Beryllium Or Boron Containing Patents (Class 148/330)
  • Publication number: 20140230973
    Abstract: A steel sheet of the present invention has a steel structure obtained by performing a soaking at a dual phase region temperature of Ac1 temperature or higher and lower than Ac3 temperature for a soaking time of 15 seconds or longer and 35 seconds or shorter, next, performing a primary cooling to a temperature range of 250° C. or higher and 380° C. or lower within 3 seconds at a cooling rate of 0.5° C./s or more and 30° C./s or less, and performing a retention in a temperature range of 260° C. or higher and 370° C. or lower for 180 seconds or longer and 540 seconds or shorter, in which a yield ratio is 65% or less and tensile strength is 590 MPa or more after the primary cooling.
    Type: Application
    Filed: October 5, 2012
    Publication date: August 21, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yuji Fukumoto, Takashi Aramaki, Junichi Yasui, Norimitsu Harada
  • Publication number: 20140230969
    Abstract: Provided is a TRIP-aided dual-phase martensitic steel which is excellent in terms of strength-elongation balance and Charpy impact value and has dual-phase martensite composed of a soft lath martensitic structure and a hard lath martensitic structure as a matrix phase, regardless of forging temperature or forging reduction ratio, by controlling heat treatment conditions. The dual-phase martensitic steel contains 0.1-0.7% C, 0.5-2.5% Si, 0.5-3.0% Mn, 0.5-2.0% Cr, 0.5% or less (including 0%) of Mo, 0.04-2.5% Al, and the balance Fe with incidental impurities; has its metallographic structure in which a matrix phase is composed of a soft lath martensitic structure and a hard lath martensitic structure; and obtained by heating its raw steel material to a ?-range, rapidly cooling the heated material to a temperature slightly above a martensite transformation starting temperature (Ms), and then performing an isothermal transformation process the cooled material in the temperature range from Mf to [(Mf)?100° C].
    Type: Application
    Filed: March 14, 2012
    Publication date: August 21, 2014
    Applicants: USUI KOKUSAI SANGYO KAISHA LIMITED, SHINSU UNIVERSITY
    Inventors: Koh-ichi Sugimoto, Junya Kobayashi, Nobuo Yoshikawa, Yuji Nakajima, Teruhisa Takahashi, Goro Arai
  • Publication number: 20140230971
    Abstract: A method for manufacturing the high strength steel sheet having excellent formability includes hot-rolling a steel slab having a chemical composition containing, by mass %, C: 0.03% or more and 0.35% or less, Si: 0.5% or more and 3.0% or less, Mn: 3.5% or more and 10.0% or less, P: 0.1% or less, S: 0.01% or less, N: 0.008% or less and the balance comprising Fe and inevitable impurities, coiling the hot-rolled steel sheet at a temperature range of the Ar1 transformation point to the Ar1 transformation point+(the Ar3 transformation point?the Ar1 transformation point)/2, cooling the coiled steel sheet down to 200° C. or lower, heating and holding the cooled steel sheet at a temperature range of the Ac1 transformation point?200° C.
    Type: Application
    Filed: September 10, 2012
    Publication date: August 21, 2014
    Applicant: JFE Steel Corporation
    Inventors: Yoshiyasu Kawasaki, Hiroshi Hasegawa, Tatsuya Nakagaito, Yasunobu Nagataki
  • Publication number: 20140227553
    Abstract: Disclosed are a preparation method of a steel product capable of local reinforcement using laser heat treatment, and a heat hardened steel used in the method. According to the present invention, the preparation method of a steel part comprises the following steps: (a) preparing a material comprising 0.1-0.5 wt % of C, 0.1-0.5 wt % of Si, 0.5-3.0 wt % of Mn, 0.1 wt % or less of P, 0.05 wt % or less of S, 0.01-1.0 wt % of Cr, 0.1 wt % or less of Al, 0.2 wt % or less of Ti, 0.0005-0.08 wt % of B, and the balance of Fe and inevitable impurities; (b) preparing a formed product by forming the material into a predetermined shape; and (c) locally reinforcing the high strength portion by carrying out laser heat treatment on a portion requiring high strength at the formed product.
    Type: Application
    Filed: October 17, 2011
    Publication date: August 14, 2014
    Applicant: HYUNDAI HYSCO
    Inventors: Hee-Joong Im, Seung-Man Nam, Bo-Ryong Lee, Kyung-Bo Kim, Youn-Il Jung
  • Publication number: 20140216609
    Abstract: A steel material containing 0.01% to 0.07% C, 0.40% or less Si, 0.5% to 1.4% Mn, 0.1% or less Al, 0.01% to 0.15% Nb, 0.1% or less V, 0.03% or less Ti, and 0.008% or less N on a mass basis, Nb, V, and Ti satisfying Nb+V+Ti<0.15, Cm satisfying 0.12 or less, is heated to a heating temperature of 1,100° C. to 1,250° C., finish-rolled in such a way that the accumulative rolling reduction at a temperature of 930° C. or lower is 40% to 85% and the finished rolling temperature is 760° C. to 870° C., cooled to a cooling stop temperature of 500° C. or lower in terms of surface temperature at an average cooling rate of 30° C./s to 200° C./s in terms of thickness-wise center temperature, naturally cooled for more than 10 s after cooling is stopped, and coiled at a coiling temperature of 400° C. to 620° C.
    Type: Application
    Filed: June 27, 2012
    Publication date: August 7, 2014
    Applicant: JFE Steel Corporation
    Inventors: Hiroshi Nakata, Tomoaki Shibata
  • Patent number: 8795443
    Abstract: A steel sheet undergone precipitation strengthening and refinement in crystal grain size by containing at least one element of 0.005% to 0.05% of Nb, 0.005% to 0.05% of Ti, and 0.0005% to 0.005% of B as a chemical composition is produced through continuous annealing. A steel containing at least one element of Nb, Ti, and B is hot rolled, cooled at a cooling rate of 40° C./s or less, and coiled at 550° C. or higher to facilitate precipitation of cementite after recrystallization annealing. As a result, a steel sheet for a can having a tensile strength of 450 to 550 MPa, a total elongation of 20% or more, and a yield elongation of 5% or less is produced.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: August 5, 2014
    Assignee: JFE Steel Corporation
    Inventors: Yuka Nishihara, Katsumi Kojima, Hiroki Iwasa, Yoshun Yamashita
  • Publication number: 20140212660
    Abstract: Disclosed is a medium carbon steel sheet for cold working that has a hardness of 500 HV to 900 HV when subjected to high-frequency quenching in which a temperature is raised at an average heating rate of 100° C./second, the temperature is held at 1,000° C. for 10 seconds, and a quick cooling to a room temperature is carried out at an average cooling rate of 200° C./second. The medium carbon steel sheet includes, by mass %, C: 0.30 to 0.60%, Si: 0.06 to 0.30%, Mn: 0.3 to 2.0%, P: 0.03% or less, S: 0.0075% or less, Al: 0.005 to 0.10%, N: 0.001 to 0.01%, and Cr: 0.001 to 0.10%, the balance composed of Fe and inevitable impurities. An average diameter d of a carbide is 0.6 ?m or less, a spheroidizing ratio p of the carbide is equal to or more than 70% and less than 90%, and the average diameter d (?m) of the carbide and the spheroidizing ratio p % of the carbide satisfy d?0.04×p?2.6.
