Beryllium Or Boron Containing Patents (Class 148/330)
  • Publication number: 20140360634
    Abstract: A hot rolled steel sheet having a chemical composition containing, by mass %, C: 0.04% or more and 0.20% or less, Si: 0.7% or more and 2.3% or less, Mn: 0.8% or more and 2.8% or less, P: 0.1% or less, S: 0.01% or less, Al: 0.1% or less, N: 0.008% or less, and the balance being Fe and inevitable impurities. The microstructure of the hot rolled steel sheet includes ferrite and pearlites, in which the area ratio of the ferrite is 75% or more and less than 95%, the mean grain size of the ferrite is 5 ?m or more and 25 ?m or less, the area ratio of pearlite is 5% or more and less than 25%, the mean grain size of pearlite is 2.0 ?m or more, and the mean free path of pearlite is 5 ?m or more.
    Type: Application
    Filed: August 9, 2012
    Publication date: December 11, 2014
    Applicant: JFE Steel Corporation
    Inventors: Yoshiyasu Kawasaki, Shinjiro Kaneko, Yasunobu Nagataki
  • Publication number: 20140352850
    Abstract: A cold-rolled steel sheet includes, by mass %: C: 0.020% or more and 0.080% or less, Si: 0.20% or more and 1.00% or less; Mn: 0.80% or more and 2.30% or less: and Al: 0.010% or more and 0.100% or less; and further includes: one or more of Nb and Ti which satisfy a requirement of 0.005%?Nb+Ti<0.030%, in which a structure consists of, ferrite, bainite, and other phases, an area ratio of the ferrite is 80% or more and less than 95%, an area ratio of a non-recrystallization ferrite in the ferrite is 1% or more and less than 10%, an area ratio of the bainite is 5% or more and 20% or less, a total amount of the other phases is less than 8%, an equivalent circle diameter of a carbonitride including one or both of Nb and Ti is 1 nm or more and 10 nm or less, and a tensile strength is 590 MPa or more.
    Type: Application
    Filed: February 6, 2013
    Publication date: December 4, 2014
    Inventors: Yusuke Kondo, Kunio Hayashi, Toshio Ogawa, Naoki Matsutani, Koichi Goto
  • Publication number: 20140352852
    Abstract: The steel sheet has a chemical composition containing, by mass %, C: 0.04-0.08%, Si: 0.50% or less, Mn: 0.8-2.2%, P: 0.02% or less, S: 0.006% or less, Al: 0.1% or less, N: 0.008% or less, and Cr: 0.05-0.8%, and further Nb: 0.01-0.08%, V: 0.001-0.12%, and Ti: 0.005-0.04% in adjusted amounts, with the balance including Fe and incidental impurities. The steel sheet has a surface layer having a microstructure containing bainite as a main phase, martensite as a second phase in a volume fraction of 0.5-4%, and at lease one of ferrite phase, pearlite, and cementite as a third phase in a total volume fraction of 10% or less.
    Type: Application
    Filed: December 21, 2012
    Publication date: December 4, 2014
    Inventors: Hiroshi Nakata, Tomoaki Shibata, Chikara Kami
  • Publication number: 20140338801
    Abstract: A high-strength hot-rolled steel sheet including a chemical composition containing, in percent by mass, 0.05% to 0.12% of C, 0.05% to 1.0% of Si, 0.5% to 1.8% of Mn, 0.04% or less of P, 0.0030% or less of S, 0.005% to 0.07% of Al, 0.006% or less of N, 0.05% to 0.15% of Ti, and the balance being Fe and incidental impurities, in which, in a region in the range of ? to ? of the sheet thickness, the content of Ti*, which is Ti existing as precipitates, is 0.3×[Ti] to 0.6×[Ti], where [Ti] is the Ti content, and the steel sheet has a microstructure in which the area fraction of the bainite phase in the entire structure is more than 95%.
    Type: Application
    Filed: December 26, 2012
    Publication date: November 20, 2014
    Applicant: JFE STEEL CORPORATION
    Inventors: Katsumi Nakajima, Hayato Saito, Yoshimasa Funakawa
  • Publication number: 20140342184
    Abstract: The present invention provides a high-strength steel sheet having a tensile strength of 980 MPa or more and also excellent bending property stably over the entire steel sheet, due to a predetermined chemical composition in combination with a specific microstructure wherein an average crystallized grain diameter of ferrite phase is 10 ?m or less, a volume fraction of ferrite phase is within the range from 30% to 70%, a volume fraction of the total of martensite and retained austenite phases is 10% or less, and a ratio of interphases each having an interphase nano-hardness difference within 4 GPa is 90% or more.
    Type: Application
    Filed: December 26, 2012
    Publication date: November 20, 2014
    Applicant: JFE STEEL CORPORATION
    Inventors: Shusaku Takagi, Shinjiro Kaneko
  • Publication number: 20140338802
    Abstract: Provided is a press-forming product manufacturing method of manufacturing a forming product having satisfactory formability for a drawing process by press-forming a metal sheet using a press-forming tool with high productivity, including: heating the metal sheet to a transformation temperature Ac1 or more; cooling the metal sheet to 600° C. or lower; forming the metal sheet by a forming tool; ending the forming process at a martensite transformation start temperature Ms or more; taking out the metal sheet from the forming tool; and cooling the metal sheet.
    Type: Application
    Filed: September 25, 2012
    Publication date: November 20, 2014
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Keisuke Okita, Junya Naitou, Shushi Ikeda
  • Publication number: 20140342185
    Abstract: A cold rolled steel sheet according to the present invention satisfies an expression of (5×[Si]+[Mn])/[C]>11 when [C] represents an amount of C by mass %, [Si] represents an amount of Si by mass %, and [Mn] represents an amount of Mn by mass %, a metallographic structure before hot stamping includes 40% to 90% of a ferrite and 10% to 60% of a martensite in an area fraction, a total of an area fraction of the ferrite and an area fraction of the martensite is 60% or more, a hardness of the martensite measured with a nanoindenter satisfies an H2/H1<1.10 and ?HM<20 before the hot stamping, and TS×? which is a product of a tensile strength TS and a hole expansion ratio ? is 50000 MPa·% or more.
