Three Percent Or More Manganese Containing Or Containing Other Transition Metal In Any Amount Patents (Class 148/337)
  • Patent number: 11180821
    Abstract: A stud-weldable rebar and a method for making the rebar are disclosed. The rebar has a steel body with a weld end and a diameter that is substantially uniform along a length of the body. A tip portion at the weld end includes a hardened zone and a base portion is formed of the remaining steel body. The hardened zone has a hardness that is about 1.5-3.0 times greater than a hardness of the base portion. Induction hardening is used to form the hardened zone.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: November 23, 2021
    Assignee: TFP CORPORATION
    Inventors: Peter A. Workman, Timothy A. White, Samuel T. Ray
  • Patent number: 10931106
    Abstract: A system and method for altering the properties of a material by exposure of the material to a magnetic field is described herein. The method comprises generating a magnetic field; exposing a material to the magnetic field, and determining the optimum settings of the magnetic field parameters for the particular material. The magnetic field may be time varying or time invariant. Various properties of the magnetic field can be altered to determine the optimum settings for altering the material properties, including the amplitude, frequency, and waveform. In one embodiment, a method for improving the conductivity of a transmission line is provided, comprising: providing a high voltage electrical transmission line; temporarily installing a magnetic field generator along at least a portion of the transmission line; and generating a pulsed magnetic field around at least a portion of the transmission line using the magnetic field generator and simultaneously running a current through the transmission line.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: February 23, 2021
    Assignee: DynaPulse, L.L.C.
    Inventors: David C. Jiles, Steffen Magnell, Mani Mina
  • Patent number: 10626485
    Abstract: A steel having a composition containing C: more than 0.20% and 0.45% or less, Si: 0.50% to 2.50%, Mn: 2.00% or more and less than 3.50%, and one or two selected from Ti: 0.005% to 0.100% and Nb: 0.005% to 0.100% is hot-rolled and cold-rolled. The steel sheet is heated to 800° C. to 950° C. and cooled to a cooling-end temperature of 350° C. to 500° C. at a cooling rate of 5° C./s or more to form a steel sheet having a microstructure including martensite and bainite phases such that the total proportion of the martensite and bainite phases is 80% or more by volume. The steel sheet is heated to 700° C. to 840° C. and maintained at 700° C. to 840° C., cooled to a cooling-end temperature of 350° C. to 500° C. at a cooling rate of 5 to 50° C./s, and maintained within the above temperature range for 10 to 1800 s.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: April 21, 2020
    Assignee: JFE Steel Corporation
    Inventors: Yoshie Obata, Yoshiyasu Kawasaki, Keiji Ueda, Shinjiro Kaneko, Takeshi Yokota, Kazuhiro Seto
  • Patent number: 10301694
    Abstract: A heat treatment method for a steel material according to the present invention includes: a first step of forming austenite by heating the steel material to a temperature equal to or higher than an A1 point; a second step of cooling the steel material heated in the first step, while keeping the steel material at a temperature higher than an Ms point, thereby causing the austenite of the steel material to be transformed into ferrite, pearlite, or bainite; and a third step of cooling the steel material to a temperature equal to or lower than the Ms point after the second step. According to the present invention, it is possible to provide a heat treatment method for a steel material which is capable of shortening a heat treatment time while suppressing the formation of martensite.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: May 28, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Hiroki Tateishi
  • Patent number: 10110001
    Abstract: A system and method for altering the properties of a material by exposure of the material to a magnetic field is described herein. The method comprises generating a magnetic field; exposing a material to the magnetic field, and determining the optimum settings of the magnetic field parameters for the particular material. The magnetic field may be time varying or time invariant. Various properties of the magnetic field can be altered to determine the optimum settings for altering the material properties, including the amplitude, frequency, and waveform. In one embodiment, a method for improving the conductivity of a transmission line is provided, comprising: providing a high voltage electrical transmission line; temporarily installing a magnetic field generator along at least a portion of the transmission line; and generating a pulsed magnetic field around at least a portion of the transmission line using the magnetic field generator and simultaneously running a current through the transmission line.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: October 23, 2018
    Assignee: DynaPulsa, L.L.C.
    Inventors: David C. Jiles, Steffen Magnell, Mani Mina
  • Patent number: 9896750
    Abstract: There are provided a steel wire rod for ultra-high-strength parts such as automobile engine bolts or structural mechanical parts, and a method for producing the steel wire rod. The steel wire rod having high strength and ductility includes, by wt %, carbon (C): 0.7% to 0.9%, manganese (Mn): 13% to 17%, copper (Cu): 1% to 3%, and the balance of iron (Fe) and inevitable impurities.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: February 20, 2018
    Assignee: POSCO
    Inventors: You-Hwan Lee, Chul-Min Bae, Geun-Soo Ryu
  • Patent number: 9574254
    Abstract: A hot rolled steel sheet has a chemical composition including, by mass %, C: 0.060% to 0.120%; Si: 0.10% to 0.70%; Mn: 1.00% to 1.80%; P: 0.10% or less; S: 0.010% or less; Al: 0.01% to 0.10%; N: 0.010% or less; Nb: 0.010% to 0.100%, wherein Nb is contained so that content of solute Nb is 5% or more relative to the total Nb content; the balance being Fe and incidental impurities. The hot rolled steel sheet has a microstructure containing ferrite of not more than 15 ?m in average crystal grain diameter by a volume fraction of not less than 75%, the balance being low-temperature-induced phases. The hot rolled steel sheet can be suitably utilized for manufacturing a cold rolled steel sheet or hot-dip galvanized steel sheet having a tensile strength of 590 MPa or more, excellent in material homogeneity and capable of giving excellent cold rolling property.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: February 21, 2017
    Inventors: Katsutoshi Takashima, Yuki Toji, Kohei Hasegawa, Shinya Yamaguchi
  • Patent number: 9487841
    Abstract: A method of producing coil plate on a hot strip mill is disclosed. The method includes coiling hot rolled coil plate strip at a temperature that is selected (a) to minimize precipitation of Cr/Mo carbides or (b) so that any Cr/Mo carbides that form are sufficiently fine that they go into solution in any subsequent heat treatment of coil plate made from the strip.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: November 8, 2016
    Assignee: Bluescope Steel Limited
    Inventor: James Geoffrey Williams
  • Publication number: 20150144231
    Abstract: In a steel sheet having a specific chemical composition and having a microstructure including ferrite that is a soft first phase by 20-50% in terms of the area ratio, the remainder being tempered martensite and/or tempered bainite that is a hard second phase, the microstructure of steel of a surface layer section of the steel sheet from the surface to the depth of 100 ?m and a center section of t/4-3t/4 (t is the sheet thickness) is controlled.
