ikeda
  • Publication number: 20150090370
    Abstract: A steel plate has a chemical composition containing, by mass %, C: 0.03% or more and 0.08% or less, Si: 0.01% or more and 1.0% or less, Mn: 1.2% or more and 3.0% or less, P: 0.015% or less, S: 0.005% or less, Al: 0.08% or less, Nb: 0.005% or more and 0.07% or less, Ti: 0.005% or more and 0.025% or less, N: 0.010% or less, O: 0.005% or less and the balance being Fe and inevitable impurities, a structure being a dual-phase structure consisting of a bainite phase and island martensite, wherein the area fraction of the island martensite is 3% to 15%, the equivalent circle diameter of the island martensite is 3.0 ?m or less, and the remainder of the structure is a bainite phase.
    Type: Application
    Filed: March 29, 2013
    Publication date: April 2, 2015
    Applicant: JFE Steel Corporation
    Inventors: Junji Shimamura, Kimihiro Nishimura
  • Publication number: 20150090376
    Abstract: A high carbon hot rolled steel sheet and a method for manufacturing the same are provided, wherein excellent cold workability and excellent hardenability are obtained stably. The high carbon hot rolled steel sheet has a composition containing C: 0.20% to 0.48%, Si: 0.1% or less, Mn: 0.5% or less, P: 0.03% or less, S: 0.01% or less, sol. Al: more than 0.10% and 1.0% or less, N: 0.005% or less, B: 0.0005% to 0.0050%, and the remainder composed of Fe and incidental impurities, on a percent by mass basis, and a microstructure composed of ferrite and cementite, wherein the average grain size of the above-described ferrite is 10 to 20 ?m and the spheroidization ratio of the above-described cementite is 90% or more.
    Type: Application
    Filed: December 26, 2012
    Publication date: April 2, 2015
    Applicant: JFE STEEL CORPORATION
    Inventors: Nobuyuki Nakamura, Takashi Kobayashi, Yoshimasa Funakawa
  • Publication number: 20150086808
    Abstract: A high-strength cold-rolled steel sheet has a specific chemical composition and has a steel microstructure meeting conditions: a total content of bainitic ferrite (BF) and tempered martensite (TM) is 65% (in area percent, hereinafter the same for steel microstructure) or more; a fresh martensite (M) content is 3% to 18%; a retained austenite content is 5% or more; and a polygonal ferrite (F) content is 5% or less. The steel sheet has a specific average KAM<1.00° of 0.50° or more and has a tensile strength of 980 MPa or more. The high-strength cold-rolled steel sheet excels in formability and shape fixability.
    Type: Application
    Filed: March 6, 2013
    Publication date: March 26, 2015
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
    Inventors: Kouji Kasuya, Yuichi Futamura, Yukihiro Utsumi
  • Patent number: 8986469
    Abstract: Design and fabrication processes and compositions for bulk metallic glass materials. Examples of bulk metallic glasses based on the described compositions may contain a high atomic percent of titanium or iron, which is alloyed with metalloid elements and refractory metals. The compositions can be designed using theoretical calculations of the liquidus temperature to have substantial amounts of refractory metals, while still maintaining a depressed liquidus temperature. The alloying elements are molybdenum, tungsten, chromium, boron, and carbon may be used. Some of the resulting alloys are ferromagnetic at room temperature, while others are non-ferromagnetic. These amorphous alloys have increased specific strengths and corrosion resistance compared to conventional high strength steels.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: March 24, 2015
    Assignee: The Regents of the University of California
    Inventors: Kenneth S. Vecchio, Justin Cheney, Hesham Khalifa
  • Publication number: 20150075680
    Abstract: A steel sheet suitable as a starting material for a vehicle impact absorbing member with high absorption of impact energy and resistance to cracking contains, by mass %, C: 0.08-0.30%, Mn: 1.5-3.5%; Si+Al: 0.50-3.0%, P: 0.10% or less, S: at most 0.010%, and N: at most 0.010%, and optionally, one or more types selected from Cr: at most 0.5%, Mo: at most 0.5%, B: at most 0.010%, Ti: less than 0.04%, Nb: less than 0.030%, V: less than 0.5%, Ca: at most 0.010%, Mg: at most 0.010%, REM: at most 0.050%, and Bi: at most 0.050%. The microstructure contains, by area %, bainite: more than 50%, martensite: 3-30%, and retained austenite: 3-15%, the remainder comprising ferrite having an average grain diameter of less than 5 mm. The product of uniform elongation and hole expansion ratio is at least 300%2 and 5% effective flow stress is at least 900 MPa.