    Type: Application
    Filed: January 11, 2013
    Publication date: November 20, 2014
    Inventors: Toshiki Nonaka, Satoshi Kato, Kaoru Kawasaki, Toshimasa Tomokiyo
  • Patent number: 8888933
    Abstract: This high-strength steel sheet includes: in terms of percent by mass, 0.03 to 0.10% of C; 0.01 to 1.5% of Si; 1.0 to 2.5% of Mn; 0.1% or less of P; 0.02% or less of S; 0.01 to 1.2% of Al; 0.06 to 0.15% of Ti; and 0.01% or less of N; and contains as the balance, iron and inevitable impurities, wherein a tensile strength is in a range of 590 MPa or more, and a ratio between the tensile strength and a yield strength is in a range of 0.80 or more, a microstructure includes bainite at an area ratio of 40% or more and the balance being either one or both of ferrite and martensite, a density of Ti(C,N) precipitates having sizes of 10 nm or smaller is in a range of 1010 precipitates/mm3 or more, and a ratio (Hvs/Hvc) of a hardness (Hvs) at a depth of 20 ?m from a surface to a hardness (Hvc) at a center of a sheet thickness is in a range of 0.85 or more.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: November 18, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Kunio Hayashi, Toshimasa Tomokiyo, Nobuhiro Fujita, Naoki Matsutani, Koichi Goto
  • Publication number: 20140332122
    Abstract: A high carbon hot rolled steel sheet having a chemical composition containing by mass %, C: 0.20% to 0.48%, Si: 0.1% or less, Mn: 0.5% or less, P: 0.03% or less, S: 0.01% or less, Al: 0.1% to 0.6%, Cr: 0.05% to 0.5%, B: 0.0005% to 0.0050%, Ca: 0.0010% to 0.0050%, and the remainder composed of Fe and incidental impurities, on a percent by mass basis, where the average amount of N in a surface layer portion from the surface to the position at a depth of 0.1 mm in thickness direction is 0.1% or more and the average amount of N in the central portion in thickness is 0.01% or less, and a microstructure composed of ferrite and carbides, wherein the average grain size of the ferrite is 10 to 20 and the spheroidization ratio of the carbides is 90% or more.
    Type: Application
    Filed: December 26, 2012
    Publication date: November 13, 2014
    Applicant: JFE STEEL CORPORATION
    Inventors: Nobuyuki Nakamura, Takashi Kobayashi, Yoshimasa Funakawa
  • Publication number: 20140332119
    Abstract: A high strength cold rolled steel sheet has a chemical composition including, by mass %, C: 0.06 to 0.13%, Si: 1.2 to 2.3%, Mn: 0.6 to 1.6%, P: not more than 0.10%, S: not more than 0.010%, Al: 0.01 to 0.10% and N: not more than 0.010%, the balance comprising Fe and inevitable impurities. The steel sheet includes a microstructure containing not less than 90% in terms of volume fraction of ferrite with an average grain diameter of less than 20 ?m and 1.0 to 10% in terms of volume fraction of pearlite with an average grain diameter of less than 5 ?m. The ferrite has an average Vickers hardness of not less than 130. The steel sheet has a yield ratio of not less than 65% and a tensile strength of not less than 590 MPa.
    Type: Application
    Filed: December 3, 2012
    Publication date: November 13, 2014
    Applicant: JFE STEEL CORPORATION
    Inventors: Katsutoshi Takashima, Yuki Toji, Kohei Hasegawa
  • Patent number: 8882941
    Abstract: An aspect of the present disclosure relates to an alloy composition, which may include 52 atomic percent to 68 atomic percent iron, 13 to 21 atomic percent nickel, 2 to 12 atomic percent cobalt, 10 to 19 atomic percent boron, optionally 1 to 5 atomic percent carbon, and optionally 0.3 to 16 atomic percent silicon. The alloy may include 5 to 95% by volume of one or more spinodal microconstituents, wherein the microconstituents exhibit a length scale less than 50 nm in a glass matrix.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: November 11, 2014
    Assignee: The NanoSteel Company, Inc.
    Inventors: Daniel James Branagan, Jeffrey E. Shield, Alla V. Sergueeva
  • Patent number: 8882937
    Abstract: The invention relates to a steel material composition, in particular for producing piston rings and cylinder sleeves, containing the following elements in the given fractions in relation to 100% by weight of the steel material: 0.03-2.0% by weight B, 0.5-1.2% by weight C, 70.1-97.3% by weight Fe, 0.1-3.0% by weight Mn and 2.0-10.0% by weight Si. Said composition can be produced by melting the starting materials and casting the melt in a pre-fabricated mold.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: November 11, 2014
    Assignee: Federal-Mogul Burscheid GmbH
    Inventor: Laszlo Pelsoeczy
  • Publication number: 20140326369
    Abstract: Provided are a steel for a mechanical structure for cold working, and a method for manufacturing the same, whereby softening and variations in hardness can be reduced even when a conventional spheroidizing annealing process is performed. A steel having a predetermined chemical composition, the total area ratio of pearlite and pro-eutectoid ferrite being at least 90 area % with respect to the total metallographic structure of the steel, the area ratio (A) of pro-eutectoid ferrite satisfying the relationship A>Ae with an Ae value expressed by a predetermined relational expression, the average equivalent circular diameter of bcc-Fe crystal grains being 15-35 ?m, and the average of the maximum grain diameter and the second largest grain diameter of the bcc-Fe crystal grains being 50 ?m or less in terms of equivalent circular diameter.