    Type: Application
    Filed: May 29, 2013
    Publication date: May 28, 2015
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Tomokazu Masuda, Katsura Kajihara, Toshio Murakami, Masaaki Miura, Muneaki Ikeda
  • Patent number: 9034118
    Abstract: A method for manufacturing a hot-rolled sheet attains grain refinement of the steel sheet whose grain size is extremely fine. In particular, a ferrite grain size of less than average 2 ?m is obtained, which is not laminar but has ferrite grains with equiaxed morphology and exhibits high formability in forming. The method comprises the steps of rolling and cooling, wherein the rolling reductions, cooling steps, and temperature are closely regulated. A hot rolled sheet made from the method of manufacturing has a controlled ferrite grain in different regions of sheet thickness.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: May 19, 2015
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Suguhiro Fukushima, Manabu Eto, Tamotsu Sasaki, Kaori Kawano, Masayuki Wakita
  • Publication number: 20150114524
    Abstract: In a high strength cold-rolled steel plate having a specific chemical composition, a soft first phase (ferrite) has an area ratio of 20-50%, the remainder being a hard second phase (tempered martensite and/or tempered bainite), among all the ferrite grains, ferrite grains that have an average grain diameter of 10-25 ?m account for a total area ratio of 80% or more, the number of the cementite grains that have an equivalent circle diameter of 0.3 ?m or more is more than 0.15 piece and 1.0 piece or less per 1 ?m2 of ferrite, and the tensile strength is 980 MPa or more.
    Type: Application
    Filed: May 24, 2013
    Publication date: April 30, 2015
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Tomokazu Masuda, Katsura Kajihara, Toshio Murakami, Masaaki Miura, Muneaki Ikeda
  • Publication number: 20150114527
    Abstract: A steel for oil country tubular goods includes, as a chemical composition, by mass %, C, Si, Mn, Al, Mo, P, S, O, N, and a balance containing Fe and impurities, wherein a full width at half maximum HW of a crystal plane corresponding to a (211) crystal plane of an ? phase and a carbon content expressed in mass % in the chemical composition satisfy HW×C1/2?0.38, the carbon content and a molybdenum content expressed in mass % in the chemical composition satisfy C×Mo?0.6, a number of M2C carbides having a hexagonal crystal structure and having an equivalent circle diameter of 1 nm or more is 5 pieces or more per one square micron, and an yield strength is 758 MPa or more.
    Type: Application
    Filed: June 17, 2013
    Publication date: April 30, 2015
    Inventors: Tomohiko Omura, Yuji Arai, Kaori Kawano, Akihiro Sakamoto, Kazuo Okamura, Kenji Yamamoto, Keiichi Kondo, Koji Nagahashi, Masanao Seo
  • Publication number: 20150101717
    Abstract: A slab has a steel composition including 0.020% to 0.065% of C, 0.1% or less of Si, 0.40% to less than 0.80% of Mn, 0.030% or less of P, 0.005% or less of S, 0.08% to 0.16% of Ti, 0.005% to 0.1% of Al, 0.005% or less of N, and the balance being Fe and incidental impurities, in which Ti*(=Ti?(48/14)×N) satisfies [Ti*?0.08] and [0.300?C/Ti*?0.375], is subjected to hot rolling to obtain a hot-rolled steel sheet in which the steel microstructure includes, in terms of area fraction, 95% or more of a ferrite phase; the average ferrite grain size is 10 ?m or less; the average grain size of Ti carbides precipitated in steel is 10 nm or less; and Ti in the amount of 80% or more of Ti* is precipitated as Ti carbides.
    Type: Application
    Filed: April 26, 2012
    Publication date: April 16, 2015
    Applicant: JFE STEEL CORPORATION
    Inventors: Noriaki Kosaka, Kazuhiro Seto, Hidetaka Kawabe
  • Publication number: 20150101715
    Abstract: A steel wire for spring is provided which exhibits high strength even without adding a large amount of alloy elements, and is for obtaining a cold winding spring having excellent coiling performance and improved hydrogen embrittlement resistance. The steel wire for spring is characterized in that C: 0.40-0.65% (mass %), Si: 1.0-3.0%, Mn: 0.6-2.0%, P: 0.015% or less (exclusive of 0%), S: 0.015% or less (exclusive of 0%), and Al: 0.015 percent by mass or less (excluding 0%) of S, and Al: 0.001-0.10% are satisfied, with the remainder consisting of iron and inevitable impurities, tempered martensite: 70 area % or more and retained austenite: 6-15 area % with respect to the total microstructure, the prior austenite grain size number obtained by a method stipulated in JIS G 0551 is No. 10.0 or more, and the tensile strength is 1,900 MPa or more.
