Rare Earth Meal Containing Patents (Class 148/331)
  • Publication number: 20140110022
    Abstract: A hot-rolled steel sheet satisfies that average pole density of orientation group of {100}<011> to {223}<110> is 1.0 to 5.0 and pole density of crystal orientation {332}<113> is 1.0 to 4.0. Moreover, the hot-rolled steel sheet includes, as a metallographic structure, by area %, ferrite and bainite of 30% to 99% in total and martensite of 1% to 70%. Moreover, the hot-rolled steel sheet satisfies following Expressions 1 and 2 when area fraction of the martensite is defined as fM in unit of area %, average size of the martensite is defined as dia in unit of ?m, average distance between the martensite is defined as dis in unit of ?m, and tensile strength of the steel sheet is defined as TS in unit of MPa.
    Type: Application
    Filed: May 24, 2012
    Publication date: April 24, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kohichi Sano, Kunio Hayashi, Kazuaki Nakano, Riki Okamoto, Nobuhiro Fujita
  • Patent number: 8657969
    Abstract: A high strength galvanized steel sheet has a TS of 590 MPa or more and excellent processability. The component composition contains, by mass %, C: 0.05% to 0.3%, Si: 0.7% to 2.7%, Mn: 0.5% to 2.8%, P: 0.1% or lower, S: 0.01% or lower, Al: 0.1% or lower, and N: 0.008% or lower, and the balance: Fe or inevitable impurities. The microstructure contains, in terms of area ratio, ferrite phases: 30% to 90%, bainite phases: 3% to 30%, and martensite phases: 5% to 40%, in which, among the martensite phases, martensite phases having an aspect ratio of 3 or more are present in a proportion of 30% or more.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: February 25, 2014
    Assignee: JFE Steel Corporation
    Inventors: Yoshiyasu Kawasaki, Tatsuya Nakagaito, Shinjiro Kaneko, Saiji Matsuoka
  • Publication number: 20140050941
    Abstract: A high strength steel sheet including, by mass, C: 0.03% or more and 0.25% or less, Si: 0.4% or more and 2.5% or less, Mn: 3.5% or more and 10.0% or less, P: 0.1% or less, S: 0.01% or less, Al: 0.01% or more and 2.5% or less, N: 0.008% or less, Si+Al: 1.0% or more, the balance being Fe and inevitable impurities. The area ratio of ferrite is 30% or more and 80% or less, the area ratio of martensite is 0% or more and 17% or less, the volume fraction of retained austenite is 8% or more, and the average grain size of retained austenite is 2 ?m or less.
    Type: Application
    Filed: April 20, 2012
    Publication date: February 20, 2014
    Inventors: Yoshiyasu Kawasaki, Hiroshi Hasegawa, Shinjiro Kaneko, Yasunobu Nagataki
  • Publication number: 20140044988
    Abstract: Provided are: a high-strength steel sheet which is improved in both elongation and local formability and thus exhibits excellent workability; and a manufacturing method thereof. The high-strength steel sheet contains C, Si, Mn, Al, P and S with the remainder including iron and unavoidable impurities, and has a metal structure which includes polygonal ferrite, bainite, tempered martensite, and retained austenite. In the metal structure, (1) the bainite has a composite microstructure including both a high-temperature-formed bainite having an average distance between adjacent regions of retained austenite and/or carbide of 1 ?m or more and a low-temperature-formed bainite having an average distance between adjacent regions of retained austenite and/or carbide of less than 1 ?m each identified upon observation with a scanning electron microscope; and (2) the retained austenite is present in a volume percentage of 5% or more of the entire metal structure as determined by a saturation magnetization measurement.
    Type: Application
    Filed: March 21, 2012
    Publication date: February 13, 2014
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.)
    Inventors: Yuichi Futamura, Michiharu Nakaya, Takayuki Kimura
  • Publication number: 20140027022
    Abstract: In a hot-rolled steel sheet, an average pole density of an orientation group of {100}<011> to {223}<110>, which is represented by an arithmetic average of pole density of each orientation of {100}<011>, {116}<110>, {114}<110>, {112}<110>, and {223}<110> in a center portion of a sheet thickness which is a range of the sheet thickness of ? to ? from a surface of the steel sheet, is 1.0 or more and 4.0 or less, the pole density of a crystal orientation of {332}<113> is 1.0 or more and 4.8 or less, an average grain size in a center in the sheet thickness is 10 ?M or less, and a microstructure includes, by a structural fraction, pearlite more than 6% and ferrite in the balance.
    Type: Application
    Filed: April 13, 2012
    Publication date: January 30, 2014
    Inventors: Tatsuo Yokoi, Hiroshi Shuto, Riki Okamoto, Nobuhiro Fujita, Kazuaki Nakano, Takeshi Yamamoto
  • Publication number: 20140030546
    Abstract: This high-strength cold-rolled steel sheet contains, in mass %, C: 0.02% to 0.20%; Si: 0.001% to 2.5%; Mn: 0.01% to 4.0%; P: 0.001% to 0.15%; S: 0.0005% to 0.03%; Al: 0.001% to 2.0%; N: 0.0005% to 0.01%; and O: 0.0005% to 0.01%; in which Si+Al is limited to less than 1.0%, and a balance being composed of iron and inevitable impurities, in which an area ratio of bainite in a metal structure is 95% or more, at a sheet thickness center portion being a range of ? to ? in sheet thickness from the surface of the steel sheet, an average value of pole densities of the {100}<011> to {223}<110> orientation group is 4.0 or less, and a pole density of the {332}<113> crystal orientation is 5.0 or less, and a mean volume diameter of crystal grains in the metal structure is 7 ?m or less.