    Type: Application
    Filed: September 22, 2011
    Publication date: July 31, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kengo Takeda, Masayuki Abe, Yasushi Tsukano, Takashi Aramaki, Shinichi Yamaguchi
  • Publication number: 20140205488
    Abstract: A cold rolled, annealed TRIP steel sheet which has a composition including (in wt. %): C: 0.1-0.3; Mn: 4-10, Al: 0.05-5, Si: 0.05-5; and Nb: 0.008-0.1, the remainder being iron and inevitable residuals. The cold rolled sheet has an ultimate tensile strength of at least 1000 MPa, and a total elongation of at least 15%. The cold rolled sheet may have at least 20% retained austenite in its microstructure and may have greater than 50% lath-type annealed ferrite structure. The cold rolled sheet may have an ultra fine grain size of less than 5 micron for the retained austenite and ferrite.
    Type: Application
    Filed: January 22, 2013
    Publication date: July 24, 2014
    Inventors: Hyun Jo Jun, Narayan Subramaniam Pottore, Nina Michailovna Ponstein, Oleg N. Yakubovsky
  • Publication number: 20140205855
    Abstract: [Summary] The present invention provides a high-strength steel sheet excellent in impact resistance. The high-strength steel sheet contains predetermined contents of C, Si, Mn, P, S, Al, Ti, N, and O, with the balance being iron and inevitable impurities, and has a steel sheet structure in which, in a ? thickness to ? thickness region across ¼ of a sheet thickness, 1 to 8% retained austenite is contained in volume fraction, an average aspect ratio of the retained austenite is 2.0 or less, an amount of solid-solution Mn in the retained austenite is 1.1 times an average amount of Mn or more, and TiN grains having a 0.5 ?m average grain diameter or less are contained, and a density of AlN grains with a 1 ?m grain diameter or more is 1.0 pieces/mm2 or less, wherein a maximum tensile strength is 900 MPa or more.
    Type: Application
    Filed: July 27, 2012
    Publication date: July 24, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Kawata, Naoki Maruyama, Akinobu Murasato, Akinobu Minami, Hajime Hasegawa, Chisato Wakabayashi, Tsuyoshi Oki
  • Patent number: 8778096
    Abstract: Provided is a low yield ratio, high strength and high toughness steel plate having excellent strain ageing resistance equivalent to API 5L X70 Grade or lower and a method for manufacturing the same. The steel plate has a metallographic microstructure that is a three-phase microstructure including bainite, M-A constituent, and quasi-polygonal ferrite, the area fraction of the bainite being 5% to 70%, the area fraction of the M-A constituent being 3% to 20%, the remainder being the quasi-polygonal ferrite, the equivalent circle diameter of the M-A constituent being 3.0 ?m or less. The steel plate has a yield ratio of 85% or less and a Charpy impact test absorbed energy of 200 J or more at ?30° C. before or after being subjected to strain ageing treatment at a temperature of 250° C. or lower for 30 minutes or less.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: July 15, 2014
    Assignee: JFE Steel Corporation
    Inventors: Junji Shimamura, Nobuyuki Ishikawa, Nobuo Shikanai
  • Publication number: 20140190597
    Abstract: The present invention provides a hot coil for line pipe use which can reduce deviation in ordinary temperature strength and improve low temperature toughness despite the numerous restrictions in production conditions due to the coiling step and provides a method of production of the same, specifically makes the steel plate stop for a predetermined time between rolling passes in the recrystallization temperature range and performs cooling by two stages after hot rolling so as to thereby make the steel structure at the center part of plate thickness and effective crystal grain size of 3 to 10 ?m, make the total of the area ratios of bainite and acicular ferrite 60 to 99%, and make the absolute value of A-B 0 to 30% when the totals of the area ratios of bainite and acicular ferrite at any two portions are designated as respectively A and B.
    Type: Application
    Filed: September 27, 2012
    Publication date: July 10, 2014
    Inventors: Takuya Hara, Takeshi Kinoshita, Kazuaki Tanaka
  • Publication number: 20140193667
    Abstract: A high-strength cold-rolled steel sheet having excellent stretch flangeability and precision punchability containing predetermined components and a balance being composed of iron and inevitable impurities, in which in a range of ? to ? in sheet thickness from the surface of the steel sheet, an average value of pole densities of the {100}<011> to {223}<110> orientation group represented by respective crystal orientations of {100}<011>, {116}<110>, {114}<110>, {113}<110>, {112}<110>, {335}<110>, and {223}<110> is 6.5 or less, and a pole density of the {332}<113> crystal orientation is 5.0 or less, and a metal structure contains, in terms of an area ratio, greater than 5% of pearlite, the sum of bainite and martensite limited to less than 5%, and a balance composed of ferrite.
    Type: Application
    Filed: July 27, 2012
    Publication date: July 10, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroshi Shuto, Nobuhiro Fujita, Tatsuo Yokoi, Riki Okamoto, Kazuaki Nakano, Shinichiro Watanabe
  • Publication number: 20140190594
    Abstract: The present disclosure is directed and formulations and methods to provide alloys having relative high strength and ductility. The alloys may be provided in seamless tubular form and characterized by their particular alloy chemistries and identifiable crystalline grain size morphology. The alloys are such that they include boride pinning phases. In what is termed a Class 1 Steel the alloys indicate tensile strengths of 700 MPa to 1400 MPa and elongations of 10-70%. Class 2 Steel indicates tensile strengths of 800 MPa to 1800 MPa and elongations of 5-65%. Class 3 Steel indicates tensile strengths of 1000 MPa to 2000 MPa and elongations of 0.5-15%.