    Type: Application
    Filed: December 11, 2012
    Publication date: November 6, 2014
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
    Inventors: Kouji Yamashita, Takehiro Tsuchida, Masamichi Chiba
  • Patent number: 8876986
    Abstract: Disclosed is a high-strength cold-rolled steel sheet having improved stretch-flange formability and excellent hydrogen embrittlement resistance. In addition to Fe, C, Si, Mn, P, S, N, and Al, the steel sheet contains V or at least one element of Nb, Ti and Zr. The contents of the at least one element of Nb, Ti and Zr, if present, satisfy the expression of [% C]?[% Nb]/92.9×12?[% Ti]/47.9×12?[% Zr]/91.2×12>0.03. The steel sheet has an area ratio of tempered martensite of 50% or more with ferrite as the remainder. The number of precipitates having a circle-equivalent diameter of 1 to 10 nm is 20 particles or more per 1 ?m2 of the tempered martensite. The number of precipitates containing V or the at least one element of Nb, Ti and Zr and having a circle-equivalent diameter of 20 nm or more is 10 particles or less per 1 ?m2 of the tempered martensite.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: November 4, 2014
    Assignee: Kobe Steel, Ltd.
    Inventors: Hideo Hata, Toshio Murakami, Akira Ibano, Fumio Yuse, Junichiro Kinugasa
  • Patent number: 8876987
    Abstract: A high strength pressed member has excellent ductility and stretch flangeability and tensile strength of 780-1400 MPa, with a predetermined steel composition and steel microstructure relative to the entire microstructure of steel sheet, where area ratio of martensite 5-70%, area ratio of retained austenite 5-40%, area ratio of bainitic ferrite in upper bainite 5% or more, and total thereof is 40% or more, 25% or more of martensite is tempered martensite, polygonal ferrite area ratio is above 10% and below 50% to the entire microstructure of steel sheet, and average grain size is 8 ?m or less, average diameter of a group of polygonal ferrite grains is 15 ?m or less, the group of polygonal ferrite grains represented by a group of ferrite grains of adjacent polygonal ferrite grains, and average carbon content in retained austenite is 0.70 mass % or more and tensile strength is 780 MPa or more.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: November 4, 2014
    Assignee: JFE Steel Corporation
    Inventors: Hiroshi Matsuda, Yoshimasa Funakawa, Kaneharu Okuda, Kazuhiro Seto
  • Patent number: 8876988
    Abstract: The present invention provides a steel for nitriding with a composition including, by mass %: C: 0.10% to 0.20%; Si: 0.01% to 0.7%; Mn: 0.2% to 2.0%; Cr: 0.2% to 2.5%; Al: 0.01% to less than 0.19%; V: over 0.2% to 1.0%; Mo: 0% to 0.54%; N: 0.001% to 0.01%; P limited to not more than 0.05%; S limited to not less than 0.2%; and a balance including Fe and inevitable impurities, the composition satisfying 2?[V]/[C]?10, where [V] is an amount of V by mass % and [C] is an amount of C by mass %, in which the steel for nitriding has a microstructure containing bainite of 50% or more in terms of an area percentage.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: November 4, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Tetsushi Chida, Manabu Kubota, Toshimi Tarui, Daisuke Hirakami, Masayuki Hashimura
  • Publication number: 20140322559
    Abstract: A flat steel product having a tensile strength of at least 1200 MPa and consists of steel containing (wt %) C: 0.10-0.50%, Si: 0.1-2.5%, Mn: 1.0-3.5%, Al: up to 2.5%, P: up to 0.020%, S: up to 0.003%, N: up to 0.02%, and optionally one or more of the elements “Cr, Mo, V, Ti, Nb, B and Ca” in the quantities: Cr: 0.1-0.5%, Mo: 0.1-0.3%, V: 0.01-0.1%, Ti: 0.001-0.15%, Nb: 0.02-0.05%, wherein ?(V, Ti, Nb)?0.2% for the sum of the quantities of V, Ti and Nb, B: 0.0005-0.005%, and Ca: up to 0.01% in addition to Fe and unavoidable impurities. The flat steel product has a microstructure with (in surface percent) less than 5% ferrite, less than 10% bainite, 5-70% untempered martensite, 5-30% residual austenite, and 25-80% tempered martensite, at least 99% of the iron carbide contained in the tempered martensite having a size of less than 500 nm.
    Type: Application
    Filed: May 16, 2012
    Publication date: October 30, 2014
    Applicant: Thyssenkrupp Steel Europe AG
    Inventors: Jens-Ulrik Becker, Jian Bian, Thomas Heller, Rudolf Schoenenberg, Richard G. Thiessen, Sabine Zeizinger, Thomas Rieger, Oliver Bulters
  • Patent number: 8864920
    Abstract: A high strength wire rod in which an area fraction of pro-eutectoid ferrite is 3% or less and an area fraction of pearlite structure is 90% or more, being obtained by subjecting a hard steel wire rod having specified composition to a molten salt patenting treatment directly after hot-rolling or after performing re-austenitization subsequent to hot-rolling.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: October 21, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Shingo Yamasaki, Arata Iso, Seiki Nishida
  • Patent number: 8864922
    Abstract: A method for manufacturing a precipitation hardening cold-rolled steel sheet with an excellent yield ratio. The method may include the steps of hot rolling a steel slab with finish rolling at a temperature of Ar3 transformation point or more to form a hot-rolled steel sheet, coiling the hot-rolled steel sheet at a temperature of 550-600 ° C., cold rolling the hot-rolled steel sheet at a reduction ratio of 50% or more; and recovery-recrystallization annealing the cold-rolled steel sheet at a line speed of 150-200 mpm and at a temperature of 780-820° C. in a continuous annealing furnace. The recovery-recrystallization annealing may provide a recrystallization ratio of 65-75%. The steel slab includes, by weight %: C: 0.07-0.10%, Mn: 1.41-1.70%, P: 0.05-0.07%, S: 0.005% or less, N: 0.005% or less, acid-soluble Al: 0.10-0.15%, Nb: 0.06-0.09%, B: 0.0008-0.0012%, Sb: 0.02-0.06%, and the balance comprising Fe and other unavoidable impurities.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: October 21, 2014
    Assignee: POSCO
    Inventor: Sang-Ho Han
  • Publication number: 20140305550
    Abstract: A high strength hot rolled steel sheet has a matrix that has a ferrite phase with an area ratio of 95% or more with respect to an overall structure; and a structure where a fine carbide is dispersedly precipitated, the fine carbide containing Ti and V having an average particle size of less than 10 nm in the matrix, the fine carbide has a volume fraction of 0.0050 or more with respect to the overall structure, a proportion of a number of carbides with a particle size of 30 nm or more containing Ti is less than 10% with respect to a total number of carbides, the high strength hot rolled steel sheet has a tensile strength of 980 MPa or more.