    Type: Application
    Filed: May 20, 2013
    Publication date: April 16, 2015
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Atsuhiko Takeda, Nao Yoshihara
  • Publication number: 20150090370
    Abstract: A steel plate has a chemical composition containing, by mass %, C: 0.03% or more and 0.08% or less, Si: 0.01% or more and 1.0% or less, Mn: 1.2% or more and 3.0% or less, P: 0.015% or less, S: 0.005% or less, Al: 0.08% or less, Nb: 0.005% or more and 0.07% or less, Ti: 0.005% or more and 0.025% or less, N: 0.010% or less, O: 0.005% or less and the balance being Fe and inevitable impurities, a structure being a dual-phase structure consisting of a bainite phase and island martensite, wherein the area fraction of the island martensite is 3% to 15%, the equivalent circle diameter of the island martensite is 3.0 ?m or less, and the remainder of the structure is a bainite phase.
    Type: Application
    Filed: March 29, 2013
    Publication date: April 2, 2015
    Applicant: JFE Steel Corporation
    Inventors: Junji Shimamura, Kimihiro Nishimura
  • Publication number: 20150086808
    Abstract: A high-strength cold-rolled steel sheet has a specific chemical composition and has a steel microstructure meeting conditions: a total content of bainitic ferrite (BF) and tempered martensite (TM) is 65% (in area percent, hereinafter the same for steel microstructure) or more; a fresh martensite (M) content is 3% to 18%; a retained austenite content is 5% or more; and a polygonal ferrite (F) content is 5% or less. The steel sheet has a specific average KAM<1.00° of 0.50° or more and has a tensile strength of 980 MPa or more. The high-strength cold-rolled steel sheet excels in formability and shape fixability.
    Type: Application
    Filed: March 6, 2013
    Publication date: March 26, 2015
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
    Inventors: Kouji Kasuya, Yuichi Futamura, Yukihiro Utsumi
  • Publication number: 20150075682
    Abstract: The present invention provides a high tensile strength steel plate having a chemical composition containing, in percent by mass, 0.03% to 0.12% of C, 0.01% to 0.30% of Si, 0.5% to 1.95% of Mn, 0.008% or less of P, 0.005% or less of S, 0.015% to 0.06% of Al, 0.011% to 0.05% of Nb, 0.005% to 0.02% of Ti, 0.001% to 0.006% of N, 0.0005% to 0.003% of Ca, optionally, one or two or more of Cr, Mo, V, Cu, and Ni, in which Ceq is 0.44 or less, Ti/N is 1.5 to 3.5, and parameter formulas composed of specific elements for controlling the sulfide morphology and the degree of center segregation in the steel are satisfied, and the balance being Fe and incidental impurities, in which the hardness of the center segregation area of the steel sheet is further specified.
    Type: Application
    Filed: March 1, 2012
    Publication date: March 19, 2015
    Applicant: JFE Steel Corporation
    Inventors: Masao Yuga, Shigeki Kitsuya, Yusuke Terazawa, Minoru Suwa, Kenji Hayashi
  • Publication number: 20150075680
    Abstract: A steel sheet suitable as a starting material for a vehicle impact absorbing member with high absorption of impact energy and resistance to cracking contains, by mass %, C: 0.08-0.30%, Mn: 1.5-3.5%; Si+Al: 0.50-3.0%, P: 0.10% or less, S: at most 0.010%, and N: at most 0.010%, and optionally, one or more types selected from Cr: at most 0.5%, Mo: at most 0.5%, B: at most 0.010%, Ti: less than 0.04%, Nb: less than 0.030%, V: less than 0.5%, Ca: at most 0.010%, Mg: at most 0.010%, REM: at most 0.050%, and Bi: at most 0.050%. The microstructure contains, by area %, bainite: more than 50%, martensite: 3-30%, and retained austenite: 3-15%, the remainder comprising ferrite having an average grain diameter of less than 5 mm. The product of uniform elongation and hole expansion ratio is at least 300%2 and 5% effective flow stress is at least 900 MPa.
    Type: Application
    Filed: April 8, 2013
    Publication date: March 19, 2015
    Inventors: Yasuaki Tanaka, Kaori Kawano, Masahito Tasaka, Yoshiaki Nakazawa, Takuya Nishio, Masayuki Wakita, Jun Haga, Toshiro Tomida
  • Publication number: 20150059912
    Abstract: A steel plate has a chemical composition containing, by mass %, C: 0.03% or more and 0.08% or less, Si: 0.01% or more and 1.0% or less, Mn: 1.2% or more and 3.0% or less, P: 0.015% or less, S: 0.005% or less, Al: 0.08% or less, Nb: 0.005% or more and 0.07% or less, Ti: 0.005% or more and 0.025% or less, N: 0.010% or less, O: 0.005% or less and the balance being Fe and inevitable impurities, a metallographic structure including a bainite phase and island martensite, and a polygonal ferrite in surface portions within 5 mm from the upper and lower surfaces, wherein the area fraction of the island martensite is 3% to 15%, the equivalent circle diameter of the island martensite is 3.0 ?m or less, the area fraction of the polygonal ferrite in the surface portions is 10% to less than 80%.
    Type: Application
    Filed: March 29, 2013
    Publication date: March 5, 2015
    Inventors: Junji Shimamura, Kimihiro Nishimura
  • Publication number: 20150050519
    Abstract: In a hot stamped steel, when [C] represents an amount of C (mass %), [Si] represents an amount of Si (mass %), and [Mn] represents an amount of Mn (mass %), an expression of 5×[Si]+[Mn])/[C]>10 is satisfied, a metallographic structure includes 80% or more of a martensite in an area fraction, and optionally, further includes one or more of 10% or less of a pearlite in an area fraction, 5% or less of a retained austenite in a volume ratio, 20% or less of a ferrite in an area fraction, and less than 20% of a bainite in an area fraction, TS×?, which is a product of TS that is a tensile strength and ? that is a hole expansion ratio is 50000 MPa·% or more, and a hardness of the martensite measured with a nanoindenter satisfies H2/H1<1.10 and ?HM<20.