    Type: Application
    Filed: January 9, 2014
    Publication date: July 10, 2014
    Inventors: Daniel James BRANAGAN, Sheng CHENG, Longzhou MA, Jason K. WALLESER, Grant G. JUSTICE, Andrew T. BALL, Kurtis CLARK, Scott LARISH, Alissa PETERSON, Patrick E. MACK, Brian D. MERKLE, Brian E. MEACHAM, Alla V. SERGUEEVA
  • Patent number: 8764918
    Abstract: The present invention provides high strength steel pipe for line pipe superior in low temperature toughness suppressed in drop of toughness of the HAZ and a method of production of the same, more particularly high strength steel plate for line pipe used as a material for high strength steel pipe for line pipe and a method of production of the same, in particular high strength steel pipe for line pipe superior in low temperature toughness characterized in that the chemical compositions of the base metal is, by mass %, C: 0.020 to 0.080%, Si: 0.01 to 0.50%, Mo: 0.01 to 0.15%, Al: 0.0005 to 0.030%, and Nb: 0.0001 to 0.030% contained in a range of C+0.25Si+0.1Mo+Al+Nb: 0.100% or less and the mixture of austenite and martensite present along prior austenite grain boundaries of the reheated part of the heat affected zone has a width of 10 ?m or less and a length of 50 ?m or less.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: July 1, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Takuya Hara, Hitoshi Asahi, Yoshio Terada
  • Publication number: 20140178712
    Abstract: Hot rolled steel sheet which has a maximum tensile strength of 600 MPa or more and has an excellent low temperature impact energy absorption and HAZ softening resistance and a method of production of the same are provided, that is, sheet which contains, by mass %, C: 0.04 to 0.09%, Si: 0.4% or less, Mn: 1.2 to 2.0%, P: 0.1% or less, S: 0.02% or less, Al: 1.0% or less, Nb: 0.02 to 0.09%, Ti: 0.02 to 0.07%, and N: 0.005% or less, where 2.0?Mn+8[% Ti]+12[% Nb]?2.6, has a balance of Fe and unavoidable impurities, has an area percentage of pearlite of 5% or less, has a total area percentage of martensite and retained austenite of 0.5% or less, has a balance of a metal structure of ferrite and/or bainite, has an average grain size of ferrite and bainite of 10 ?m or less, has an average particle size of alloy carbonitrides with incoherent interfaces which contain Ti and Nb of 20 nm or less, and has a yield ratio of 0.85 or more.
    Type: Application
    Filed: August 8, 2012
    Publication date: June 26, 2014
    Inventors: Naoki Maruyama, Naoki Yoshinaga, Masafumi Azuma, Yasuharu Sakuma, Atsushi Itami
  • Publication number: 20140166163
    Abstract: A process for manufacturing a cold rolled high strength dual phase steel. The process includes soaking a steel slab within a temperature range of 1200-1300° C., hot rolling the soaked steel slab in a roughing treatment and producing a transfer bar, and hot rolling the transfer bar in a finishing treatment and producing hot rolled strip. The hot rolled strip is cold rolled with at least a 55% reduction in thickness. The cold rolled sheet is intercritically annealed at a temperature between 790-840 ° C. and rapidly cooled to a temperature between 450-500 ° C. The rapidly cooled sheet has a ferrite plus martensite microstructure, a 0.2% yield strength of at least 550 MPa, a tensile strength of at least 980 MPa and a total elongation to failure of at least 10%.
    Type: Application
    Filed: December 13, 2013
    Publication date: June 19, 2014
    Applicant: THYSSENKRUPP STEEL USA, LLC
    Inventors: Ranbir Singh Jamwal, Joseph Frimpong, Bertram Wilhelm Ehrhardt, Harald Van Bracht, Roger Dale Boggs, Stanley Wayne Bevans
  • Publication number: 20140170440
    Abstract: High strength steel sheet which secures tensile maximum strength 900 MPa or more high strength while having excellent shapeability, which high strength steel sheet which is excellent in shapeability characterized by having a predetermined composition of ingredients, by the steel sheet structure including a ferrite phase and martensite phase, by the ratio of Cu particles incoherent with the bcc iron being 15% or more with respect to the Cu particles as a whole, by a density of Cu particles in the ferrite phase being 1.0×1018/m3 or more, and by an average particle size of Cu particles in the ferrite phase being 2.0 nm or more.
    Type: Application
    Filed: July 27, 2012
    Publication date: June 19, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Kawata, Naoki Maruyama, Akinobu Murasato, Akinobu Minami, Masafumi Azuma, Takuya Kuwayama, Shigeru Yonemura
  • Publication number: 20140162088
    Abstract: High strength steel sheet and high strength galvanized steel sheet which are excellent in shapeability which secure a tensile maximum strength 900 MPa or more high strength while obtaining excellent ductility and stretch flangeability, which sheets have predetermined compositions of ingredients, have steel sheet structures which contain volume fraction 1 to 20% of residual austenite phases, and which have martensite transformation points of the residual austenite phases of ?60° C. or less.
    Type: Application
    Filed: July 27, 2012
    Publication date: June 12, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Kawata, Naoki Maruyama, Akinobu Murasato, Akinobu Minami, Takeshi Yasui, Yuji Yamaguchi, Natsuko Sugiura
  • Publication number: 20140158258
    Abstract: A Ni-added steel plate includes, by mass %, C: 0.04% to 0.10%, Si: 0.02% to 0.12%, Mn: 0.3% to 1.0%, Ni: more than 7.5% to 10.0%, Al: 0.01% to 0.08%, T.O: 0.0001% to 0.0030%, P: limited to 0.0100% or less, S: limited to 0.0035% or less, N: limited to 0.0070% or less, and the balance consisting of Fe and unavoidable impurities, in which a Ni segregation ratio at an area of ¼ of a plate thickness away from a plate surface in a thickness direction is 1.3 or less, a fraction of austenite after a deep cooling is 0.5% or more, an austenite unevenness index after the deep cooling is 3.0 or less, and an average equivalent circle diameter of the austenite after the deep cooling is 1 ?m or less.