    Type: Application
    Filed: November 6, 2012
    Publication date: October 16, 2014
    Inventors: Tamako Ariga, Yoshimasa Funakawa, Yasunobu Uchida
  • Patent number: 8859095
    Abstract: Provided is a wire rod contains, in mass %: C: 0.6 to 1.1%; Si: 0.1 to 0.5%; Mn: 0.2 to 0.6%; S: 0.004 to 0.015%; and, Cr: 0.02 to less than 0.05%; with a balance including Fe and inevitable impurities in which P is limited to 0.02% by mass or lower and Al is limited to 0.003% by mass or lower; the wire rod has a pearlite in a surface thereof; and, the wire rod has, in a peripheral portion in a cross section thereof, a {110} crystal plane of ferrite in the pearlite, an accumulation degree of the crystal plane being 1.2 or more.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: October 14, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Seiki Nishida, Nariyasu Muroga, Hitoshi Demachi
  • Publication number: 20140299235
    Abstract: Disclosed herein are embodiments of a seamless quenched and tempered steel pipe having a wall thickness (WT) higher than or equal to 35 mm and lower than or equal to 80 mm. Embodiments of the steel pipe can comprise C, Mn, Cr, Ni, Mo, Al, Ca, N, Nb, Ti, Zr, and Ta. Further, for some embodiments of the steel pipe wherein, defining a first parameter P1=50×C+Cr+10×Mo+70×V, the chemical composition can satisfy a first condition P1?8.0.
    Type: Application
    Filed: April 8, 2014
    Publication date: October 9, 2014
    Applicant: Dalmine S.p.A.
    Inventors: Ettore Anelli, Emanuele Paravicini Bagliani, Stefano Fare
  • Publication number: 20140299236
    Abstract: Disclosed herein are embodiments of a seamless quenched and tempered steel pipe which can have a wall thickness WT higher than or equal to 6 mm and lower than or equal to 35 mm. Some embodiments of the steel pipe can have a chemical composition comprising C, Mn, Si, Cr, Ni, Mo, Al, N, Ca, Nb, Ti, V, Zr, and Ta based on the composition weight, the remaining being iron and impurities. In some embodiments, wherein (V+Nb) content is lower than 0.07 wt %; defining a first parameter P1=(60×C)+Cr+[5×e(35×Mo/WT)]+50×(V+Nb), the chemical composition satisfies a first condition P1?14.5.
    Type: Application
    Filed: April 8, 2014
    Publication date: October 9, 2014
    Applicant: Dalmine S.p.A.
    Inventors: Ettore Anelli, Emanuele Paravicini Bagliani, Stefano Fare, José Enrique Garcia Gonzales, Victor Blancas Garcia, Héctor Manuel Quintanilla Carmona
  • Publication number: 20140299238
    Abstract: A hot rolled steel sheet has a chemical composition including, by mass %, C: 0.060% to 0.120%; Si: 0.10% to 0.70%; Mn: 1.00% to 1.80%; P: 0.10% or less; S: 0.010% or less; Al: 0.01% to 0.10%; N: 0.010% or less; Nb: 0.010% to 0.100%, wherein Nb is contained so that content of solute Nb is 5% or more relative to the total Nb content; the balance being Fe and incidental impurities. The hot rolled steel sheet has a microstructure containing ferrite of not more than 15 ?m in average crystal grain diameter by a volume fraction of not less than 75%, the balance being low-temperature-induced phases. The hot rolled steel sheet can be suitably utilized for manufacturing a cold rolled steel sheet or hot-dip galvanized steel sheet having a tensile strength of 590 MPa or more, excellent in material homogeneity and capable of giving excellent cold rolling property.
    Type: Application
    Filed: September 27, 2012
    Publication date: October 9, 2014
    Applicant: JEF Steel Corporation
    Inventors: Katsutoshi Takashima, Yuki Toji, Kohei Hasegawa, Shinya Yamaguchi
  • Publication number: 20140295210
    Abstract: A hot rolled steel sheet includes a composition including: C: 0.03% to less than 0.07%; Si: 0.3% or less; Mn: 0.5% to 2.0%; P: 0.025% or less; S: 0.005% or less; N: 0.0060% or less; Al: 0.1% or less; Ti: 0.07% to 0.11%; and V: 0.08% to less than 0.15% on a mass percent basis, such that Ti and V contents satisfy: 0.18?Ti+V?0.24 (where Ti and V are contents of the elements (by mass %)), the balance including Fe and inevitable impurities, a matrix having a ferrite phase with an area ratio of 95% or more; and a structure where fine carbide is dispersedly precipitated in the matrix, the fine carbide containing Ti and V has an average particle size of less than 10 nm, and a volume fraction of the fine carbide is 0.0020 or more, wherein the steel sheet has a tensile strength of 780 MPa or more.
    Type: Application
    Filed: November 6, 2012
    Publication date: October 2, 2014
    Inventors: Tamako Ariga, Yoshimasa Funakawa, Noriaki Moriyasu
  • Publication number: 20140290807
    Abstract: A low yield ratio and high-strength hot rolled steel sheet having a composition containing, on a mass percent basis, 0.03% to 0.10% C, 0.10% to 0.50% Si, 1.4% to 2.2% Mn, 0.005 % to 0.10% Al, 0.02% to 0.10% Nb, 0.001% to 0.030% Ti, 0.05% to 0.50% Mo, 0.05% to 0.50% Cr, and 0.01% to 0.50% Ni, in which Moeq preferably satisfies the range of 1.4% to 2.2%; and a microstructure including a main phase that contains bainitic ferrite having an average grain size of 10 ?m or less and a secondary phase that contains massive martensite having an aspect ratio of less than 5.0 in an area ratio of 1.4% to 15%.