    Type: Application
    Filed: January 11, 2013
    Publication date: February 19, 2015
    Inventors: Toshiki Nonaka, Satoshi Kato, Kaoru Kawasaki, Toshimasa Tomokiyo
  • Publication number: 20150047752
    Abstract: A high strength interstitial free low density steel and method for producing the steel.
    Type: Application
    Filed: April 10, 2013
    Publication date: February 19, 2015
    Applicant: TATA STEEL NEDERLAND TECHNOLOGY B.V.
    Inventors: Cheng Liu, Radhakanta Rana
  • Patent number: 8951366
    Abstract: A high-strength cold-rolled steel sheet includes, by mass %, C: 0.10% to 0.40%, Mn: 0.5% to 4.0%, Si: 0.005% to 2.5%, Al: 0.005% to 2.5%, Cr: 0% to 1.0%, and a balance of iron and inevitable impurities, in which an amount of P is limited to 0.05% or less, an amount of S is limited to 0.02% or less, an amount of N is limited to 0.006% or less, the microstructure includes 2% to 30% of retained austenite by area percentage, martensite is limited to 20% or less by area percentage in the microstructure, an average particle size of cementite is 0.01 ?m to 1 ?m, and 30% to 100% of the cementite has an aspect ratio of 1 to 3.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: February 10, 2015
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Kohichi Sano, Chisato Wakabayashi, Hiroyuki Kawata, Riki Okamoto, Naoki Yoshinaga, Kaoru Kawasaki, Natsuko Sugiura, Nobuhiro Fujita
  • Publication number: 20150037610
    Abstract: A high-strength cold-rolled steel sheet includes a composition having controlled amounts of carbon, silicon, manganese, phosphorous, sulfur, titanium, niobium, sol. Aluminum, chromium, molybdenum, vanadium, boron, calcium, REM, and iron. A microstructure thereof has a main phase of ferrite of at least 40 area %, and a second phase of a low-temperature transformation phase consisting either or both of martensite and bainite, which comprises at least 10 area % in total and retained austenite (?) at least comprising 3 area %. An average grain diameter of ferrite has a tilt angle of at least 15° is at most 5.0 mm, an average grain diameter of the low-temperature transformation-produced phase is at most 2.0 mm, an average grain diameter of lump-like retained ? having an aspect ratio of less than 5 is at most 1.5 mm, and an area fraction of the lump-like retained ? relative to the retained ? is at least 50%.
    Type: Application
    Filed: February 13, 2013
    Publication date: February 5, 2015
    Inventors: Kengo Hata, Toshiro Tomida, Norio Imai, Jun Haga, Takuya Nishio
  • Patent number: 8945719
    Abstract: This steel plate for cold forging includes a hot-rolled steel plate, wherein the hot-rolled steel plate includes: in terms of percent by mass, C: 0.13% to 0.20%; Si: 0.01% to 0.8%; Mn: 0.1% to 2.5%; P: 0.003% to 0.030%; S: 0.0001% to 0.008%; Al: 0.01% to 0.07%; N: 0.0001% to 0.02%; and O: 0.0001% to 0.0030%, with a remainder being Fe and inevitable impurities, an A value represented by the following formula (1) is in a range of 0.0080 or less, a thickness of the hot-rolled steel plate is in a range of 2 mm to 25 mm, and an area percentage of pearlite bands having lengths of 1 mm or more in a region of 4/10t to 6/10t when a plate thickness is indicated by t in a cross section of a plate thickness that is parallel to a rolling direction of the hot-rolled steel plate is in a range of not more than a K value represented by the following formula (2), A value=O%+S%+0.033Al%??(1) K value=25.5×C%+4.5×Mn%?6??(2).
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: February 3, 2015
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Masayuki Abe, Kengo Takeda, Shuji Yamamoto, Yasushi Tsukano, Shinichi Yamaguchi
  • Publication number: 20150030879
    Abstract: A semi-manufactured steel material has a chemical composition including, by mass %, C: 0.055% to 0.15%, Si: not more than 0.2%, Mn: not more than 1.3%, P: not more than 0.03%, S: not more than 0.007%, Al: not more than 0.1%, N: not more than 0.01%, and Ti: 0.14% to 0.30%, the balance comprising Fe and inevitable impurities. In the composition, 1.0 ([C]/12)/([Ti*]/48) is satisfied ([C], [S], [N] and [Ti]: contents (mass %) of the respective elements, and [Ti*]=[Ti]?3.4×[N]?1.5×[S]), and the contents of niobium and boron as impurities are limited to Nb: less than 0.03% and B: less than 0.0005%.
    Type: Application
    Filed: December 25, 2012
    Publication date: January 29, 2015
    Inventors: Noriaki Kosaka, Yoshimasa Funakawa, Masato Shigemi, Hidekazu Ookubo, Tokunori Kanemura
  • Publication number: 20150027597
    Abstract: This invention relates to a high strength bake-hardenable low density steel and to a method for producing said the steel.
    Type: Application
    Filed: February 19, 2013
    Publication date: January 29, 2015
    Applicant: TATA STEEL NEDERLAND TECHNOLOGY BV
    Inventors: Cheng Liu, Radhakanta Rana
  • Publication number: 20150027600
    Abstract: A Si-containing high-strength cold rolled steel sheet has a chemical composition comprising C: 0.0˜20.3 mass %, Si: 0.8˜2.0 mass %, Mn: 1.0˜5.0 mass % and the remainder being Fe and inevitable impurities with a ratio of Si content to Mn content (Si/Mn) exceeding 0.4, and has a tensile strength TS of not less than 780 MPa, wherein a metallic structure of the steel sheet surface contains polygonal ferrite and/or bainitic ferrite having a Si concentration of not more than 3.0 mass % and a grain size of not more than 10 ?m and does not have a Si-containing oxide layer on the steel sheet surface.