    Type: Application
    Filed: September 28, 2011
    Publication date: June 12, 2014
    Inventors: Hitoshi Furuya, Naoki Saitoh, Motohiro Okushima, Yasunori Takahashi
  • Patent number: 8747577
    Abstract: High yield ratio high-strength hot rolled thin steel sheet superior in weldability and ductility comprising, by mass %, C: over 0.030 to less than 0.10%, Si: 0.30 to 0.80%, Mn: 1.7 to 3.2%, P: 0.001 to 0.02%, S: 0.0001 to 0.006%, Al: 0.060% or less, N: 0.0001 to 0.0070%, containing further Ti: 0.01 to 0.055%, Nb: 0.012 to 0.055%, Mo: 0.07 to 0.55%, B: 0.0005 to 0.0040%, and simultaneously satisfying 1.1?14×Ti(%)+20×Nb(%)+3×Mo(%)+300×B(%)?3.7, the balance comprised of iron and unavoidable impurities, and having a yield ratio of 0.64 to less than 0.92, a TS×El1/2 of 3320 or more, an YR×TS×El1/2 of 2320 or more, and a maximum tensile strength (TS) of 780 MPa or more.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: June 10, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Naoki Yoshinaga, Shunji Hiwatashi, Yasuharu Sakuma, Atsushi Itami
  • Patent number: 8747578
    Abstract: A steel having excellent formability, fatigue endurance after quenching, low temperature toughness, resistance for hydrogen embrittlement, and corrosion fatigue endurance. A method includes heating a steel slab at 1160° C. to 1320° C., hot-finish-rolling the steel slab at a finisher delivery temperature of 750° C. to 980° C., and then coiling the hot-rolled steel at a coiling temperature of 560° C. to 740° C. after slow cooling for a time of 2 seconds or more to produce a hot-rolled steel strip having a structure in which the ferrite grain diameter df corresponding to a circle is 1.1 ?m to less than 1.2 ?m and the ferrite volume fraction Vf is 30% to 98%, the steel slab containing 0.18 to 0.29% of C, 0.06 to 0.45% of Si, 0.91 to 1.85% of Mn, 0.019% or less of P, 0.0029% or less of S, 0.015 to 0.075% of sol. Al, 0.0049% or less of N, 0.0049% or less of O, 0.0001 to 0.0029% of B, 0.001 to 0.019% of Nb, 0.001 to 0.029% of Ti, 0.001 to 0.195% of Cr, and 0.001 to 0.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: June 10, 2014
    Assignees: JFE Steel Corporation, Toyota Jidosha Kabushiki Kaisha
    Inventors: Shunsuke Toyoda, Kei Sakata, Akio Sato, Kouichi Kaneko, Hiroshi Kawaguchi
  • Publication number: 20140150930
    Abstract: The present invention relates to a hot press forming steel plate made of a composition comprising: 0.3-1.0 wt % of C; 0.0-4.0 wt % of Mn; 1.0-2.0 wt % of Si; 0.01-2.0 wt % of Al; 0.015 wt % or less of S; 0.01 wt % or less of N; and the remainder being Fe and unavoidable impurities. Further, the present. invention relates to a method for manufacturing the hot press forming steel plate, characterized by comprising the steps of: heating, to between 1100 and 1300° C., a steel slab having the composition; performing hot rolling finishing between. an Ar3 transformation point and 950° C.; and performing winding between MS and 720° C. Further, the present invention. relates to a hot press formed member characterized by having the composition, and having a dual phase microstructure made of bainite and residual austenite.
    Type: Application
    Filed: July 15, 2011
    Publication date: June 5, 2014
    Inventors: Kyoo-Young Lee, Jin-Keun Oh, Jong-Sang Kim, Tae-Kyo Han
  • Patent number: 8741216
    Abstract: Disclosed is steel for a leaf spring with high fatigue strength containing, in mass percentage, C: 0.40 to 0.54%, Si: 0.40 to 0.90%, Mn: 0.40 to 1.20%, Cr: 0.70 to 1.50%, Ti: 0.070 to 0.150%, B: 0.0005 to 0.0050%, N: 0.0100% or less, and a remainder composed of Fe and impurity elements. Also disclosed is a high fatigue-strength leaf spring part obtained by forming the steel. The steel for a leaf spring is prepared to have a Ti content and a N content to satisfy a relation of Ti/N?10. Preferably, the leaf spring part is subjected to a shot peening treatment in a temperature range of the room temperature through 400° C. with a bending stress of 650 to 1900 MPa being applied to it.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: June 3, 2014
    Assignee: NHK Spring Co., Ltd.
    Inventors: Atsushi Sugimoto, Kiyoshi Kurimoto, Akira Tange, Yurika Goto, Mamoru Akeda
  • Publication number: 20140144560
    Abstract: To establish a method for obtaining a hot-press-formed steel member, which exhibits high strength, high tensile elongation (ductility) and high bendability, thereby having excellent deformation characteristics at the time of collision crush (crashworthiness), and which is capable of ensuring excellent delayed fracture resistance. A method for producing a hot-press-formed steel member by heating a steel sheet, which has a chemical component composition containing 0.10% (% by mass, and hereinafter the same shall apply) to 0.30% (inclusive) of C, 1.0% to 2.5% (inclusive) of Si, 1.0% to 3.0% (inclusive) of Si and Al in total and 1.5% to 3.0% (inclusive) of Mn, with the balance consisting of iron and unavoidable impurities, and hot press forming the steel sheet one or more times.
    Type: Application
    Filed: July 18, 2012
    Publication date: May 29, 2014
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steet, Ltd.)
    Inventors: Takayuki Yamano, Jiro Iwaya, Noriyuki JIMBO, Tatsuya Asai, Naoki Mizuta
  • Publication number: 20140144553
    Abstract: A cold-rolled steel sheet having a refined structure in which grain growth during annealing is suppressed has a chemical composition containing, in mass percent, controlled amounts of carbon, manganese, niobium, titanium, vanadium, sol. Aluminum, chromium, molybdenum, boron, calcium, and REM and a microstructure which contains at least 50% by area of ferrite as a main phase, a second phase containing at least 10% by area of a low temperature transformation phase and 0-3% by area of retained austenite and which satisfies the following Equations (1)-(3), in addition to a particular texture, dm<2.7+10000/(5+300×C+50×Mn+4000×Nb+2000×Ti+400×V)2??(1), dm<4.0??(2), and ds?1.5??(3), wherein dm is the average grain diameter (?m) of ferrite defined by a high angle grain boundary having a tilt angle of at least 15°, and ds is the average grain diameter (?m) of the second phase.