    Type: Application
    Filed: June 13, 2012
    Publication date: October 2, 2014
    Applicant: JFE Steel Corporation
    Inventors: Sota Goto, Hiroshi Nakata, Chikara Kami, Toshifumi Abe, Takato Tamai
  • Patent number: 8840834
    Abstract: An ultra-high strength steel sheet has a tensile strength of 1400 MPa or higher that can achieve both high strength and good formability and an advantageous method for manufacturing the steel sheet and includes a composition including, on a mass basis C: 0.12% or more and 0.50% or less; Si: 2.0% or less; Mn: 1.0% or more and 5.0% or less; P: 0.1% or less; S: 0.07% or less; Al: 1.0% or less; and N: 0.008% or less, with the balance Fe and incidental impurities. The steel microstructure includes, on an area ratio basis, 80% or more of autotempered martensite, less than 5% of ferrite, 10% or less of bainite, and 5% or less of retained austenite; and the mean number of precipitated iron-based carbide grains each having a size of 5 nm or more and 0.5 ?m or less and included in the autotempered martensite is 5×104 or more per 1 mm2.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: September 23, 2014
    Assignee: JFE Steel Coporation
    Inventors: Hiroshi Matsuda, Reiko Mizuno, Yoshimasa Funakawa, Yasushi Tanaka
  • Publication number: 20140261919
    Abstract: A low carbon-high manganese steel sheet and process for manufacturing the sheet is provided. The process includes soaking a steel slab with a desired chemical composition within a temperature range of 1200-1350° C., followed by hot rolling of the slab into hot strip. The cold rolled sheet is continuously annealed within a temperature range of 730-850° C. and temper rolled between 1.0-2.0%. The temper rolled sheet has a yield strength greater than 280 megapascals (MPa), a tensile strength greater than 400 MPa, an elongation to fracture greater than 30%, an n-value greater than 0.15, and a bakehard index between 15-35 MPa.
    Type: Application
    Filed: February 25, 2014
    Publication date: September 18, 2014
    Applicant: THYSSENKRUPP STEEL USA, LLC
    Inventors: Chris John Paul Samuel, Bertram Wilhelm Ehrhardt, Joseph Frimpong, Stanley Wayne Bevans
  • Publication number: 20140261916
    Abstract: A high strength-high ductility cold rolled steel sheet is provided. The steel sheet has a recovery annealed microstructure, a yield strength greater than 820 megapascals (MPa) and a percent elongation to failure greater than 3.5%. In some instances, the steel alloy sheet has a Rockwell B hardness greater than 100 and may or may not exhibit a yield strength-to-tensile strength ratio between 0.25 and 1.00.
    Type: Application
    Filed: July 18, 2013
    Publication date: September 18, 2014
    Inventors: Chris John Paul Samuel, Marisa Vann, Bertram Wilhelm Ehrhardt, Stanley Wayne Bevans
  • Publication number: 20140261915
    Abstract: A process for producing high strength steel is provided. The process includes providing a steel slab having a chemical composition in weight percent within a range of 0.025-0.07 C, 1.20-1.70 Mn, 0.050-0.085 Nb, 0.022 max Ti, 0.065 max N, 0.0040 max S, 0.10-0.45 Si, 0.070 max P, with the balance being Fe and incidental impurities. The steel slab is soaked within a temperature range of 1150-1230° C., hot rolled using a roughing treatment in order to produce a transfer bar and further hot rolled using a finishing treatment in order to produce hot rolled strip. The hot rolled strip is cooled using a cooling rate between 10-100° C./second (sec) and coiled within a temperature range of 580-400° C. Finally, the coiled hot rolled strip has a yield strength of at least 80 ksi and a DWTT transition temperature equal or less than ?20° C.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: AM/NS CALVERT LLC
    Inventors: Bertram Wilhelm Ehrhardt, Chris John Paul Samuel, Ranbir Singh Jamwal, Gerald McGloin, Stanley Wayne Bevans, Markus Wilhelm Forsch, Rudolf Schonenberg
  • Publication number: 20140261918
    Abstract: Improved steel compositions and methods of making the same are provided. The present disclosure provides advantageous wear resistant steel. More particularly, the present disclosure provides high manganese (Mn) steel having enhanced wear resistance, and methods for fabricating high manganese steel compositions having enhanced wear resistance. The advantageous steel compositions/components of the present disclosure improve one or more of the following properties: wear resistance, ductility, crack resistance, erosion resistance, fatigue life, surface hardness, stress corrosion resistance, fatigue resistance, and/or environmental cracking resistance. In general, the present disclosure provides high manganese steels tailored to resist wear and/or erosion.
    Type: Application
    Filed: March 4, 2014
    Publication date: September 18, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: HyunWoo Jin, Ning Ma, Raghavan Ayer, Russell Robert Mueller, Hak-Cheol Lee, Jong-Kyo Choi, In-Shik Suh
  • Publication number: 20140261906
    Abstract: A bearing steel includes, as a metallographic structure, inclusions which contain complex oxysulfides including Rare Earth Metal, Ca, O, S, and Al, TiN, MnS, Al2O3, and complex oxides including Al and Ca, wherein, a number fraction of the complex oxysulfides in a total number of the inclusions is 50% to less than 100% and a number of complex oxysulfides having a major axis of 5 ?m or more is 0.001 pieces to 2 pieces in an observed section of 1 mm2, and a number of TiN existing independently from the complex oxysulfides and having a major axis of 5 ?m or more is 0.001 pieces to less than 1.0 piece in an observed section of 1 mm2.