    Type: Application
    Filed: April 12, 2012
    Publication date: January 30, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yoshihiro Suwa, Kazuaki Nakano, Kunio Hayashi, Riki Okamoto, Nobuhiro Fujita, Kohichi Sano
  • Publication number: 20140014236
    Abstract: Disclosed is a hot-rolled steel sheet including, by mass %, C:0.02% to 0.5% of C, and the sum of the content of Si and the content of Al is 1.0% to 4.0%. An average pole density of an orientation group from {100}<011> to {223}<110> is 1.0 to 6.5, and a pole density of a crystal orientation {332}<113> is 1.0 to 5.0. A microstructure includes, by of an area ratio, 2% to 30% of retained austenite, 20% to 50% of ferrite, and 10% to 60% of bainite. rC that is a Lankford value in a direction orthogonal to a rolling direction is 0.70 to 1.10, and r30 that is a Lankford value in a direction forming an angle of 30° with the rolling direction is 0.70 to 1.10.
    Type: Application
    Filed: March 28, 2012
    Publication date: January 16, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Takayuki Nozaki, Manabu Takahashi, Nobuhiro Fujita, Hiroshi Yoshida, Shinichiro Watanabe, Takeshi Yamamoto, Chisato Wakabayashi, Riki Okamoto, Kohichi Sano
  • Publication number: 20140014237
    Abstract: In a hot-rolled steel sheet, an average pole density of an orientation group {100}<011> to {223}<110>, which is represented by an arithmetic mean of pole densities of orientations {100}<011>, {116}<110>, {114}<110>, {112}<110>, and {223}<110> is 1.0 to 4.0 and a pole density of a crystal orientation {332}<113> is 1.0 to 4.8, in a thickness center portion which is a thickness range of ? to ? from the surface of the steel sheet; an average grain size in the thickness center portion is less than or equal to 10 ?m and a grain size of cementite precipitating in a grain boundary of the steel sheet is less than or equal to 2 ?m; and an average grain size of precipitates containing TiC in grains is less than or equal to 3 nm and a number density per unit volume is greater than or equal to 1×1016 grains/cm3.
    Type: Application
    Filed: April 13, 2012
    Publication date: January 16, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Tatsuo Yokoi, Hiroshi Shuto, Riki Okamoto, Nobuhiro Fujita, Kazuaki Nakano, Takeshi Yamamoto
  • Publication number: 20140007993
    Abstract: A high strength hot rolled steel sheet having excellent blanking workability is provided. The composition contains C: 0.050 to 0.15%, Si: 0.1 to 1.5%, Mn: 1.0 to 2.0%, P: 0.03% or less, S: 0.0030% or less, Al: 0.01 to 0.08%, Ti: 0.05 to 0.15%, N: 0.005% or less, and the balance being Fe and unavoidable impurities. More than 95% of the microstructure is formed of a bainite phase in terms of area fraction. Average grain diameters of the bainite phase in a region having a thickness equal to ¼ of the sheet thickness from the surface in the sheet thickness direction is 5 ?m or less in an L-direction cross section and 4 ?m or less in a C-direction cross section. The number of crystal grains extended in the rolling direction and having an aspect ratio of 5 or more is 7 or less in a sheet thickness center portion.
    Type: Application
    Filed: September 15, 2011
    Publication date: January 9, 2014
    Applicant: JFE Steel Corporation
    Inventors: Katsumi Nakajima, Hayato Saito, Yoshimasa Funakawa, Noriaki Moriyasu, Takayuki Murata
  • Publication number: 20140000766
    Abstract: The issue of the present invention is to provide a hot-rolled steel sheet with excellent press formability and method for producing the steel sheet, wherein the steel sheet has not only hole expandability but also stretch flanging workability by not assessing hole expandability for stretch flanging as conventional but an actual phenomena of side-bend elongation.
    Type: Application
    Filed: March 16, 2012
    Publication date: January 2, 2014
    Inventors: Daisuke Maeda, Osamu Kawano, Kazuya Otsuka
  • Publication number: 20140000769
    Abstract: A hot rolled steel sheet includes, as a chemical composition, at least one selected from Ti, REM, and Ca, and includes, as a metallographic structure, a ferrite as a primary phase, at least one of a martensite and a residual austenite as a secondary phase, and plural inclusions, wherein a total length in the rolling direction of both inclusion-cluster whose length in the rolling direction is 30 ?m or more and independent-inclusion whose length in the rolling direction is 30 ?m or more is 0 mm to 0.25 mm per 1 mm2.
    Type: Application
    Filed: March 16, 2012
    Publication date: January 2, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yuzo Takahashi, Junji Haji, Osamu Kawano
  • Publication number: 20140000765
    Abstract: This is a cold-rolled steel sheet includes, by mass %, C: 0.02% to 0.4%, Si: 0.001% to 2.5%, Mn: 0.001% to 4.0%, and Al: 0.001% to 2.0%. The sum of the Si content and the Al content is 1.0% to 4.5%. An average pole density of an orientation group from {100}<011> to {223}<110> is 1.0 to 6.5, and a pole density of a crystal orientation {332}<113> is 1.0 to 5.0. A microstructure includes, by an area ratio %, 5% to 80% of ferrite, 5% to 80% of bainite, and 2% to 30% of retained austenite. In the microstructure, by an area ratio %, martensite is limited to 20% or less, pearlite is limited to 10% or less, and tempered martensite is limited to 60% or less.
    Type: Application
    Filed: March 28, 2012
    Publication date: January 2, 2014
    Inventors: Takayuki Nozaki, Manabu Takahashi, Nobuhiro Fujita, Hiroshi Yoshida, Shinichiro Watanabe, Takeshi Yamamoto
  • Publication number: 20140000767
    Abstract: A steel wire rod which is a material of steel wires includes, as a metallographic structure, by area %, 95% to 100% of a pearlite, wherein an average pearlite block size at a central portion of the steel wire rod is 1 ?m to 25 ?m, an average pearlite block size at a surface layer portion of the steel wire rod is 1 ?m to 20 ?m, and, when a minimum lamellar spacing of the pearlite at the central portion of the steel wire rod is S in unit of nm and when a distance from a peripheral surface of the steel wire rod to a center is r in unit of mm, S<12 r+65 is satisfied.