    Type: Application
    Filed: August 22, 2011
    Publication date: May 29, 2014
    Inventors: Kengo Hata, Toshiro Tomida, Norio Imai
  • Publication number: 20140124101
    Abstract: This high-strength hot-rolled steel sheet having excellent local deformability contains, in mass %, C: 0.07% to 0.20%; Si: 0.001% to 2.5%; Mn: 0.01% to 4.0%; P: 0.001% to 0.15%; S: 0.0005% to 0.03%; Al: 0.001% to 2.0%; N: 0.0005% to 0.01%; and O: 0.0005% to 0.01%; and a balance being composed of iron and inevitable impurities, in which an area ratio of bainite in a metal structure is 95% or more, at a sheet thickness center portion being a range of 5/8 to 3/8 in sheet thickness from the surface of the steel sheet, an average value of pole densities of the {100}<011> to {223}<110> orientation group is 4.0 or less, and a pole density of the {332}<113> crystal orientation is 5.0 or less, and a mean volume diameter of crystal grains in the metal structure is 10 ?m or less.
    Type: Application
    Filed: April 12, 2012
    Publication date: May 8, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yoshihiro Suwa, Kazuaki Nakano, Kunio Hayashi, Riki Okamoto, Nobuhiro Fujita, Kohichi Sano
  • Publication number: 20140110022
    Abstract: A hot-rolled steel sheet satisfies that average pole density of orientation group of {100}<011> to {223}<110> is 1.0 to 5.0 and pole density of crystal orientation {332}<113> is 1.0 to 4.0. Moreover, the hot-rolled steel sheet includes, as a metallographic structure, by area %, ferrite and bainite of 30% to 99% in total and martensite of 1% to 70%. Moreover, the hot-rolled steel sheet satisfies following Expressions 1 and 2 when area fraction of the martensite is defined as fM in unit of area %, average size of the martensite is defined as dia in unit of ?m, average distance between the martensite is defined as dis in unit of ?m, and tensile strength of the steel sheet is defined as TS in unit of MPa.
    Type: Application
    Filed: May 24, 2012
    Publication date: April 24, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kohichi Sano, Kunio Hayashi, Kazuaki Nakano, Riki Okamoto, Nobuhiro Fujita
  • Patent number: 8702876
    Abstract: The present invention provides a steel plate having a low welding crack susceptibility and a yield strength of 800 MPa and a manufacturing method for the same. The steel plate having a low welding crack susceptibility comprises the following chemical components (wt. %: percent by weight): C: 0.03-0.08 wt. %, Si: 0.05-0.70 wt. %, Mn: 1.30-2.20 wt. %, Mo: 0.10-0.30 wt. %, Nb: 0.03-0.10 wt. %, V: 0.03-0.45 wt. %, Ti: 0.002-0.040 wt. %, Al: 0.02-0.04 wt. %, B: 0.0010-0.0020 wt. %, the balance being Fe and unavoidable impurities, and the welding crack susceptibility index meets the following formula: Pcm?0.20%. The thermo-mechanical controlled rolling and cooling processes is used to obtain an ultrafine bainite batten matrix structure, which increases the intensity, plasticity and toughness of the steel plate. The steel plate with a low welding crack susceptibility of the present invention has a yield strength of greater than 800 MPa, a tensile strength of greater than 900 MPa, a Charpy impact energy Akv (?20° C.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: April 22, 2014
    Assignee: Boashan Iron & Steel Co., Ltd.
    Inventors: Liandeng Yao, Xiaoting Zhao, Sixin Zhao
  • Patent number: 8702880
    Abstract: A high strength and low yield ratio steel that has excellent characteristics such as low temperature toughness, a tensile strength of approximately 600 MPa or more and a low yield ratio of 80% or less. The high strength and low yield ratio steel includes, by weight percent: C: 0.02 to 0.12%, Si: 0.01 to 0.8%, Mn: 0.3 to 2.5%, P: 0.02% or less, S: 0.01% or less, Al: 0.005 to 0.5%, Nb: 0.005 to 0.10%, B: 3 to 50 ppm, Ti: 0.005 to 0.1%, N: 15 to 150 ppm, Ca: 60 ppm or less, and the balance of be and inevitable impurities, and further includes at least one component selected from the group consisting of by weight percent: Cr: 0.05 to 1.0%, Mo: 0.01 to 1.0%, Ni: 0.01 to 2.0%, Cu: 0.01 to 1.0% and V: 0.005 to 0.3%, wherein a finish cooling temperature is limited to 500 to 600° C. after the finish-rolling process.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: April 22, 2014
    Assignee: Posco
    Inventors: Jae Young Cho, Kyung Keun Um, Jong Kyo Choi
  • Publication number: 20140096875
    Abstract: An abrasion resistant steel plate or steel sheet suitable for use in construction machines, industrial machines, and the like and a method for manufacturing the same. In particular, a steel plate or steel sheet has a composition containing 0.20% to 0.30% C, 0.05% to 1.0% Si, 0.40% to 1.20% Mn, P, S, 0.1% or less Al, 0.01% or less N, and 0.0003% to 0.0030% B on a mass basis, the composition further containing one or more of Cr, Mo, and W, the composition further containing one or more of Nb, Ti, Cu, Ni, V, an REM, Ca, and Mg as required, the remainder being Fe and inevitable impurities. A semi-finished product having the above steel composition is heated, hot rolling is performed, air cooling is performed, reheating is performed, and accelerated cooling is then performed or accelerated cooling is performed immediately after hot rolling.
    Type: Application
    Filed: March 28, 2012
    Publication date: April 10, 2014
    Applicant: JFE STEEL CORPORATION
    Inventors: Keiji Ueda, Nobuyuki Ishikawa
  • Publication number: 20140090755
    Abstract: Provided is an abrasion resistant steel plate or steel sheet, suitable for use in construction machines, industrial machines, and the like, and a method for manufacturing the same. A steel plate or steel sheet has a composition containing 0.20% to 0.27% C, 0.05% to 1.0% Si, 0.30% to 0.90% Mn, P, S, 0.005% to 0.025% Nb, 0.008% to 0.020% Ti, 0.1% or less Al, and 0.0010% to 0.0060% N on a mass % basis, the composition further containing one or more of Cr, Mo, W, and B, the composition containing one or more of Cu, Ni, V, an REM, Ca, and Mg as required, the remainder being Fe and inevitable impurities. After being heated, a semi-finished product having the steel composition is hot-rolled and is subjected to reheat-quenching or direct quenching.