    Type: Application
    Filed: October 5, 2012
    Publication date: September 18, 2014
    Inventors: Masayuki Hashimura, Masafumi Miyazaki, Hideaki Yamamura, Takahisa Suzuki, Takashi Fujita
  • Publication number: 20140251512
    Abstract: Embodiments of the present disclosure are direct to a low-carbon chromium steel, and methods for manufacturing said steel, having a low vanadium concentration. In some embodiments, the steel can have high corrosion resistance while retaining adequate strength and toughness. The steel can be manufactured through an austenitization process, followed by quenching at a controlled cooling rate, and tempering to form about 5 to 10% bainite, while limiting formation of chromium rich carbides.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Applicant: Tenaris Connections Limited
    Inventors: Gonzalo R. Gomez, Claudio P. Morales, Guillermo P. Echaniz, Gustavo G. Kissner
  • Publication number: 20140251513
    Abstract: A high-strength hot rolled steel sheet with excellent bendability and low-temperature toughness includes a chemical composition including, in mass %, C: 0.08 to 0.25%, Si: 0.01 to 1.0%, Mn: 0.8 to 2.1%, P: not more than 0.025%, S: not more than 0.005% and Al: 0.005 to 0.10%, the balance including Fe and inevitable impurities, and a microstructure having a bainite phase and/or a tempered martensite phase as a main phase, the average grain diameter of prior austenite grains being not more than 20 ?m as measured with respect to a cross section parallel to a rolling direction and not more than 15 ?m as measured with respect to a cross section perpendicular to the rolling direction.
    Type: Application
    Filed: October 31, 2012
    Publication date: September 11, 2014
    Inventors: Chikara Kami, Kazuhiko Yamazaki
  • Patent number: 8828153
    Abstract: A high-strength cold-rolled steel sheet providing a product with a good surface condition after press forming, having excellent bake hardenability and anti room temperature aging property, and having a dual phase structure with a tensile strength of at least 340 MPa is provided. A high-strength cold-rolled steel sheet has a structure comprising a main phase which is a ferrite and a secondary phase which is a low temperature transformation product including a martensite and has a hardness distribution of the ferrite phase in an arbitrary cross section having a length of 10 mm in the widthwise 10 direction of the sheet which satisfies the relationship prescribed by (HV(max)?HV(ave))<0.5×(Hv(ave). HV(max) is the maximum Vickers hardness of ferrite grains in a region at a distance of from (?)t to (¼)t in the thickness direction from the surface when the thickness of the high-strength cold-rolled steel sheet is t, and Hv(ave) is the average Vickers hardness of ferrite grains in this region.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: September 9, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Jun Haga, Nobusato Kojima
  • Publication number: 20140246131
    Abstract: A high-tensile steel plate has a chemical composition containing, by mass, specific amounts of C, Mn, Si, P, S, Al, Ni, B, N, one or more elements selected from Cr, Mo, V, Cu, Ti, and Ca as needed, Ceq?0.80, and a center-segregation zone hardness index HCS satisfying 5.5[C]4/3+15[P]+0.90[Mn]+0.12[Ni]+0.53[Mo]?2.5. The hardness of a center-segregation zone satisfies HVmax/HVave?1.35+0.006/C?t/750. A steel having the above-described chemical composition is subjected to hot rolling at a specific slab-heating temperature at a specific rolling reduction ratio, subsequently reheated, cooled at a cooling rate of 0.3° C./s or more until the temperature of a central portion in a plate-thickness direction reaches 350° C. or less, and tempered to a specific temperature range.
    Type: Application
    Filed: October 1, 2012
    Publication date: September 4, 2014
    Applicant: JFE STEEL CORPORATION
    Inventors: Masao Yuga, Shigeki Kitsuya, Kenji Hayashi, Minoru Suwa
  • Publication number: 20140246128
    Abstract: Provided is a hot-rolled steel sheet that has a chemical composition including, by mass %: C: 0.060% to 0.150%; Si: 0.15% to 0.70%; Mn: 1.00% to 1.90%; P: 0.10% or less; S: 0.010% or less; Al: 0.01% to 0.10%; N: 0.010% or less; Nb: 0.010% to 0.100%; and the balance including Fe and incidental impurities. The hot-rolled steel sheet has a microstructure containing ferrite of 18 ?m or less in average grain size by a volume fraction of at least 75% and pearlite of at least 2 ?m in average grain size by a volume fraction of at least 5%, the balance being low-temperature-induced phases, the pearlite having a mean free path of at least 5.0 ?m.
    Type: Application
    Filed: September 27, 2012
    Publication date: September 4, 2014
    Inventors: Katsutoshi Takashima, Yuki Toji, Kohei Hasegawa
  • Publication number: 20140241829
    Abstract: A steel wire for high-strength bolts is used for a non heat-treatment bolt with an excellent cold forgeability for which quenching and tempering steps have been omitted after bolt formation, and which has a tensile strength of 1200 MPa or more and an excellent delayed fracture resistance. The steel wire includes C, Si, Mn, P, S, Cr, Al, N, and B, at least one selected from the group consisting of Ti, V, and Nb with the balance consisting of iron and inevitable impurities. The steel wire has a microstructure wherein ferrite and perlite have a total area rate of 98% or more, perlite lamellar spacing is 250 nm or less, and an area rate of the perlite is more than 40%, and 80% or less. The steel wire has a tensile strength of 1300 MPa or less.
    Type: Application
    Filed: October 1, 2012
    Publication date: August 28, 2014
    Applicants: SUGITA WIRE, LTD., Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Masamichi Chiba, Yousuke Matsumoto, Ichiro Sugita, Masaru Tanimoto
  • Publication number: 20140242416
    Abstract: A high strength pressed member has excellent ductility and stretch flangeability and tensile strength of 780-1400 MPa, with a predetermined steel composition and steel microstructure relative to the entire microstructure of steel sheet, where area ratio of martensite 5-70%, area ratio of retained austenite 5-40%, area ratio of bainitic ferrite in upper bainite 5% or more, and total thereof is 40% or more, 25% or more of martensite is tempered martensite, polygonal ferrite area ratio is above 10% and below 50% to the entire microstructure of steel sheet, and average grain size is 8 ?m or less, average diameter of a group of polygonal ferrite grains is 15 ?m or less, the group of polygonal ferrite grains represented by a group of ferrite grains of adjacent polygonal ferrite grains, and average carbon content in retained austenite is 0.70 mass % or more and tensile strength is 780 MPa or more.