    Type: Application
    Filed: March 13, 2012
    Publication date: January 2, 2014
    Inventors: Shingo Yamasaki, Toshiyuki Manabe, Naoshi Hikita
  • Patent number: 8613809
    Abstract: High cleanliness spring steel useful in manufacturing a spring with SiO2-based inclusions being extremely controlled and excellent in fatigue properties is provided. High cleanliness spring steel which is steel containing; C: 1.2% (means mass %, hereafter the same with respect to the component) or below (not inclusive of 0%), Si: 1.2-4%, Mn: 0.1-2.0%, Al: 0.01% or below (not inclusive of 0%), and the balance comprising iron with inevitable impurities, wherein; the total of oxide-based inclusions of 4 or above of L (the large diameter of an inclusion)/D (the short diameter of an inclusion) and 25 ?m or above of D and oxide-based inclusions of less than 4 L/D and 25 ?m or above of L, in the oxide-based inclusions of 25 mass % or above of oxygen concentration and 70% (means mass %, hereafter the same with respect to inclusions) or above of SiO2 content when Al2O3+MgO+CaO+SiO2+MnO=100% is presumed, out of inclusions in the steel, is 20 nos./500 g or below.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: December 24, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Tomoko Sugimura, Sei Kimura, Koichi Sakamoto, Atsuhiko Yoshida, Takeshi Inoue
  • Patent number: 8603213
    Abstract: A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with an introduced reactive species than does the alloying element and wherein one or more atomizing parameters is/are modified to controllably reduce the amount of the reactive species, such as oxygen, introduced into the atomized particles so as to reduce anneal times and improve reaction (conversion) to the desired strengthening dispersoids in the matrix. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: December 10, 2013
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Iver E. Anderson, Joel Rieken
  • Publication number: 20130319582
    Abstract: The present invention provides a bainite-containing-type high-strength hot-rolled steel sheet. The steel sheet, containing C: greater than 0.07 to 0.2%, Si: 0.001 to 2.5%, Mn: 0.01 to 4%, P: 0.15% or less, S: 0.03% or less, N: 0.01% or less, Al: 0.001 to 2% and a balance being composed of Fe and impurities, has an average value of pole densities of the {100}<011> to {223}<110> orientation group at a sheet thickness center portion being a range of ? to ? in sheet thickness from the surface of the steel sheet is 4.0 or less, and a pole density of the {332}<113> crystal orientation is 4.8 or less, an average crystal grain diameter is 10 ?m or less and vTrs is ?20° C. or lower, and a microstructure is composed of 35% or less in a structural fraction of pro-eutectoid ferrite and a balance of a low-temperature transformation generating phase.
    Type: Application
    Filed: March 29, 2012
    Publication date: December 5, 2013
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Tatsuo Yokoi, Hiroshi Shuto, Riki Okamoto, Nobuhiro Fujita, Kazuaki Nakano, Takeshi Yamamoto
  • Publication number: 20130306200
    Abstract: The present invention provides a non-oriented electrical steel sheet at low cost that has excellent magnetic properties and mechanical properties as well as excellent quality of steel sheet. The non-oriented electrical steel sheet has a chemical composition containing, by mass %, Si: 5.0% or less, Mn: 2.0% or less, Al: 2.0% or less, and P: 0.05% or less, in a range satisfying formula (1), and furthermore, C: 0.008% or more and 0.040% or less; N: 0.003% or less, and Ti: 0.04% or less, in a range satisfying formula (2), with the balance composed of Fe and incidental impurities: 300?85[Si %]+16[Mn %]+40[Al %]+490[P %]?430??(1) 0.008?Ti*<1.2[C %]??(2), where Ti*=Ti?3.4[N %].
    Type: Application
    Filed: February 24, 2011
    Publication date: November 21, 2013
    Applicant: JFE Steel Corporation
    Inventors: Masaaki Kohno, Yoshiaki Zaizen, Yoshihiko Oda, Akira Fujita
  • Publication number: 20130284319
    Abstract: A high strength, high toughness steel alloy is disclosed. The alloy has the following weight percent composition. Element C 0.30-0.55 Mn ?0.6-1.75 Si ?0.9-2.8 Cr ?0.6-2.5 Ni 2.70-7.0? Mo + ½ W 0.25-1.3? Cu 0.30-1.25 Co ?0.01 max. V + (5/9) × Nb 0.10-1.0? Ti ?0.01 max. Al 0.015 max. Ca 0.005 max. The alloy further includes a grain refining element selected from the group consisting of 0.0001-0.01% Mg, 0.001-0.025% Y, and a combination thereof. The balance of the alloy is iron and usual impurities. Also disclosed is a hardened and tempered steel article having very high strength and fracture toughness and formed from the alloy set forth above. The alloy article according to this aspect of the invention is further characterized by being tempered at a temperature of about 500° F. to 600° F.
    Type: Application
    Filed: April 27, 2012
    Publication date: October 31, 2013
    Inventor: Paul M. Novotny
  • Publication number: 20130276940
    Abstract: A steel having a composition that includes C: 0.05 to 0.15%, Si: 0.2 to 1.2%, Mn: 1.0 to 2.0%, Al: 0.005 to 0.10%, N: 0.006% or less, and at least one selected from Ti: 0.03 to 0.13%, Nb: 0.02 to 0.10%, and V: 0.02 to 0.15% is subjected to rough rolling at a reduction of 80% or more and finish rolling at a finish rolling delivery temperature in the range of 800 to 950° C. The finish rolled sheet is subjected to cooling including cooling the finish rolled sheet from the finish rolling delivery temperature to a cooling end temperature in the range of 550 to 610° C. at an average cooling rate of 25° C./sec. or more and cooling the finish rolled sheet from the cooling end temperature of the previous process to a coiling temperature at an average cooling rate of 100° C./sec. or more.