    Type: Application
    Filed: March 28, 2012
    Publication date: April 3, 2014
    Applicant: JFE STEEL CORPORATION
    Inventors: Keiji Ueda, Yasuhiro Murota, Nobuyuki Ishikawa
  • Patent number: 8685181
    Abstract: A carbon steel sheet having high formability due to a microscopic and uniform carbide distribution and having a good characteristic of final heat treatment, and a manufacturing method thereof. The carbon steel sheet having excellent formability includes, in wt %, C at 0.2-0.5%, Mn at 0.1-1.2%, Si at less than or equal to 0.4%, Cr at less than or equal to 0.5%, Al at 0.01-0.1%, S at less than or equal to 0.012%, Ti at less than or equal to 0.5×48/14×[N]% to 0.03% when the condition of B and N is not satisfied, B at 0.0005-0.0080%, N at less than or equal to 0.006%, Fe, and extra inevitable elements; an average size of carbide is less than or equal to 1 ?m; and an average grain size of ferrite is less than or equal to 5 ?m.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: April 1, 2014
    Assignee: Posco
    Inventors: Kyoo-Young Lee, Gyo-Sung Kim, Han-Chul Shin, Chang-Hoon Lee, Kee-Cheol Park, Jea-Chun Jeon
  • Publication number: 20140083574
    Abstract: Disclosed are heat-hardened steel with excellent crashworthiness and a method for manufacturing heat-hardenable parts using the same. The heat-hardened steel according to the invention comprises, based on wt %; C: 0.12-0.8%; Cr: 0.01-2%; Mo: 0.2% or less; B: 0.0005-0.08%; Ca: 0.01 or less; Sb: 1.0% or less; and Ti and/or Nb: 0.2%; and the reminder being Fe and inevitable impurities. In addition, the heat-treatment hardening steel satisfies anyone of following conditions i)-iv), wherein condition i) comprises Si: 0.5-3%; Mn: 1-10% and Al: 0.05-2%; condition ii) comprises Si: 1% or less; Mn: 0.5-5%; Al: 0.1-2.5%; and Ni: 0.01-8%; condition iii) comprises Si: 0.5-3%; Mn: 1-10%; Al: 0.1% or less; and Ni: 0.01-8%; and condition iv) comprises Si: 0.5-3%; Mn: 1-10%; Al: 0.1-2.5%; and Ni: 0.01-8%.
    Type: Application
    Filed: June 30, 2011
    Publication date: March 27, 2014
    Applicant: Hyundai Hysco Co.,Ltd.
    Inventors: Seung-Man Nam, Hee-Joong Im, Seung-Ha Lee, Dong-Eun Kim, Bo-Ryong Lee, Young-Jin Kim, Man-Been Man-Been
  • Publication number: 20140076469
    Abstract: A steel sheet having a composition containing C: 0.20% to 0.50%, Si: 1.0% or less, Mn: 2.0% or less, P: 0.03% or less, S: 0.02% or less, sol.Al: 0.08% or less, N: 0.02% or less, and Fe and incidental impurities, and a microstructure composed of ferrite and cementite, wherein each of the average grain size ds of the ferrite in the region from the surface of the steel sheet to the position at one-quarter of the sheet thickness and the average grain size dc of the ferrite in the region from the position at one-quarter of the sheet thickness of the steel sheet to the sheet thickness center is 20 to 40 ?m, 0.80?ds/dc?1.20 is satisfied, the average grain size of the cementite is 1.0 ?m or more, the spheroidizing ratio is 90% or more, and 90% or more of cementite is present inside ferrite grains.
    Type: Application
    Filed: May 16, 2012
    Publication date: March 20, 2014
    Applicant: JFE Steel Corporation
    Inventors: Takashi Kobayashi, Nobuyuki Nakamura, Yoshimasa Funakawa
  • Patent number: 8673093
    Abstract: The present invention is the thin steel sheet containing C, Si, Mn, P, S, Al, Mo, Ti, B, and N wherein a value Z calculated by the equation described below is 2.0-6.0, an area ratio against all the structure is 1% or above for retained austenite and 80% or above for total of bainitic ferrite and martensite, a mean axis ratio of the retained austenite crystal grain is 5 or above, and tensile strength is 980 MPa or above where Value Z=9×[C]+[Mn]+3×[Mo]+490×[B]+7×[Mo]/{100×([B]+0.001),and the thin steel sheet has 980 MPa or above tensile strength and enhanced hydrogen embrittlement resistance properties.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: March 18, 2014
    Assignee: Kobe Steel, Ltd.
    Inventors: Muneaki Ikeda, Kouji Kasuya, Yoichi Mukai, Fumio Yuse, Junichiro Kinugasa
  • Publication number: 20140069556
    Abstract: A high carbon steel sheet having a chemical composition containing C: 0.20% to 0.50%, Si: 1.0% or less, Mn: 2.0% or less, P: 0.03% or less, S: 0.02% or less, sol. Al: 0.08% or less, N: 0.02% or less, and the remainder composed of Fe and incidental impurities, on a percent by mass basis, and a microstructure composed of ferrite and cementite, wherein the fraction of pro-eutectoid ferrite, among the ferrite, in the whole steel microstructure is 20% or more and less than 50%, the average grain size dc of the cementite in the region from the position at one-quarter of the sheet thickness of the steel sheet to the sheet thickness center is 0.50 to 1.5 ?m, and the average grain size ds of the cementite in the region from the surface of the steel sheet to the position at one-quarter of the sheet thickness satisfies ds/dc?0.8.
    Type: Application
    Filed: May 16, 2012
    Publication date: March 13, 2014
    Applicant: JFE Steel Corporation
    Inventors: Takashi Kobayashi, Nobuyuki Nakamura, Yoshimasa Funakawa
  • Patent number: 8663400
    Abstract: Provided is a low alloy steel for high-pressure hydrogen gas environments, which contains, by mass percent, C: 0.15 to 0.60%, Si: 0.05 to 0.5%, Mn: 0.05 to 3.0%, P: not more than 0.025%, S: not more than 0.010%, Al: 0.005 to 0.10%, Mo: 0.5 to 3.0%, V: 0.05 to 0.30%, O (oxygen): not more than 0.01%, N: not more than 0.03%, and the balance Fe and impurities, and has tensile strength of not less than 900 MPa. This low alloy steel desirably contains B of 0.0003 to 0.003%, but in this case, N is limited to not more than 0.010%. It is desirable to contain at least one among Cr, Nb, Ti, Zr, and Ca. The contents of Mo and V desirably satisfy the following formula (1): [Mo(%)]·[V(%)]0.2?0.32??(1).