    Type: Application
    Filed: February 25, 2013
    Publication date: January 29, 2015
    Applicant: JFE STEEL CORPORATION
    Inventors: Hiroyuki Masuoka, Reiko Sugihara, Takashi Kawano
  • Publication number: 20150030880
    Abstract: The present invention provides a high-strength hot-rolled steel sheet having both excellent strength and excellent workability (particularly, bending workability), and a method of producing the same. The steel sheet of the present invention has a certain composition as well as microstructures such that an area ratio of ferrite phase is 95% or more, an average grain size of the ferrite phase is 8 ?m or less, and carbides in grains of the ferrite phase have an average particle size of less than 10 nm. The steel sheet of the present invention also has a tensile strength of 980 MPa or more.
    Type: Application
    Filed: January 21, 2013
    Publication date: January 29, 2015
    Applicant: JEF STEEL CORPORATION
    Inventors: Noriaki Kosaka, Yoshimasa Funakawa, Masato Shigemi, Hidekazu Ookubo, Tokunori Kanemura
  • Publication number: 20150027593
    Abstract: A high-strength cold-rolled steel sheet having excellent ductility and stretch flangeability includes: a chemical composition consisting, in mass %, C: 0.06 to 0.3, Si: 0.6 to 2.5%, Mn: 0.6 to 3.5%, P: at most 0.1%, S: at most 0.05%, Ti: 0 to 0.08%, Nb: 0 to 0.04%, total of Ti and Nb: 0 to 0.10%, sol.Al: 0 to 2.0%, Cr: 0 to 1%, Mo: 0 to 0.3%, V: 0 to 0.3%, B: 0 to 0.005%, Ca: 0 to 0.003%, REM: 0 to 0.003% and the remainder of Fe and impurities; a microstructure having a main phase including at least 40 area % in total of martensite and/or bainite; and a texture in which proportion of an average X-ray intensity in an {100}<011> to {211}<011> orientations relative to an average X-ray intensity of a random structure not having a texture is less than 6.
    Type: Application
    Filed: February 13, 2013
    Publication date: January 29, 2015
    Inventors: Kengo Hata, Toshiro Tomida, Norio Ima, Jun Haga, Takuya Nishio
  • Publication number: 20150027594
    Abstract: A thin steel sheet having sheet thickness ?1.6 mm, but tensile strength ?780 MPa and Young's modulus ?240 GPa in transverse direction is provided, where the steel sheet has composition including, in mass %, C: 0.06-0.12%, Si: 0.5-1.5%, Mn: 1.0-3.0%, P: 0.05% or less, S: 0.01% or less, Al: 0.5% or less, N: 0.01% or less, Ti: 0.02-0.20%, and the balance being Fe and incidental impurities, where the composition satisfies relations of Formula (1) and (2), and microstructure such that ferrite phase has area ratio ?60% and martensite phase has area ratio of 15-35%, ferrite and martensite phases are 95% or more in total, average grain size of ferrite is ?4.0 ?m and that of martensite is ?1.5 ?m, 0.05?[% C]?(12/47.9)×[% Ti*]?0.10 ??(1), where Ti*=[% Ti]?(47.9/14)×[% N]?(47.9/32.1)×[% S]??(2).
    Type: Application
    Filed: November 7, 2012
    Publication date: January 29, 2015
    Inventors: Kenji Kawamura, Takeshi Yokota
  • Publication number: 20150017471
    Abstract: There are provided a high-strength hot-rolled steel sheet securing low-temperature toughness and having excellent stretch flangeability by controlling a structural fraction and a hardness difference among structures, and a manufacturing method thereof. A hot-rolled steel sheet contains: C: 0.01 to 0.2%; Si: 0.001 to 2.5% or less; Mn: 0.10 to 4.0% or less; P: 0.10% or less; S: less than 0.03%; Al: 0.001 to 2.0%; N: less than 0.01%; Ti: (0.005+48/14[N]+48/32[S]) % or more and 0.3% or less; Nb: 0 to 0.06%; Cu: 0 to 1.2%; Ni: 0 to 0.6%; Mo: 0 to 1%; V: 0 to 0.2%; Cr: 0 to 2%; Mg: 0 to 0.01%; Ca: 0 to 0.01%; REM: 0 to 0.1%; and B: 0 to 0.002%, and has: an texture in which, at a central portion of a sheet thickness located between ? to ? thickness positions of the sheet thickness from a surface of the steel sheet, an average value of X-ray random intensity ratios of a group of {100}<011> to {223}<110> orientations of a sheet plane is 6.
    Type: Application
    Filed: December 27, 2012
    Publication date: January 15, 2015
    Inventors: Hiroshi Shuto, Tatsuo Yokoi, Yuuki Kanzawa, Nobuhiro Fujita, Ryohta Niiya, Shinya Saitoh
  • Publication number: 20150013853
    Abstract: A hot-rolled steel sheet for a generator rim contains a structure containing a ferrite phase with an areal ratio of 95% or more in which precipitates containing Ti and V whose average grain diameter is less than 10 nm are precipitated in crystal grains of the ferrite phase. The ferrite phase has an average crystal grain diameter within the range of 2 ?m or more and less than 10 ?m. The hot-rolled steel sheet for a generator rim has strength with a yield strength YS in a rolling direction of 700 MPa or more and electromagnetic properties with a magnetic flux density B50 of 1.5 T or more and a magnetic flux density B100 of 1.6 T or more.