    Type: Application
    Filed: September 15, 2011
    Publication date: October 24, 2013
    Applicant: JFE Steel Corporation
    Inventors: Katsumi Nakajima, Hayato Saito, Yoshimasa Funakawa, Noriaki Moriyasu, Takayuki Murata
  • Patent number: 8562758
    Abstract: A low Ni and high N austenitic-ferritic stainless steel is disclosed. It includes an austenitic-ferritic stainless steel having high formability and punch stretchability, crevice corrosion resistance, corrosion resistance at welded part, or excellent intergranular corrosion resistance, from a stainless steel structured by mainly austenite phase and ferrite phase, and consisting essentially of 0.2% or less C, 4% or less Si, 12% or less Mn, 0.1% or less P, 0.03% or less S, 15 to 35% Cr, 3% or less Ni, and 0.05 to 0.6% N, by mass, by adjusting the percentage of the austenite phase in a range from 10 to 85%, by volume. Furthermore, it includes an austenitic-ferritic stainless steel having higher formability by adjusting the amount of (C+N) in the austenite phase to a range from 0.16 to 2% by mass.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: October 22, 2013
    Assignee: JFE Steel Corporation
    Inventors: Mitsuyuki Fujisawa, Yoshihiro Yazawa, Yasushi Kato, Osamu Furukimi
  • Publication number: 20130263975
    Abstract: The present invention provides a wire rod with a composition at least including: C: 0.95-1.30 mass %; Si: 0.1-1.5 mass %; Mn: 0.1-1.0 mass %; Al: 0-0.1 mass %; Ti: 0-0.1 mass %; P: 0-0.02 mass %; S: 0-0.02 mass %; N: 10-50 ppm; O: 10-40 ppm; and a balance including Fe and inevitable impurities, wherein 97% or more of an area in a cross-section perpendicular to the longitudinal direction of the wire rod is occupied by a pearlite, and 0.5% or less of an area in a central area in the cross-section and 0.5% or less of an area in a first surface layer area in the cross-section are occupied by a pro-eutectoid cementite.
    Type: Application
    Filed: May 21, 2013
    Publication date: October 10, 2013
    Inventors: Shingo YAMASAKI, Toshiyuki MANABE, Daisuke HIRAKAMI, Nariyasu MUROGA
  • Publication number: 20130248060
    Abstract: A strain aging hardening type steel sheet excellent in aging resistance, and manufacturing method thereof, said steel sheet comprises: in mass %, C: 0.0010 to 0.010%; Si: 0.005 to 1.0%; Mn: 0.08 to 1.0%; P: 0.003 to 0.10%; S: 0.0005 to 0.020%; Al: 0.010 to 0.10%; Cr: 0.005 to 0.20%; Mo: 0.005 to 0.20%; Ti: 0.002 to 0.10%; Nb: 0.002 to 0.10%; N: 0.001 to 0.005%; and a balance being composed of Fe and inevitable impurities, in which a ferrite fraction is 98% or more, an average grain diameter of ferrite is 5 to 30 ?m, a minimum value of dislocation density in a portion having a ½ thickness of a sheet thickness and a minimum value of dislocation density in a surface layer portion are each 5×1012/m2 or more, and an average dislocation density falls within a range of 5×1012 to 1×1015/m2.
    Type: Application
    Filed: June 22, 2011
    Publication date: September 26, 2013
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Naoki Maruyama, Koji Hashimoto, Masaharu Kameda
  • Publication number: 20130240094
    Abstract: The present invention provides a bake-hardenable high-strength cold-rolled steel sheet having excellent bake hardenability, cold aging resistance, and deep-drawability, and reduced planar anisotropy, containing chemical components in % by mass of: C: 0.0010% to 0.0040%, Si: 0.005% to 0.05%, Mn: 0.1% to 0.8%, P: 0.01% to 0.07%, S: 0.001% to 0.01%, Al: 0.01% to 0.08%, N: 0.0010% to 0.0050%, Nb: 0.002% to 0.020%, and Mo: 0.005% to 0.050%, a value of [Mn %]/[P %] being in the range of 1.6 to 45, where [Mn %] is an amount of Mn and [P %] is an amount of P, an amount of C in solid solution obtained from [C %]?(12/93)×[Nb %] being in the range of 0.0005% to 0.
    Type: Application
    Filed: April 27, 2011
    Publication date: September 19, 2013
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Satoshi Akamatsu, Masaharu Oka
  • Patent number: 8535459
    Abstract: The present invention provides a steel material for hardening, including chemical components, by mass %, of: C: 0.15 to 0.60%; Si: 0.01 to 1.5%; Mn: 0.05 to 2.5%; P: 0.005 to 0.20%; S: 0.001 to 0.35%; Al: over 0.06 to 0.3%; and total N: 0.006 to 0.03%, with a balance including Fe and inevitable impurities including B of not more than 0.0004%, in which a hardness R at a position 5 mm away from a quenching end measured through a Jominy-type end-quenching method specified in JIS G 0561, and a calculation hardness H at a position 4.763 mm away from the quenching end satisfy the following Equation (1). H×0.948?R?H×1.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: September 17, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Kei Miyanishi, Manabu Kubota, Shuji Kozawa
  • Publication number: 20130233453
    Abstract: A thin high strength steel sheet having excellent formability has a composition which includes, by mass %, 0.08 to 0.15% of C, 0.5 to 1.5% of Si, 0.5 to 1.5% of Mn, 0.01 to 0.1% of Al, and 0.005% or less of N to form a hot rolled sheet is conducted.
    Type: Application
    Filed: June 29, 2011
    Publication date: September 12, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Kenji Kawamura, Hidetaka Kawabe, Kazuhiro Seto, Noriyuki Katayama
  • Publication number: 20130228253
    Abstract: A secondary hardening steel alloy substantially lacking Cobalt is disclosed. In spite of the substantial lack of Cobalt, a steel alloy of the present disclosure has a low Stage II crack growth, and a high fracture toughness. Applications of a steel alloy of the present disclosure include structural applications, including aircraft landing gear.