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: March 4, 2014
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Tomohiko Omura, Mitsuo Miyahara, Hiroyuki Semba, Masaaki Igarashi
  • Publication number: 20140053955
    Abstract: A steel used in a belt-type CVT that is superior in wear resistance and toughness, and a steel for cold punching, that provides the same. The steel satisfies the following: 10.8 [C]+5.6 [Si]+2.7 [Mn]+0.3 [Cr]+7.8 [Mo]+1.4 [V]?13. The steel contains C within the range of 0.50 to 0.70%, Si within the range of 0.03 to 0.60%, Mn within the range of 0.50 to 1.00%, Cr within the range of 0.20 to 1.00%, Ti within the range of 0.01 to 0.10%, and B within the range of 0.0005 to 0.0050% by mass as required additional elements, P within the range of 0.025% or less and S within the range of 0.015% or less by mass as optional additional elements, and the remainder as Fe and unavoidable impurities.
    Type: Application
    Filed: April 17, 2012
    Publication date: February 27, 2014
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Kentaro Takada, Hiroki Terada, Shinichiro Kato
  • Publication number: 20140050941
    Abstract: A high strength steel sheet including, by mass, C: 0.03% or more and 0.25% or less, Si: 0.4% or more and 2.5% or less, Mn: 3.5% or more and 10.0% or less, P: 0.1% or less, S: 0.01% or less, Al: 0.01% or more and 2.5% or less, N: 0.008% or less, Si+Al: 1.0% or more, the balance being Fe and inevitable impurities. The area ratio of ferrite is 30% or more and 80% or less, the area ratio of martensite is 0% or more and 17% or less, the volume fraction of retained austenite is 8% or more, and the average grain size of retained austenite is 2 ?m or less.
    Type: Application
    Filed: April 20, 2012
    Publication date: February 20, 2014
    Inventors: Yoshiyasu Kawasaki, Hiroshi Hasegawa, Shinjiro Kaneko, Yasunobu Nagataki
  • Patent number: 8652273
    Abstract: There are provided a steel for deep drawing, and a method for manufacturing the steel and a high pressure container. The steel for deep drawing includes, by weight: C: 0.25 to 0.40%, Si: 0.15 to 0.40%, Mn: 0.4 to 1.0%, Al: 0.001 to 0.05%, Cr: 0.8 to 1.2%, Mo: 0.15 to 0.8%, Ni: 1.0% or less, P: 0.015% or less, S: 0.015% or less, Ca: 0.0005 to 0.002%, Ti: 0.005 to 0.025%, B: 0.0005 to 0.0020% and the balance of Fe and inevitable impurities, wherein a microstructure of the steel has a triphase structure of ferrite, bainite and martensite. The steel for deep drawing may be useful to further improve the strength without the deterioration of the toughness by adding a trace of Ti and B, compared to the conventional steels having a strength of approximately 1100 MPa.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: February 18, 2014
    Assignee: Posco
    Inventors: Soon Taik Hong, Sung Ho Jang, Ki Hyun Bang
  • Publication number: 20140044988
    Abstract: Provided are: a high-strength steel sheet which is improved in both elongation and local formability and thus exhibits excellent workability; and a manufacturing method thereof. The high-strength steel sheet contains C, Si, Mn, Al, P and S with the remainder including iron and unavoidable impurities, and has a metal structure which includes polygonal ferrite, bainite, tempered martensite, and retained austenite. In the metal structure, (1) the bainite has a composite microstructure including both a high-temperature-formed bainite having an average distance between adjacent regions of retained austenite and/or carbide of 1 ?m or more and a low-temperature-formed bainite having an average distance between adjacent regions of retained austenite and/or carbide of less than 1 ?m each identified upon observation with a scanning electron microscope; and (2) the retained austenite is present in a volume percentage of 5% or more of the entire metal structure as determined by a saturation magnetization measurement.
    Type: Application
    Filed: March 21, 2012
    Publication date: February 13, 2014
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.)
    Inventors: Yuichi Futamura, Michiharu Nakaya, Takayuki Kimura
  • Publication number: 20140041767
    Abstract: A hot-rolled flat steel product having a tensile strength of at least 1100 MPa, good elongation properties, and good deformation properties. The flat steel product is produced from a complex phase steel, which contains, in addition to iron and inevitable impurities (in % by weight), C: 0.13-0.2%, Mn: 1.8-2.5%, Si: 0.70-1.3%, Al: 0.01 to 0.1%, P: up to 0.1%, S: up to 0.01%, Cr: 0.25-0.70%, optionally Mo, the total of the Cr and Mo contents being 0.25-0.7%, Ti: 0.08-0.2%, B: 0.0005-0.005%, and a structure which consists of at the most 10% by volume of residual austenite, 10-60% by volume of martensite, at the most 30% by volume of ferrite and at least 10% by volume of bainite. Also, a method for producing such a flat steel product.
    Type: Application
    Filed: December 29, 2011
    Publication date: February 13, 2014
    Applicant: THYSSENKRUPP STEEL EUROPE AG
    Inventors: Brigitte Hammer, Jörg Mertens, Günter Stich
  • Patent number: 8647449
    Abstract: Disclosed herein are iron-based alloys having a microstructure comprising a fine-grained ferritic matrix and having a 60+ Rockwell C surface, wherein the ferritic matrix comprises <10 ?m carbide precipitates. Also disclosed are methods of welding comprising forming a crack free hardbanding weld overlay coating with such an iron-based alloy. Also disclosed are families of alloys capable of forming crack-free weld overlays after multiple welding passes.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: February 11, 2014
    Assignee: Scoperta, Inc.
    Inventors: Justin Lee Cheney, John Hamilton Madok
  • Publication number: 20140034195
    Abstract: A steel sheet containing C: 0.0005% or more and 0.0035% or less, Si: 0.05% or less, Mn: 0.1% or more and 0.6% or less, P: 0.02% or less, S: less than 0.02%, Al: 0.01% or more and less than 0.10%, N: 0.0030% or less, B: 0.0010% or more, in which the relationship B/N?3.0 is satisfied and the balance being Fe and inevitable impurities, and a microstructure in which the average integrated intensity f in the (111)[1-10] to (111)[-1-12] orientations on a plane parallel to a sheet surface at a position located at ¼ of the thickness of the steel sheet is 7.0 or more, in which an average ferrite grain size is 6.0 ?m or more and 10.0 ?m or less, and the relationships EAVE?215 GPa, E0?210 GPa, E45?210 GPa, E90?210 GPa, and ?0.4??r?0.4 are satisfied.