    Type: Application
    Filed: October 2, 2012
    Publication date: August 28, 2014
    Inventors: Hiroshi Matsuda, Yoshimasa Funakawa, Kaneharu Okuda, Kazuhiro Seto
  • Publication number: 20140242414
    Abstract: The present invention provides a high-strength steel sheet excellent in shape fixability. The high-strength steel sheet contains C, Si, Mn, P, S, Al, N, and O with predetermined contents, in which a retained austenite phase of 5 to 20% in volume fraction is contained, an amount of solid-solution C contained in the retained austenite phase is 0.80 to 1.00% in mass %, WSi? is 1.10 times or more WSi*, WMn? is 1.10 times or more WMn*, and when a frequency distribution is measured with respect to a sum of a ratio between WSi and WSi* and a ratio between WAl and WAl*, a mode value of the frequency distribution is 1.95 to 2.05, and a kurtosis is 2.00 or more.
    Type: Application
    Filed: July 27, 2012
    Publication date: August 28, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Akinobu Minami, Hiroyuki Kawata, Akinobu Murasato, Yuji Yamaguchi, Natsuko Sugiura, Takuya Kuwayama, Naoki Maruyama, Takamasa Suzuki
  • Patent number: 8815024
    Abstract: The present invention provides steel plate or steel pipe with small occurrence of the Bauschinger effect and methods of production of the same, particularly steel pipe used for steel pipe for oil wells or line pipe with a small drop in the compression strength in the circumferential direction due to the Bauschinger effect when expanded and methods of production of the same, that is steel plate or steel pipe with small occurrence of the Bauschinger effect characterized by having a dual-phase structure substantially comprising a ferrite structure and fine martensite which is dispersed in the ferrite structure. Further, this steel plate or steel pipe contains, by mass %, C: 0.03 to 0.30%, Si: 0.01 to 0.8%, Mn: 0.3 to 2.5%, P: 0.03% or less, S: 0.01% or less, Al: 0.001 to 0.01%, and N: 0.01% or less and a balance of iron and unavoidable impurities.
    Type: Grant
    Filed: February 15, 2005
    Date of Patent: August 26, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Hitoshi Asahi, Eiji Tsuru
  • Patent number: 8815026
    Abstract: A high strength galvanized steel sheet having a TS of 780 MPa or more and exhibiting excellent stretch frangeability and bendability and a method for manufacturing the same are provided. The component composition contains C: 0.05% to 0.15%, Si: 0.8% to 2.5%, Mn: 1.5% to 3.0%, P: 0.001% to 0.05%, S: 0.0001% to 0.01%, Al: 0.001% to 0.1%, N: 0.0005% to 0.01%, Cr: 0.1% to 1.0%, Ti: 0.0005% to 0.1%, B: 0.0003% to 0.003%, and the remainder composed of iron and incidental impurities, on a percent by mass basis. The microstructure includes 30% or more of ferrite phase and 30% or more, and 70% or less of martensite phase on an areal fraction basis, wherein regarding the above-described martensite phase, the proportion of a tempered martensite phase is 20% or more relative to the whole martensite phase and the proportion of a martensite phase having a grain diameter of 1 ?m or less is 10% or less relative to the whole martensite phase.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: August 26, 2014
    Assignee: JFE Steel Corporation
    Inventors: Shinjiro Kaneko, Yoshiyasu Kawasaki, Saiji Matsuoka, Yoshitsugu Suzuki, Koji Maitake
  • Publication number: 20140230971
    Abstract: A method for manufacturing the high strength steel sheet having excellent formability includes hot-rolling a steel slab having a chemical composition containing, by mass %, C: 0.03% or more and 0.35% or less, Si: 0.5% or more and 3.0% or less, Mn: 3.5% or more and 10.0% or less, P: 0.1% or less, S: 0.01% or less, N: 0.008% or less and the balance comprising Fe and inevitable impurities, coiling the hot-rolled steel sheet at a temperature range of the Ar1 transformation point to the Ar1 transformation point+(the Ar3 transformation point?the Ar1 transformation point)/2, cooling the coiled steel sheet down to 200° C. or lower, heating and holding the cooled steel sheet at a temperature range of the Ac1 transformation point?200° C.
    Type: Application
    Filed: September 10, 2012
    Publication date: August 21, 2014
    Applicant: JFE Steel Corporation
    Inventors: Yoshiyasu Kawasaki, Hiroshi Hasegawa, Tatsuya Nakagaito, Yasunobu Nagataki
  • Publication number: 20140230969
    Abstract: Provided is a TRIP-aided dual-phase martensitic steel which is excellent in terms of strength-elongation balance and Charpy impact value and has dual-phase martensite composed of a soft lath martensitic structure and a hard lath martensitic structure as a matrix phase, regardless of forging temperature or forging reduction ratio, by controlling heat treatment conditions. The dual-phase martensitic steel contains 0.1-0.7% C, 0.5-2.5% Si, 0.5-3.0% Mn, 0.5-2.0% Cr, 0.5% or less (including 0%) of Mo, 0.04-2.5% Al, and the balance Fe with incidental impurities; has its metallographic structure in which a matrix phase is composed of a soft lath martensitic structure and a hard lath martensitic structure; and obtained by heating its raw steel material to a ?-range, rapidly cooling the heated material to a temperature slightly above a martensite transformation starting temperature (Ms), and then performing an isothermal transformation process the cooled material in the temperature range from Mf to [(Mf)?100° C].