    Type: Application
    Filed: October 27, 2011
    Publication date: September 5, 2013
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventor: Warren M. Garrison, Jr.
  • Publication number: 20130206289
    Abstract: A high-strength hot-rolled steel sheet having excellent formability has a composition containing, by mass, 0.04% to 0.1% of C, 0.3% to 1.3% of Si, 0.8% to 1.8% of Mn, 0.03% or less of P, 0.005% or less of S, 0.005% or less of N, 0.005% to 0.1% of Al, and at least one element selected from 0.002% to less than 0.03% of Ti, 0.002% to less than 0.03% of V, and 0.002% to less than 0.02% of Nb, the balance being Fe and incidental impurities. The steel sheet has a microstructure in which the area fraction of ferrite phase in the entire structure is 85% or more, the area fraction of bainite phase in the entire structure is 10% or less, the area fraction of phases other than the ferrite and bainite phases in the entire structure is 5% or less, and the area fraction of acicular ferrite phase in the entire ferrite phase is 30% to less than 80%.
    Type: Application
    Filed: August 9, 2011
    Publication date: August 15, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Katsumi Nakajima, Tetsuya Mega, Reiko Mizuno, Noriaki Moriyasu
  • Publication number: 20130192724
    Abstract: A high-strength steel sheet has a chemical composition comprising C: 0.05-0.20%, Si: 0.02-3.0%, Mn: 0.5-3.0%, P: at most 0.5%, S: at most 0.05%, Cr: 0.05-1.0%, sol. Al: 0.01-1.0%, one or more elements selected from the group consisting of Ti, Nb, Mo, V, and W: a total of 0.002-0.03%, and a remainder of Fe and impurities. The sheet has an average grain diameter of ferrite of at most 3.0 ?m at least in a region of 100-200 ?m in the sheet thickness direction from the surface of the steel sheet. The average spacing in the sheet thickness direction of the remaining structure in this region is at most 3.0 ?m. Mechanical properties include at least 750 MPa tensile strength and at least 13,000 MPa·% (tensile strength×elongation).
    Type: Application
    Filed: May 27, 2010
    Publication date: August 1, 2013
    Applicant: Nippon Steel & Sumitomo Metal Coporation
    Inventors: Yasuaki Tanaka, Toshiro Tomida, Kaori Kawano
  • Patent number: 8480819
    Abstract: In a cold-rolled steel sheet in relation with the present invention, metallurgical structure of the steel sheet is made a mixture structure including bainite, residual austenite and tempered martensite, particularly, when the metallurgical structure is observed with a scanning electron microscope, bainite is constituted of composite structure of high temperature range forming bainite with 1 ?m or above average distance between neighboring residual austenite and/or carbide and low temperature range forming bainite with below 1 ?m average distance between neighboring residual austenite and/or carbide, and when the area ratio of the high temperature range forming bainite with respect to total metallurgical structure is made a and the total area ratio of the low temperature range forming bainite and the tempered martensite with respect to the total metallurgical structure is made b, a: 20-80%, b: 20-80%, and a+b: 70% or above are satisfied.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: July 9, 2013
    Assignee: Kobe Steel, Ltd.
    Inventor: Yuichi Futamura
  • Publication number: 20130167985
    Abstract: A steel sheet including C at 0.05 to 0.15%, Si at 0.2 to 1.2%, Mn at 1.0 to 2.0%, P at not more than 0.04%, S at not more than 0.0030%, Al at 0.005 to 0.10%, N at not more than 0.005% and Ti at 0.03 to 0.13%, the balance being Fe and inevitable impurities, includes surface regions having an area fraction of bainite of less than 80% and an area fraction of a ferrite phase with a grain diameter of 2 to 15 ?m of not less than 10%, the surface regions extending from both surfaces of the steel sheet each to a depth of 1.5 to 3.0% relative to a total sheet thickness, as well as an inner region other than the surface regions having an area fraction of a bainite phase of more than 95%, and has a tensile strength of not less than 780 MPa.
    Type: Application
    Filed: September 15, 2011
    Publication date: July 4, 2013
    Applicant: JFE Steel Corporation
    Inventors: Hayato Saito, Katsumi Nakajima, Yoshimasa Funakawa, Noriaki Moriyasu, Takayuki Murata
  • Publication number: 20130167980
    Abstract: This high-strength steel sheet includes by mass percentage: 0.05 to 0.4% of C; 0.1 to 2.5% of Si; 1.0 to 3.5% of Mn; 0.001 to 0.03% of P; 0.0001 to 0.01% of S; 0.001 to 2.5% of Al; 0.0001 to 0.01% of N; 0.0001 to 0.008% of O; and a remainder composed of iron and inevitable impurities, wherein a steel sheet structure contains by volume fraction 10 to 50% of a ferrite phase, 10 to 50% of a tempered martensite phase, and a remaining hard phase, wherein a 98% hardness is 1.5 or more times as high as a 2% hardness in a range from ? to ? of a thickness of the steel sheet, wherein a kurtosis K* of the hardness distribution between the 2% hardness and the 98% hardness is ?1.2 to ?0.4, and wherein an average crystal grain size in the steel sheet structure is 10 ?m or less.
    Type: Application
    Filed: September 16, 2011
    Publication date: July 4, 2013
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Kawata, Naoki Maruyama, Akinobu Murasato, Naoki Yoshinaga, Chisato Wakabayashi, Noriyuki Suzuki
  • Publication number: 20130160904
    Abstract: The steel sheet includes C: 0.04 to 0.12%, Si: 0.5 to 1.2%, Mn: 1.0 to 1.8%, P: not more than 0.03%, S: not more than 0.0030%, Al: 0.005 to 0.20%, N: not more than 0.005% and Ti: 0.03 to 0.13%, the balance being Fe and inevitable impurities, includes a microstructure containing a bainite phase at an area fraction exceeding 95% and having an average grain diameter of not more than 3 ?m, has a difference ?Hv1 of not more than 50 between a Vickers hardness value at 50 ?m from the surface and a Vickers hardness value at ¼ of a sheet thickness, has a difference ?Hv2 of not more than 40 between the Vickers hardness value at ¼ of the sheet thickness and a Vickers hardness value at ½ of the sheet thickness.