    Type: Application
    Filed: January 30, 2013
    Publication date: January 15, 2015
    Applicant: JFE STEEL CORPORATION
    Inventors: Nobuyuki Nakamura, Katsumi Nakajime, Yoshimasa Funakawa, Kazutaka Okimoto, Takahiko Ogura
  • Publication number: 20150010775
    Abstract: A hot stamped steel according to the present invention satisfies an expression of (5×[Si]+[Mn])/[C]>11 when [C] represents an amount of C by mass %, [Si] represents an amount of Si by mass %, and [Mn] represents an amount of Mn by mass %, a metallographic structure after hot stamping includes 40% to 90% of a ferrite and 10% to 60% of a martensite in an area fraction, a total of an area fraction of the ferrite and an area fraction of the martensite is 60% or more, a hardness of the martensite measured with a nanoindenter satisfies an H2/H1<1.10 and ?HM<20, and TS×?, which is a product of a tensile strength TS and a hole expansion ratio ? is 50000 MPa·% or more.
    Type: Application
    Filed: January 11, 2013
    Publication date: January 8, 2015
    Inventors: Toshiki Nonaka, Satoshi Kato, Kaoru Kawasaki, Toshimasa Tomokiyo
  • Publication number: 20150000796
    Abstract: This high-strength steel sheet contains, in mass %, 0.05 to 0.3% of C, 1 to 3% of Si, 0.5 to 3% of Mn, up to 0.1% (inclusive of 0%) of P, up to 0.01% (inclusive of 0%) of S, 0.001 to 0.1% of Al and 0.002 to 0.03% of N with the balance consisting of iron and unavoidable impurities, and has a microstructure which comprises, in area fraction relative to the microstructure, 40 to 85% of bainitic ferrite, 5 to 20% of retained austenite (?R), 10 to 50% (in total) of martensite and ?R, and 5 to 40% of ferrite. The retained austenite (?R) has a C concentration of 0.5 to 1.0 mass %, while the quantity of ?R present in the ferrite grains is 1% or more (in area fraction) relative to the microstructure.
    Type: Application
    Filed: February 6, 2013
    Publication date: January 1, 2015
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
    Inventors: Elijah Kakiuchi, Toshio Murakami, Katsura Kajihara, Tatsuya Asai, Naoki Mizuta, Hideo Hata
  • Publication number: 20140370329
    Abstract: When the amount of C, the amount of Si and the amount of Mn are respectively represented by [C], [Si] and [Mn] in unit mass %, the cold rolled steel sheet satisfies a relationship of (5×[Si]+[Mn])/[C]>10, the metallographic structure contains, by area ratio, 40% to 90% of a ferrite and 10% to 60% of a martensite, further contains one or more of 10% or less of a pearlite by area ratio, 5% or less of a retained austenite by volume ratio and 20% or less of a bainite by area ratio, the hardness of the martensite measured using a nanoindenter satisfies H20/H10<1.10 and ?HM0<20, and TS×? representing the product of TS that is a tensile strength and ? that is a hole expansion ratio is 50000 MPa·% or more.
    Type: Application
    Filed: January 11, 2013
    Publication date: December 18, 2014
    Inventors: Toshiki Nonaka, Satoshi Kato, Kaoru Kawasaki, Toshimasa Tomokiyo
  • Publication number: 20140366994
    Abstract: A steel sheet and a method for producing the same are disclosed. The steel sheet has a composition containing 0.015% to 0.05% C, less than 0.10% Si, 0.1% to 2.0% Mn, 0.20% or less P, 0.1% or less S, 0.01% to 0.10% Al, 0.005% or less N, and 0.06% to 0.5% Ti in percent by mass, C and Ti satisfying the inequality Ti*/C?4, where Ti* (mass percent)=Ti-3.4N and Ti, C, and N represent the content (mass percent) of each element. The steel sheet has a microstructure which contains a ferrite phase as a base, in which the average grain diameter of the ferrite phase is 7 ?m or more, and in which the ratio of the rolling-direction average grain diameter to thickness-wise average grain diameter of the ferrite phase is 1.1 or more.
    Type: Application
    Filed: December 10, 2012
    Publication date: December 18, 2014
    Applicant: JFE STEEL CORPORATION
    Inventors: Taro Kizu, Koichiro Fujita
  • Publication number: 20140363696
    Abstract: A high-strength hot rolled steel sheets with excellent stretch flangeability has small variations in mechanical properties in individual coils. Variations in strength from place to place in a coil are decreased by minimally reducing the Si and Mn contents to suppress the occurrence of problems such as segregation. Further, the microstructure of the steel sheets is configured such that a ferrite phase represents an area ratio of not less than 95%, the ferrite crystal grains have an average grain size of not less than 1 ?m, and the ferrite crystal grains contain TiC with an average particle size of not more than 7 nm dispersed in the crystal grains.
    Type: Application
    Filed: December 14, 2012
    Publication date: December 11, 2014
    Inventors: Yoshimasa Funakawa, Tetsuo Yamamoto, Hiroshi Uchomae, Hiroshi Nakano, Taro Kizu
  • Publication number: 20140360634
    Abstract: A hot rolled steel sheet having a chemical composition containing, by mass %, C: 0.04% or more and 0.20% or less, Si: 0.7% or more and 2.3% or less, Mn: 0.8% or more and 2.8% or less, P: 0.1% or less, S: 0.01% or less, Al: 0.1% or less, N: 0.008% or less, and the balance being Fe and inevitable impurities. The microstructure of the hot rolled steel sheet includes ferrite and pearlites, in which the area ratio of the ferrite is 75% or more and less than 95%, the mean grain size of the ferrite is 5 ?m or more and 25 ?m or less, the area ratio of pearlite is 5% or more and less than 25%, the mean grain size of pearlite is 2.0 ?m or more, and the mean free path of pearlite is 5 ?m or more.