    Type: Application
    Filed: March 14, 2012
    Publication date: August 21, 2014
    Applicants: USUI KOKUSAI SANGYO KAISHA LIMITED, SHINSU UNIVERSITY
    Inventors: Koh-ichi Sugimoto, Junya Kobayashi, Nobuo Yoshikawa, Yuji Nakajima, Teruhisa Takahashi, Goro Arai
  • Publication number: 20140230973
    Abstract: A steel sheet of the present invention has a steel structure obtained by performing a soaking at a dual phase region temperature of Ac1 temperature or higher and lower than Ac3 temperature for a soaking time of 15 seconds or longer and 35 seconds or shorter, next, performing a primary cooling to a temperature range of 250° C. or higher and 380° C. or lower within 3 seconds at a cooling rate of 0.5° C./s or more and 30° C./s or less, and performing a retention in a temperature range of 260° C. or higher and 370° C. or lower for 180 seconds or longer and 540 seconds or shorter, in which a yield ratio is 65% or less and tensile strength is 590 MPa or more after the primary cooling.
    Type: Application
    Filed: October 5, 2012
    Publication date: August 21, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yuji Fukumoto, Takashi Aramaki, Junichi Yasui, Norimitsu Harada
  • Publication number: 20140227553
    Abstract: Disclosed are a preparation method of a steel product capable of local reinforcement using laser heat treatment, and a heat hardened steel used in the method. According to the present invention, the preparation method of a steel part comprises the following steps: (a) preparing a material comprising 0.1-0.5 wt % of C, 0.1-0.5 wt % of Si, 0.5-3.0 wt % of Mn, 0.1 wt % or less of P, 0.05 wt % or less of S, 0.01-1.0 wt % of Cr, 0.1 wt % or less of Al, 0.2 wt % or less of Ti, 0.0005-0.08 wt % of B, and the balance of Fe and inevitable impurities; (b) preparing a formed product by forming the material into a predetermined shape; and (c) locally reinforcing the high strength portion by carrying out laser heat treatment on a portion requiring high strength at the formed product.
    Type: Application
    Filed: October 17, 2011
    Publication date: August 14, 2014
    Applicant: HYUNDAI HYSCO
    Inventors: Hee-Joong Im, Seung-Man Nam, Bo-Ryong Lee, Kyung-Bo Kim, Youn-Il Jung
  • Publication number: 20140216609
    Abstract: A steel material containing 0.01% to 0.07% C, 0.40% or less Si, 0.5% to 1.4% Mn, 0.1% or less Al, 0.01% to 0.15% Nb, 0.1% or less V, 0.03% or less Ti, and 0.008% or less N on a mass basis, Nb, V, and Ti satisfying Nb+V+Ti<0.15, Cm satisfying 0.12 or less, is heated to a heating temperature of 1,100° C. to 1,250° C., finish-rolled in such a way that the accumulative rolling reduction at a temperature of 930° C. or lower is 40% to 85% and the finished rolling temperature is 760° C. to 870° C., cooled to a cooling stop temperature of 500° C. or lower in terms of surface temperature at an average cooling rate of 30° C./s to 200° C./s in terms of thickness-wise center temperature, naturally cooled for more than 10 s after cooling is stopped, and coiled at a coiling temperature of 400° C. to 620° C.
    Type: Application
    Filed: June 27, 2012
    Publication date: August 7, 2014
    Applicant: JFE Steel Corporation
    Inventors: Hiroshi Nakata, Tomoaki Shibata
  • Patent number: 8795443
    Abstract: A steel sheet undergone precipitation strengthening and refinement in crystal grain size by containing at least one element of 0.005% to 0.05% of Nb, 0.005% to 0.05% of Ti, and 0.0005% to 0.005% of B as a chemical composition is produced through continuous annealing. A steel containing at least one element of Nb, Ti, and B is hot rolled, cooled at a cooling rate of 40° C./s or less, and coiled at 550° C. or higher to facilitate precipitation of cementite after recrystallization annealing. As a result, a steel sheet for a can having a tensile strength of 450 to 550 MPa, a total elongation of 20% or more, and a yield elongation of 5% or less is produced.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: August 5, 2014
    Assignee: JFE Steel Corporation
    Inventors: Yuka Nishihara, Katsumi Kojima, Hiroki Iwasa, Yoshun Yamashita
  • Publication number: 20140212660
    Abstract: Disclosed is a medium carbon steel sheet for cold working that has a hardness of 500 HV to 900 HV when subjected to high-frequency quenching in which a temperature is raised at an average heating rate of 100° C./second, the temperature is held at 1,000° C. for 10 seconds, and a quick cooling to a room temperature is carried out at an average cooling rate of 200° C./second. The medium carbon steel sheet includes, by mass %, C: 0.30 to 0.60%, Si: 0.06 to 0.30%, Mn: 0.3 to 2.0%, P: 0.03% or less, S: 0.0075% or less, Al: 0.005 to 0.10%, N: 0.001 to 0.01%, and Cr: 0.001 to 0.10%, the balance composed of Fe and inevitable impurities. An average diameter d of a carbide is 0.6 ?m or less, a spheroidizing ratio p of the carbide is equal to or more than 70% and less than 90%, and the average diameter d (?m) of the carbide and the spheroidizing ratio p % of the carbide satisfy d?0.04×p?2.6.
    Type: Application
    Filed: September 22, 2011
    Publication date: July 31, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kengo Takeda, Masayuki Abe, Yasushi Tsukano, Takashi Aramaki, Shinichi Yamaguchi
  • Publication number: 20140205488
    Abstract: A cold rolled, annealed TRIP steel sheet which has a composition including (in wt. %): C: 0.1-0.3; Mn: 4-10, Al: 0.05-5, Si: 0.05-5; and Nb: 0.008-0.1, the remainder being iron and inevitable residuals. The cold rolled sheet has an ultimate tensile strength of at least 1000 MPa, and a total elongation of at least 15%. The cold rolled sheet may have at least 20% retained austenite in its microstructure and may have greater than 50% lath-type annealed ferrite structure. The cold rolled sheet may have an ultra fine grain size of less than 5 micron for the retained austenite and ferrite.
    Type: Application
    Filed: January 22, 2013
    Publication date: July 24, 2014
    Inventors: Hyun Jo Jun, Narayan Subramaniam Pottore, Nina Michailovna Ponstein, Oleg N. Yakubovsky