    Type: Application
    Filed: September 15, 2011
    Publication date: June 27, 2013
    Inventors: Hayato Saito, Katsumi Nakajima, Yoshimasa Funakawa, Noriaki Moriyasu, Takayuki Murata
  • Patent number: 8470099
    Abstract: The present invention provides a wire rod with a composition at least including: C: 0.95-1.30 mass %; Si: 0.1-1.5 mass %; Mn: 0.1-1.0 mass %; Al: 0-0.1 mass %; Ti: 0-0.1 mass %; P: 0-0.02 mass %; S: 0-0.02 mass %; N: 10-50 ppm; O: 10-40 ppm; and a balance including Fe and inevitable impurities, wherein 97% or more of an area in a cross-section perpendicular to the longitudinal direction of the wire rod is occupied by a pearlite, and 0.5% or less of an area in a central area in the cross-section and 0.5% or less of an area in a first surface layer area in the cross-section are occupied by a pro-eutectoid cementite.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: June 25, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Shingo Yamasaki, Toshiyuki Manabe, Daisuke Hirakami, Nariyasu Muroga
  • Publication number: 20130153091
    Abstract: A hot-rolled steel sheet has an average value of the X-ray random intensity ratio of a {100} <011> to {223} <110> orientation group at least in a sheet thickness central portion that is in a sheet thickness range of ? to ? from a steel sheet surface of 1.0 to 6.0, an X-ray random intensity ratio of a {332} <113> crystal orientation of 1.0 to 5.0, rC which is an r value in a direction perpendicular to a rolling direction of 0.70 to 1.10, and r30 which is an r value in a direction that forms an angle of 30° with respect to the rolling direction of 0.70 to 1.10.
    Type: Application
    Filed: July 27, 2011
    Publication date: June 20, 2013
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Nobuhiro Fujita, Kunio Hayashi, Riki Okamoto, Manabu Takahashi, Tetsuo Kishimoto, Hiroshi Yoshida
  • Publication number: 20130133792
    Abstract: A high-strength cold rolled steel sheet has excellent formability and crashworthiness and includes, on a mass % basis, C: 0.05 to 0.3%, Si: 0.3 to 2.5%. Mn: 0.5 to 3.5%, P: 0.003 to 0.100%, 5: 0.02% or less, Al: 0.010 to 0.5%, the balance being iron and unavoidable impurities, the high-strength cold rolled steel sheet having a microstructure including 20% or more of ferrite on an area fraction basis, 10 to 60% of tempered martensite on an area fraction basis, 0 to 10% of martensite on an area fraction basis, and 3 to 15% of retained austenite on a volume fraction basis.
    Type: Application
    Filed: August 12, 2010
    Publication date: May 30, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Tatsuya Nakagaito, Saiji Matsuoka, Shinjiro Kaneko, Yoshiyasu Kawasaki
  • Publication number: 20130087253
    Abstract: A high strength steel sheet has tensile strength of at least 1470 MPa and (tensile strength×total elongation) of at least 29000 MPa·% with a composition including, by mass %, C: 0.30% to 0.73%, Si: 3.0% or less, Al: 3.0% or less, Si+Al: at least 0.7%, Cr: 0.2% to 8.0%, Mn: 10.0% or less, Cr+Mn: at least 1.0%, P: 0.1% or less, S: 0.07% or less, N: 0.010% or less, and remainder as Fe and incidental impurities; and processing the steel sheet such that microstructure satisfies area ratio of martensite with respect to the microstructure of 15% to 90%; content of retained austenite of 10% to 50%; at least 50% of the martensite is constituted of tempered martensite and area ratio of the tempered martensite with respect to the microstructure is at least 10%; and area ratio of polygonal ferrite with respect to the microstructure is 10% or less.
    Type: Application
    Filed: February 28, 2011
    Publication date: April 11, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Hiroshi Matsuda, Yoshimasa Funakawa, Yasushi Tanaka
  • Publication number: 20130061989
    Abstract: A high strength hot-rolled steel sheet has a tensile strength of not less than 780 MPa and exhibits excellent stretch flangeability and excellent fatigue resistance. A steel has a composition containing C at 0.05 to 0.15%, Si at 0.2 to 1.2%, Mn at 1.0 to 2.0%, P at not more than 0.04%, S at not more than 0.005%, Ti at 0.05 to 0.15%, Al at 0.005 to 0.10% and N at not more than 0.007%.
    Type: Application
    Filed: May 30, 2011
    Publication date: March 14, 2013
    Applicant: JFE Steel Corporation
    Inventors: Nobuyuki Nakamura, Hayato Saito, Katsumi Nakajima, Yoshimasa Funakawa, Noriaki Moriyasu, Takayuki Murata
  • Publication number: 20130048161
    Abstract: A high strength press-formed member includes a steel sheet constituting the member including a composition including by mass %, C: 0.12% to 0.69%, Si: 3.0% or less, Mn: 0.5% to 3.0%, P: 0.1% or less, S: 0.07% or less, Al: 3.0% or less, N: 0.010% or less, Si+Al: at least 0.