    Type: Application
    Filed: August 9, 2012
    Publication date: December 11, 2014
    Applicant: JFE Steel Corporation
    Inventors: Yoshiyasu Kawasaki, Shinjiro Kaneko, Yasunobu Nagataki
  • Publication number: 20140363694
    Abstract: A low density high strength steel sheet including 0.15% to 0.25% C, 2.5% to 4% Mn, 0.02% or less P, 0.015% or less S, 6% to 9% Al and 0.01% or less N, the balance being iron and inevitable impurities, wherein 1.7·(Mn—Al)+52.7·C is at least 3 and at most 4.5. A method of producing the low density and high strength steel sheet.
    Type: Application
    Filed: February 21, 2012
    Publication date: December 11, 2014
    Applicant: TATA STEEL NEDERLAND TECHNOLOGY BV
    Inventors: Cheng Liu, Radhakanta Rana
  • Publication number: 20140338801
    Abstract: A high-strength hot-rolled steel sheet including a chemical composition containing, in percent by mass, 0.05% to 0.12% of C, 0.05% to 1.0% of Si, 0.5% to 1.8% of Mn, 0.04% or less of P, 0.0030% or less of S, 0.005% to 0.07% of Al, 0.006% or less of N, 0.05% to 0.15% of Ti, and the balance being Fe and incidental impurities, in which, in a region in the range of ? to ? of the sheet thickness, the content of Ti*, which is Ti existing as precipitates, is 0.3×[Ti] to 0.6×[Ti], where [Ti] is the Ti content, and the steel sheet has a microstructure in which the area fraction of the bainite phase in the entire structure is more than 95%.
    Type: Application
    Filed: December 26, 2012
    Publication date: November 20, 2014
    Applicant: JFE STEEL CORPORATION
    Inventors: Katsumi Nakajima, Hayato Saito, Yoshimasa Funakawa
  • Publication number: 20140342184
    Abstract: The present invention provides a high-strength steel sheet having a tensile strength of 980 MPa or more and also excellent bending property stably over the entire steel sheet, due to a predetermined chemical composition in combination with a specific microstructure wherein an average crystallized grain diameter of ferrite phase is 10 ?m or less, a volume fraction of ferrite phase is within the range from 30% to 70%, a volume fraction of the total of martensite and retained austenite phases is 10% or less, and a ratio of interphases each having an interphase nano-hardness difference within 4 GPa is 90% or more.
    Type: Application
    Filed: December 26, 2012
    Publication date: November 20, 2014
    Applicant: JFE STEEL CORPORATION
    Inventors: Shusaku Takagi, Shinjiro Kaneko
  • Publication number: 20140342185
    Abstract: A cold rolled steel sheet according to the present invention satisfies an expression of (5×[Si]+[Mn])/[C]>11 when [C] represents an amount of C by mass %, [Si] represents an amount of Si by mass %, and [Mn] represents an amount of Mn by mass %, a metallographic structure before hot stamping includes 40% to 90% of a ferrite and 10% to 60% of a martensite in an area fraction, a total of an area fraction of the ferrite and an area fraction of the martensite is 60% or more, a hardness of the martensite measured with a nanoindenter satisfies an H2/H1<1.10 and ?HM<20 before the hot stamping, and TS×? which is a product of a tensile strength TS and a hole expansion ratio ? is 50000 MPa·% or more.
    Type: Application
    Filed: January 11, 2013
    Publication date: November 20, 2014
    Inventors: Toshiki Nonaka, Satoshi Kato, Kaoru Kawasaki, Toshimasa Tomokiyo
  • Publication number: 20140332123
    Abstract: Provided are a high-strength steel sheet and a method for producing the same. A high-strength steel sheet has a composition containing 0.10% to 0.18% C, more than 0.5% to 1.5% Si, 0.5% to 1.5% Mn, 0.05% or less P, 0.005% or less S, and 0.05% or less Al on a mass basis, the remainder being Fe and inevitable impurities and also has a microstructure containing ferrite and pearlite. The volume fraction of the ferrite is 70% to 97%. The volume fraction of the pearlite is 3% or more. The volume fraction of cementite present at grain boundaries of the ferrite is 2% or less. The sum of the volume fractions of phases other than the ferrite, the pearlite, and the cementite is less than 3%. The average grain size of the ferrite is 7 ?m or less.
    Type: Application
    Filed: November 29, 2012
    Publication date: November 13, 2014
    Applicant: JFE STEELCORPORATION
    Inventors: Kouichi Nakagawa, Kenji Kawamura, Takeshi Yokota, Kazuhiro Seto
  • Publication number: 20140332119
    Abstract: A high strength cold rolled steel sheet has a chemical composition including, by mass %, C: 0.06 to 0.13%, Si: 1.2 to 2.3%, Mn: 0.6 to 1.6%, P: not more than 0.10%, S: not more than 0.010%, Al: 0.01 to 0.10% and N: not more than 0.010%, the balance comprising Fe and inevitable impurities. The steel sheet includes a microstructure containing not less than 90% in terms of volume fraction of ferrite with an average grain diameter of less than 20 ?m and 1.0 to 10% in terms of volume fraction of pearlite with an average grain diameter of less than 5 ?m. The ferrite has an average Vickers hardness of not less than 130. The steel sheet has a yield ratio of not less than 65% and a tensile strength of not less than 590 MPa.