    Type: Application
    Filed: April 8, 2013
    Publication date: March 19, 2015
    Inventors: Yasuaki Tanaka, Kaori Kawano, Masahito Tasaka, Yoshiaki Nakazawa, Takuya Nishio, Masayuki Wakita, Jun Haga, Toshiro Tomida
  • Patent number: 8974612
    Abstract: An object of the present invention is to provide at a low cost a low-alloy steel having a high strength and excellent high-pressure hydrogen environment embrittlement resistance characteristics under a high-pressure hydrogen environment. The invention is a high-strength low-alloy steel having high-pressure hydrogen environment embrittlement resistance characteristics, which has a composition comprising C: 0.10 to 0.20% by mass, Si: 0.10 to 0.40% by mass, Mn: 0.50 to 1.20% by mass, Ni: 0.75 to 1.75% by mass, Cr: 0.20 to 0.80% by mass, Cu: 0.10 to 0.50% by mass, Mo: 0.10 to 1.00% by mass, V: 0.01 to 0.10% by mass, B: 0.0005 to 0.005% by mass and N: 0.01% by mass or less, and further comprising one or two of Nb: 0.01 to 0.10% by mass and Ti: 0.005 to 0.050% by mass, with the balance consisting of Fe and unavoidable impurities.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: March 10, 2015
    Assignee: The Japan Steel Works, Ltd.
    Inventors: Kouichi Takasawa, Yoru Wada, Ryoji Ishigaki, Yasuhiko Tanaka
  • Patent number: 8974610
    Abstract: A high-strength welded steel pipe is obtained by welding a seam weld portion of a steel plate that are formed in a pipe shape. In the high-strength welded steel pipe, a base metal of the steel plate includes, by mass %, C: 0.010% to 0.080%, Si: 0.01% to 0.50%, Mn: 0.50% to 2.00%, S: 0.0001% to 0.0050%, Ti: 0.003% to 0.030%, Mo: 0.05% to 1.00%, B: 0.0003% to 0.0100%, O: 0.0001% to 0.0080%, N: 0.006% to 0.0118%, P: limited to 0.050% or less, Al: limited to 0.008% or less, and the balance of Fe and inevitable impurities, Ceq is 0.30 to 0.53, Pcm is 0.10 to 0.20, [N]?[Ti]/3.4 is less than 0.003, the average grain size of the prior ? grains in heat affected zones in the steel plate is 250 ?m or less, and the prior ? grains include bainite and intragranular bainite.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: March 10, 2015
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Taishi Fujishiro, Takuya Hara, Yoshio Terada, Shinya Sakamoto, Hitoshi Asahi
  • Publication number: 20150059912
    Abstract: A steel plate has a chemical composition containing, by mass %, C: 0.03% or more and 0.08% or less, Si: 0.01% or more and 1.0% or less, Mn: 1.2% or more and 3.0% or less, P: 0.015% or less, S: 0.005% or less, Al: 0.08% or less, Nb: 0.005% or more and 0.07% or less, Ti: 0.005% or more and 0.025% or less, N: 0.010% or less, O: 0.005% or less and the balance being Fe and inevitable impurities, a metallographic structure including a bainite phase and island martensite, and a polygonal ferrite in surface portions within 5 mm from the upper and lower surfaces, wherein the area fraction of the island martensite is 3% to 15%, the equivalent circle diameter of the island martensite is 3.0 ?m or less, the area fraction of the polygonal ferrite in the surface portions is 10% to less than 80%.
    Type: Application
    Filed: March 29, 2013
    Publication date: March 5, 2015
    Inventors: Junji Shimamura, Kimihiro Nishimura
  • Publication number: 20150059935
    Abstract: The present invention relates to high strength cold rolled steel sheet suitable for applications in automobiles, construction materials and the like, specifically high strength steel excellent in formability. In particular, the invention relates to cold rolled steel sheets having a tensile strength of at least 780 MPa.