    Type: Application
    Filed: February 28, 2011
    Publication date: February 28, 2013
    Applicant: JFE Steel Corporation
    Inventors: Hiroshi Matsuda, Yoshimasa Funakawa, Yasushi Tanaka
  • Publication number: 20130037180
    Abstract: A high-strength cold-rolled steel sheet includes, by mass %, C: 0.10% to 0.40%, Mn: 0.5% to 4.0%, Si: 0.005% to 2.5%, Al: 0.005% to 2.5%, Cr: 0% to 1.0%, and a balance of iron and inevitable impurities, in which an amount of P is limited to 0.05% or less, an amount of S is limited to 0.02% or less, an amount of N is limited to 0.006% or less, the microstructure includes 2% to 30% of retained austenite by area percentage, martensite is limited to 20% or less by area percentage in the microstructure, an average particle size of cementite is 0.01 ?m to 1 ?m, and 30% to 100% of the cementite has an aspect ratio of 1 to 3.
    Type: Application
    Filed: January 26, 2011
    Publication date: February 14, 2013
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Kohichi Sano, Chisato Wakabayashi, Hiroyuki Kawata, Riki Okamoto, Naoki Yoshinaga, Kaoru Kawasaki, Natsuko Sugiura, Nobuhiro Fujita
  • Publication number: 20130008568
    Abstract: A high-strength steel sheet includes, by mass %, C: 0.03% to 0.30%, Si: 0.08% to 2.1%, Mn: 0.5% to 4.0%, P: 0.05% or less, S: 0.0001% to 0.1%, N: 0.01% or less, acid-soluble Al: more than 0.004% and less than or equal to 2.0%, acid-soluble Ti: 0.0001% to 0.20%, at least one selected from Ce and La: 0.001% to 0.04% in total, and a balance of iron and inevitable impurities, in which [Ce], [La], [acid-soluble Al], and [S] satisfy 0.02?([Ce]+[La])/[acid-soluble Al]<0.25, and 0.4?([Ce]+[La])/[S]?50 in a case in which the mass percentages of Ce, La, acid-soluble Al, and S are defined to be [Ce], [La], [acid-soluble Al], and [S], respectively, and a microstructure includes 1% to 50% of martensite in terms of an area ratio.
    Type: Application
    Filed: May 10, 2011
    Publication date: January 10, 2013
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Yoshihiro Suwa, Kenichi Yamamoto, Daisuke Maeda, Satoshi Hirose, Genichi Shigesato, Naoki Yoshinaga
  • Publication number: 20130008570
    Abstract: Disclosed is an ultra high strength steel plate with at least 1100 MPa of tensile strength that has both an excellent strength-stretch balance and excellent bending workability, and a method for producing the same. The metal structure of the steel plate has martensite, and the soft phases of bainitic ferrite and polygonal ferrite. The area of the aforementioned martensite constitutes 50% or more, the area of the aforementioned bainitic ferrite constitutes 15% or more, and the area of the aforementioned polygonal ferrite constitutes 5% or less (including 0%). When the circle-equivalent diameter of the aforementioned soft phases is measured, the coefficient of variation (standard deviation/mean value) is less or equal to 1.0. The ultra high strength steel plate has at least 1100 MPa of tensile strength.
    Type: Application
    Filed: March 25, 2011
    Publication date: January 10, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd)
    Inventors: Muneaki Ikeda, Yukihiro Utsumi, Masaaki Miura
  • Publication number: 20130000791
    Abstract: On a cross section with a sheet width direction of a high-strength hot-rolled steel sheet set as a normal line, with regard to an inclusion having a major diameter of 3.0 ?m or more, a maximum of a major diameter/minor diameter ratio expressed by (a major diameter of the inclusion)/(a minor diameter of the inclusion) is 8.0 or less, and a sum total of a rolling direction length per 1 mm2 cross section of a predetermined inclusion group composed of plural inclusions each having a major diameter of 3.0 ?m or more and a predetermined extended inclusion having a length in a rolling direction of 30 ?m or more is 0.25 mm or less. The plural inclusions composing the predetermined inclusion group congregate in both the rolling direction and a direction perpendicular to the rolling direction 50 ?m or less apart from each other. The predetermined extended inclusion is spaced over 50 ?m apart from all the inclusions each having a major diameter of 3.
    Type: Application
    Filed: March 9, 2011
    Publication date: January 3, 2013
    Inventors: Yuzo Takahashi, Junji Haji, Osamu Kawano
  • Publication number: 20130000798
    Abstract: A steel material has a composition of C: 0.02 to 0.2%, Si: 0.01 to 0.5%, Mn: 0.5 to 2.5%, P: 0.05% or lower, S: 0.05% or lower, Al: 0.1% or lower, and N: 0.01% or lower and, as required, one or two or more elements selected from Cu: 0.01 to 2%, Ni: 0.01 to 5%, Cr: 0.01 to 3%, Mo: 0.01 to 2%, Nb: 0.1% or lower, V: 0.1% or lower, Ti: 0.1% or lower, B: 0.01% or lower, Ca: 0.01% or lower, and REM: 0.1% or lower in terms of % by mass, and the balance Fe with inevitable impurities, in which the microstructure at the ¼ position of the plate thickness contains ferrite and a hard phase, the area fraction of the hard phase is 50 to 90%, and the average aspect ratio of the ferrite is 1.5 or more.
    Type: Application
    Filed: December 25, 2009
    Publication date: January 3, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Teruki Sadasue, Satoshi Igi
  • Patent number: 8343288
    Abstract: Provided are the following cold-rolled steel sheets: 1) a cold-rolled steel sheet having higher stretch flangeability than conventional steels; 2) a cold-rolled steel sheet having a higher balance between elongation and stretch flangeability than conventional steels; and 3) a cold-rolled steel sheet heightened in all of yield stress, elongation, and stretch flangeability. The cold-rolled steel sheets are characterized by containing 0.03-0.30 mass % carbon, up to 3.0 mass % (including 0 mass %) silicon, 0.1-5.0 mass % manganese, up to 0.1 mass % phosphorus, less than 0.01 mass % sulfur, up to 0.01 mass % nitrogen, and 0.01-1.00 mass % aluminum and having a structure which comprises tempered martensite in an amount of 50% or more (including 100%) in terms of areal proportion and in which the remainder is ferrite.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: January 1, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Toshio Murakami, Akira Ibano
  • Publication number: 20120305144
    Abstract: A steel sheet, including: as chemical components, by mass %, 0.05% to 0.35% of C; 0.05% to 2.0% of Si; 0.8% to 3.0% of Mn; 0.01% to 2.0% of Al; equal to or less than 0.1% of P; equal to or less than 0.05% of S; equal to or less than 0.01% of N; and the balance including iron and inevitable impurities, wherein an area ratio of equal to or higher than 50% of a total of a ferrite phase, a bainite phase, and a tempered martensite phase is contained, an area ratio of equal to or higher than 3% of a retained austenite phase is contained, and crystal grains of the retained austenite phase having a number ratio of equal to or higher than 50% satisfy Expression 1, assuming carbon concentration at a position of center of gravity is Cgc and a carbon concentration at a grain boundary is Cgb.