    Type: Application
    Filed: April 19, 2012
    Publication date: February 6, 2014
    Applicant: JFE Steel Corporation
    Inventors: Mikito Suto, Katsumi Kojima, Masaki Tada, Takumi Tanaka, Yoichi Tobiyama
  • Publication number: 20140034196
    Abstract: The invention relates to a high strength multi-phase steel for a cold- or hot-rolled steel strip having excellent forming properties, in particular for light vehicle construction, comprising the elements (contents in mass %): C 0.060 to=0.115; Al 0.020 to=0.060; Si 0.100 to=0.500; Mn 1.300 to=2.500; P=0.025; S=0.0100; Cr 0.280 to=0.480; Mo<0.150; Ti=0.005 to=0.050; Nb=0.005 to=0.050; B=0.0005 to=0.0060; N=0.0100; the remainder being iron including the usual elements present in steel and which are not mentioned above.
    Type: Application
    Filed: November 30, 2011
    Publication date: February 6, 2014
    Inventors: Andreas Wedemeier, Thomas Schulz, Michael Pohl, Phillip Wüllner, Jörg Heinecke, Christian Schlegel
  • Publication number: 20140027022
    Abstract: In a hot-rolled steel sheet, an average pole density of an orientation group of {100}<011> to {223}<110>, which is represented by an arithmetic average of pole density of each orientation of {100}<011>, {116}<110>, {114}<110>, {112}<110>, and {223}<110> in a center portion of a sheet thickness which is a range of the sheet thickness of ? to ? from a surface of the steel sheet, is 1.0 or more and 4.0 or less, the pole density of a crystal orientation of {332}<113> is 1.0 or more and 4.8 or less, an average grain size in a center in the sheet thickness is 10 ?M or less, and a microstructure includes, by a structural fraction, pearlite more than 6% and ferrite in the balance.
    Type: Application
    Filed: April 13, 2012
    Publication date: January 30, 2014
    Inventors: Tatsuo Yokoi, Hiroshi Shuto, Riki Okamoto, Nobuhiro Fujita, Kazuaki Nakano, Takeshi Yamamoto
  • Publication number: 20140030546
    Abstract: This high-strength cold-rolled steel sheet contains, in mass %, C: 0.02% to 0.20%; Si: 0.001% to 2.5%; Mn: 0.01% to 4.0%; P: 0.001% to 0.15%; S: 0.0005% to 0.03%; Al: 0.001% to 2.0%; N: 0.0005% to 0.01%; and O: 0.0005% to 0.01%; in which Si+Al is limited to less than 1.0%, and a balance being composed of iron and inevitable impurities, in which an area ratio of bainite in a metal structure is 95% or more, at a sheet thickness center portion being a range of ? to ? in sheet thickness from the surface of the steel sheet, an average value of pole densities of the {100}<011> to {223}<110> orientation group is 4.0 or less, and a pole density of the {332}<113> crystal orientation is 5.0 or less, and a mean volume diameter of crystal grains in the metal structure is 7 ?m or less.
    Type: Application
    Filed: April 12, 2012
    Publication date: January 30, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yoshihiro Suwa, Kazuaki Nakano, Kunio Hayashi, Riki Okamoto, Nobuhiro Fujita, Kohichi Sano
  • Patent number: 8632641
    Abstract: The present invention encloses a kind of the high-alloy cold work die steel wherein the steel in wt % consisting of: C 1.0˜2.5, Si?1.3, Mn?1.5, Cr 6.0˜15.0, V?2.5, B 0.01˜0.4, and the balance is Fe with unavoidable impurities. The hardness and toughness of the die steel of the present invention are the same as Cr12MoV or Cr12Mo1V1, and even exceed them. And, the steel does not contain Mo with high price, the cost is lower than Cr12MoV or Cr12Mo1V1 accordingly, and the die steel of the present invention has a longer usage life, which is specially applied to make cold work moulds with high accuracy and long use life.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: January 21, 2014
    Assignee: Ningbo Hopesun New Material Co., Ltd.
    Inventor: Kaihua Hu
  • Publication number: 20140014237
    Abstract: In a hot-rolled steel sheet, an average pole density of an orientation group {100}<011> to {223}<110>, which is represented by an arithmetic mean of pole densities of orientations {100}<011>, {116}<110>, {114}<110>, {112}<110>, and {223}<110> is 1.0 to 4.0 and a pole density of a crystal orientation {332}<113> is 1.0 to 4.8, in a thickness center portion which is a thickness range of ? to ? from the surface of the steel sheet; an average grain size in the thickness center portion is less than or equal to 10 ?m and a grain size of cementite precipitating in a grain boundary of the steel sheet is less than or equal to 2 ?m; and an average grain size of precipitates containing TiC in grains is less than or equal to 3 nm and a number density per unit volume is greater than or equal to 1×1016 grains/cm3.
    Type: Application
    Filed: April 13, 2012
    Publication date: January 16, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Tatsuo Yokoi, Hiroshi Shuto, Riki Okamoto, Nobuhiro Fujita, Kazuaki Nakano, Takeshi Yamamoto
  • Publication number: 20140014234
    Abstract: A case hardening steel, which has excellent cold forgeability and excellent crystal grain coarsening prevention characteristics after carburization, contains, in mass %, 0.05-0.20% of C, 0.01-0.1% of Si, 0.3-0.6% of Mn, 0.03% or less of P (excluding 0%), 0.001-0.02% of S, 1.2-2.0% of Cr, 0.01-0.1% of Al, 0.010-0.10% of Ti, 0.010% or less of N (excluding 0%), and 0.0005-0.005% of B, with the balance consisting of iron and unavoidable impurities. The density of Ti-based precipitates having circle-equivalent diameters less than 20 nm in the case hardening steel is 10-100 pieces/?m2; the density of Ti-based precipitates having diameters of 20 nm or more in the case hardening steel is 1.5-10 pieces/?m2; and the case hardening steel has a Vickers hardness of 130 HV or less.
    Type: Application
    Filed: March 6, 2012
    Publication date: January 16, 2014
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)
    Inventors: Nariaki Okamoto, Yosuke Shindo