    Type: Application
    Filed: April 2, 2013
    Publication date: March 5, 2015
    Applicant: VOESTALPINE STAHL GMBH
    Inventors: Thomas Hebesberger, Daniel Krizan, Stefan Paul, Andreas Pichler
  • Publication number: 20150053315
    Abstract: Provided are: a boron-added high strength steel for bolt excellent in delayed fracture resistance even having a tensile strength of 1100 MPa or more without addition of large amounts of expensive alloy elements such as Cr and Mo: and a high strength bolt made from the boron-added high strength steel for bolt. The high strength steel for bolt contains C of 0.23% to less than 0.40%, Si of 0.23% to 1.50%, Mn of 0.30% to 1.45%, P of 0.03% or less (excluding 0%), S of 0.03% or less (excluding 0%), Cr of 0.05% to 1.5%, V of 0.02% to 0.30%, Ti of 0.02% to 0.1%, B of 0.0003% to 0.0050%, Al of 0.01% to 0.10%, and N of 0.002% to 0.010%, with the remainder being iron and inevitable impurities. The steel has a ratio ([Si]/[C]) of the Si content [Si] to the C content [C] of 1.0 or more and has a ferrite-pearlite mixed microstructure.
    Type: Application
    Filed: February 5, 2013
    Publication date: February 26, 2015
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yosuke Matsumoto, Atsushi Inada, Masamichi Chiba
  • Publication number: 20150047757
    Abstract: The present invention provides a steel sheet for a rotor core for an IPM motor, wherein the steel sheet has a magnetic flux density B8000 of 1.65 T or more as measured when magnetic field strength is 8000 A/m, and a residual magnetic flux density Br of 0.5 T or more as measured at that time, and optionally, a coercivity Hc of 100 A/m or more as measured after magnetization reaches 8000 A/m. By using the steel sheet of the present, invention for a rotor core of an IPM motor, it is possible to increase further an output torque in a high-speed rotational range and raise further the maximum, rotational speed.
    Type: Application
    Filed: March 27, 2013
    Publication date: February 19, 2015
    Applicant: NISSHIN STEEL CO., LTD.
    Inventors: Tomonaga Iwatsu, Yukio Katagiri, Susumu Fujiwara, Akito Kawamoto
  • Publication number: 20150047752
    Abstract: A high strength interstitial free low density steel and method for producing the steel.
    Type: Application
    Filed: April 10, 2013
    Publication date: February 19, 2015
    Applicant: TATA STEEL NEDERLAND TECHNOLOGY B.V.
    Inventors: Cheng Liu, Radhakanta Rana
  • Publication number: 20150047749
    Abstract: A low alloy steel subjected to post weld heat treatment, containing, by mass percent, of C: 0.01 to 0.15%, Si: 3% or less, Mn: 3% or less, and Al: 0.08% or less, one or more kinds of elements selected from Ti, V and Nb: the range satisfying Formula (1), and the balance being Fe and impurities, wherein in the impurities, N: 0.01% or less, P: 0.05% or less, S: 0.03% or less, and O: 0.03% or less: 0.1×[C(%)]?[Ti(%)]+[V(%)]+0.5×[Nb(%)]?0.2??(1) where, the symbol of element in the formula represents the content (mass %) of each element. In the alloy steel, a HAZ subjected to PWHT, especially short-time PWHT, has excellent hydrogen embrittlement resistance in wet hydrogen sulfide environments or the like.