    Type: Application
    Filed: January 31, 2011
    Publication date: December 6, 2012
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Riki Okamoto, Natsuko Sugiura, Kohichi Sano, Chisato Wakabayashi, Naoki Yoshinaga, Kaoru Kawasaki
  • Publication number: 20120295123
    Abstract: This steel plate for cold forging includes a hot-rolled steel plate, wherein the hot-rolled steel plate includes: in terms of percent by mass, C: 0.13% to 0.20%; Si: 0.01% to 0.8%; Mn: 0.1% to 2.5%; P: 0.003% to 0.030%; S: 0.0001% to 0.008%; Al: 0.01% to 0.07%; N: 0.0001% to 0.02%; and O: 0.0001% to 0.0030%, with a remainder being Fe and inevitable impurities, an A value represented by the following formula (1) is in a range of 0.0080 or less, a thickness of the hot-rolled steel plate is in a range of 2 mm to 25 mm, and an area percentage of pearlite bands having lengths of 1 mm or more in a region of 4/10t to 6/10t when a plate thickness is indicated by t in a cross section of a plate thickness that is parallel to a rolling direction of the hot-rolled steel plate is in a range of not more than a K value represented by the following formula (2), A value=O%+S%+0.033Al%??(1) K value=25.5×C%+4.5×Mn%?6??(2).
    Type: Application
    Filed: January 25, 2011
    Publication date: November 22, 2012
    Inventors: Masayuki Abe, Kengo Takeda, Shuji Yamamoto, Yasushi Tsukano, Shinichi Yamaguchi
  • Publication number: 20120279620
    Abstract: This high strength hot-rolled steel sheet includes: in terms of percent by mass, C: 0.05 to 0.12%; Si: 0.8 to 1.2%; Mn: 1.6 to 2.2%; Al: 0.30 to 0.6%; P: 0.05% or less; S: 0.005% or less; and N: 0.01% or less, with the remainder being Fe and unavoidable impurities, wherein a microstructure includes specific ranges (in area %) of ferrite phases as well as martensite phases, and a maximum concentration of Al detected by a glow discharge emission spectroscopic analysis is in a range of 0.75 mass % or less in a region from a surface of the steel sheet to a thickness of 500 nm after being acid-pickled.
    Type: Application
    Filed: November 16, 2010
    Publication date: November 8, 2012
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Hiroyuki Tanahashi, Shinya Saitoh, Masashi Fukuda, Hiroyuki Okada, Kunio Hayashi, Toshimasa Tomokiyo, Nobuhiro Fujita
  • Publication number: 20120279616
    Abstract: The present invention provides a steel material for hardening, including chemical components, by mass %, of: C: 0.15 to 0.60%; Si: 0.01 to 1.5%; Mn: 0.05 to 2.5%; P: 0.005 to 0.20%; S: 0.001 to 0.35%; Al: over 0.06 to 0.3%; and total N: 0.006 to 0.03%, with a balance including Fe and inevitable impurities including B of not more than 0.0004%, in which a hardness R at a position 5 mm away from a quenching end measured through a Jominy-type end-quenching method specified in JIS G 0561, and a calculation hardness H at a position 4.763 mm away from the quenching end satisfy the following Equation (1). H×0.948?R?H×1.
    Type: Application
    Filed: May 17, 2011
    Publication date: November 8, 2012
    Inventors: Kei Miyanishi, Manabu Kubota, Shuji Kozawa
  • Publication number: 20120216925
    Abstract: A hot-pressed steel sheet member has a composition containing, by mass, C: 0.09% to 0.38%, Si: 0.05% to 2.0%, Mn: 0.5% to 3.0%, P: 0.05% or less, S: 0.05% or less, Al: 0.005% to 0.1%, N: 0.01% or less, Sb: 0.002% to 0.03%, and the balance being Fe and inevitable impurities, and having a tensile strength TS of 980 to 2,130 MPa.
    Type: Application
    Filed: August 19, 2010
    Publication date: August 30, 2012
    Applicant: JFE Steel Corporation
    Inventors: Akio Kobayashi, Yoshimasa Funakawa, Kazuhiro Seto, Nobuyuki Kageyama, Tetsuo Yamamoto, Toru Hoshi, Takeshi Yokota
  • Publication number: 20120132327
    Abstract: Disclosed is a high strength steel sheet having excellent hydrogen embrittlement resistance. The steel sheet has a tensile strength of 1180 MPa or more, and satisfies the following conditions: with respect to an entire metallographic structure thereof, bainite, bainitic ferrite and tempered martensite account for 85 area % or more in total; retained austenite accounts for 1 area % or more; and fresh martensite accounts for 5 area % or less (including 0 area %).
    Type: Application
    Filed: May 28, 2010
    Publication date: May 31, 2012
    Applicants: VOESTALPINE STAHL GMBH, Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yoichi Mukai, Kouji Kasuya, Michiharu Nakaya, Michitaka Tsunezawa, Fumio Yuse, Junichiro Kinugasa, Sandra Traint, Andreas Pichler