    Type: Application
    Filed: December 3, 2012
    Publication date: November 13, 2014
    Applicant: JFE STEEL CORPORATION
    Inventors: Katsutoshi Takashima, Yuki Toji, Kohei Hasegawa
  • Publication number: 20140326369
    Abstract: Provided are a steel for a mechanical structure for cold working, and a method for manufacturing the same, whereby softening and variations in hardness can be reduced even when a conventional spheroidizing annealing process is performed. A steel having a predetermined chemical composition, the total area ratio of pearlite and pro-eutectoid ferrite being at least 90 area % with respect to the total metallographic structure of the steel, the area ratio (A) of pro-eutectoid ferrite satisfying the relationship A>Ae with an Ae value expressed by a predetermined relational expression, the average equivalent circular diameter of bcc-Fe crystal grains being 15-35 ?m, and the average of the maximum grain diameter and the second largest grain diameter of the bcc-Fe crystal grains being 50 ?m or less in terms of equivalent circular diameter.
    Type: Application
    Filed: December 11, 2012
    Publication date: November 6, 2014
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
    Inventors: Kouji Yamashita, Takehiro Tsuchida, Masamichi Chiba
  • Publication number: 20140322559
    Abstract: A flat steel product having a tensile strength of at least 1200 MPa and consists of steel containing (wt %) C: 0.10-0.50%, Si: 0.1-2.5%, Mn: 1.0-3.5%, Al: up to 2.5%, P: up to 0.020%, S: up to 0.003%, N: up to 0.02%, and optionally one or more of the elements “Cr, Mo, V, Ti, Nb, B and Ca” in the quantities: Cr: 0.1-0.5%, Mo: 0.1-0.3%, V: 0.01-0.1%, Ti: 0.001-0.15%, Nb: 0.02-0.05%, wherein ?(V, Ti, Nb)?0.2% for the sum of the quantities of V, Ti and Nb, B: 0.0005-0.005%, and Ca: up to 0.01% in addition to Fe and unavoidable impurities. The flat steel product has a microstructure with (in surface percent) less than 5% ferrite, less than 10% bainite, 5-70% untempered martensite, 5-30% residual austenite, and 25-80% tempered martensite, at least 99% of the iron carbide contained in the tempered martensite having a size of less than 500 nm.
    Type: Application
    Filed: May 16, 2012
    Publication date: October 30, 2014
    Applicant: Thyssenkrupp Steel Europe AG
    Inventors: Jens-Ulrik Becker, Jian Bian, Thomas Heller, Rudolf Schoenenberg, Richard G. Thiessen, Sabine Zeizinger, Thomas Rieger, Oliver Bulters
  • Publication number: 20140305553
    Abstract: A high-strength cold-rolled steel sheet has a chemical composition including C of 0.05% to 0.30%, Si of greater than 0% to 3.0%, Mn of 0.1% to 5.0%, P of greater than 0% to 0.1%, S of greater than 0% to 0.02%, Al of 0.01% to 1.0%, and N of greater than 0% to 0.01%, in mass percent, with the remainder including iron and inevitable impurities. The steel sheet has a microstructure containing ferrite as a soft primary phase in an area percentage of 20% to 50% with the remainder including tempered martensite and/or tempered bainite as a hard secondary phase. The ferrite grains are adapted to contain cementite particles having an appropriate size in an appropriate number density.
    Type: Application
    Filed: December 11, 2012
    Publication date: October 16, 2014
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Tomokazu Masuda, Hideo Hata, Katsura Kajihara, Toshio Murakami, Masaaki Miura, Muneaki Ikeda
  • Publication number: 20140305550
    Abstract: A high strength hot rolled steel sheet has a matrix that has a ferrite phase with an area ratio of 95% or more with respect to an overall structure; and a structure where a fine carbide is dispersedly precipitated, the fine carbide containing Ti and V having an average particle size of less than 10 nm in the matrix, the fine carbide has a volume fraction of 0.0050 or more with respect to the overall structure, a proportion of a number of carbides with a particle size of 30 nm or more containing Ti is less than 10% with respect to a total number of carbides, the high strength hot rolled steel sheet has a tensile strength of 980 MPa or more.
    Type: Application
    Filed: November 6, 2012
    Publication date: October 16, 2014
    Inventors: Tamako Ariga, Yoshimasa Funakawa, Yasunobu Uchida
  • Patent number: 8858872
    Abstract: An austenitic stainless steel having low nickel and molybdenum and exhibiting comparable corrosion resistance and formability properties to higher nickel and molybdenum alloys comprises, in weight %, up to 0.20 C, 2.0-9.0 Mn, up to 2.0 Si, 16.0-23.0 Cr, 1.0-5.0 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.1-0.35 N, up to 4.0 W, up to 0.01 B, up to 1.0 Co, iron and impurities, the steel having a ferrite number of less than 10 and a MD30 value of less than 20° C.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: October 14, 2014
    Assignee: ATI Properties, Inc.
    Inventors: David S. Bergstrom, James M. Rakowski, Charles P Stinner, John J. Dunn, John F. Grubb
  • Publication number: 20140299238
    Abstract: A hot rolled steel sheet has a chemical composition including, by mass %, C: 0.060% to 0.120%; Si: 0.10% to 0.70%; Mn: 1.00% to 1.80%; P: 0.10% or less; S: 0.010% or less; Al: 0.01% to 0.10%; N: 0.010% or less; Nb: 0.010% to 0.100%, wherein Nb is contained so that content of solute Nb is 5% or more relative to the total Nb content; the balance being Fe and incidental impurities. The hot rolled steel sheet has a microstructure containing ferrite of not more than 15 ?m in average crystal grain diameter by a volume fraction of not less than 75%, the balance being low-temperature-induced phases. The hot rolled steel sheet can be suitably utilized for manufacturing a cold rolled steel sheet or hot-dip galvanized steel sheet having a tensile strength of 590 MPa or more, excellent in material homogeneity and capable of giving excellent cold rolling property.
    Type: Application
    Filed: September 27, 2012
    Publication date: October 9, 2014
    Applicant: JEF Steel Corporation
    Inventors: Katsutoshi Takashima, Yuki Toji, Kohei Hasegawa, Shinya Yamaguchi