    Type: Application
    Filed: December 17, 2012
    Publication date: February 19, 2015
    Inventors: Hiroyuki Hirata, Tomohiko Omura, Kenji Kobayashi, Kaori Kawano, Kota Tomatsu, Kazuhiro Ogawa
  • Publication number: 20150050519
    Abstract: In a hot stamped steel, when [C] represents an amount of C (mass %), [Si] represents an amount of Si (mass %), and [Mn] represents an amount of Mn (mass %), an expression of 5×[Si]+[Mn])/[C]>10 is satisfied, a metallographic structure includes 80% or more of a martensite in an area fraction, and optionally, further includes one or more of 10% or less of a pearlite in an area fraction, 5% or less of a retained austenite in a volume ratio, 20% or less of a ferrite in an area fraction, and less than 20% of a bainite in an area fraction, TS×?, which is a product of TS that is a tensile strength and ? that is a hole expansion ratio is 50000 MPa·% or more, and a hardness of the martensite measured with a nanoindenter satisfies H2/H1<1.10 and ?HM<20.
    Type: Application
    Filed: January 11, 2013
    Publication date: February 19, 2015
    Inventors: Toshiki Nonaka, Satoshi Kato, Kaoru Kawasaki, Toshimasa Tomokiyo
  • Publication number: 20150047751
    Abstract: A high strength steel sheet is formed of steel having the composition containing by mass % over 0.015% and less than 0.100% C, less than 0.50% Si, over 1.0% and less than 2.0% Mn, 0.05% or less P, 0.03% or less S, 0.01% or more and 0.3% or less sol. Al, 0.005% or less N, less than 0.35% Cr, 0.0010% or more and 0.0050% or less B, less than 0.15% Mo, less than 0.030% Ti, and iron and unavoidable impurities as a balance, wherein the steel satisfies 2.1?[Mneq]?3.1, the microstructure of the steel includes a ferrite and a second phase, a volume fraction of the second phase is set to 2.0 to 12.0%, a total ratio of a volume fraction of martensite and a volume fraction of retained ? to the volume fraction of second phase is 60% or more, and the number of carbides which are present within ferrite particles, have an aspect ratio of 3.0 or less and have a diameter of 0.25 to 0.90 ?m is set to 10000 pieces/mm2 or less.
    Type: Application
    Filed: September 28, 2011
    Publication date: February 19, 2015
    Applicant: JFE Steel Corporation
    Inventors: Yoshihiko Ono, Kenji Takahashi, Kaneharu Okuda, Yusuke Fushiwaki, Michitaka Sakurai
  • Publication number: 20150041026
    Abstract: A method is provided with which a bearing steel, even when obtained from an ingot, is made to have a segregation part reduced in the degree of segregation and maximum inclusion diameter. The ingot contains 0.56-0.70 mass % C, 0.15-0.50 mass %, excluding 0.50 mass %, Si, 0.60-1.50 mass % Mn, 0.50-1.10 mass % Cr, 0.05-0.5 mass % Mo, up to 0.025 mass % P, up to 0.025 mass % S, 0.005-0.500 mass % Al, up to 0.0015 mass % O, and 0.0030-0.015 mass % N, with the remainder comprising Fe and incidental impurities. The ingot has a degree of segregation of 2.8 or less and a predicted value of the maximum diameter of inclusions present in 30,000 mm2 of the ingot, as calculated by extreme value statistics, of 60 ?m or less.
    Type: Application
    Filed: September 27, 2012
    Publication date: February 12, 2015
    Applicants: JFE STEEL CORPORATION, NTN CORPORATION
    Inventors: Minoru Honjo, Kiyoshi Uwai, Shinji Mitao
  • Patent number: 8951366
    Abstract: A high-strength cold-rolled steel sheet includes, by mass %, C: 0.10% to 0.40%, Mn: 0.5% to 4.0%, Si: 0.005% to 2.5%, Al: 0.005% to 2.5%, Cr: 0% to 1.0%, and a balance of iron and inevitable impurities, in which an amount of P is limited to 0.05% or less, an amount of S is limited to 0.02% or less, an amount of N is limited to 0.006% or less, the microstructure includes 2% to 30% of retained austenite by area percentage, martensite is limited to 20% or less by area percentage in the microstructure, an average particle size of cementite is 0.01 ?m to 1 ?m, and 30% to 100% of the cementite has an aspect ratio of 1 to 3.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: February 10, 2015
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Kohichi Sano, Chisato Wakabayashi, Hiroyuki Kawata, Riki Okamoto, Naoki Yoshinaga, Kaoru Kawasaki, Natsuko Sugiura, Nobuhiro Fujita