Magnesium Containing Patents (Class 148/417)
-
Patent number: 12241145Abstract: A die-cast aluminum alloy and a preparation method and application thereof are disclosed. Based on the total weight of the aluminum alloy, the aluminum alloy includes: 8-11 wt % of Si, 2.5-5 wt % of Cu, 0.5-1.5 wt % of Mg, 0.1-0.3 wt % of Ni, 0.6-1.2 wt % of Fe, 0.1-0.3 wt % of Cr, 0.03-0.05 wt % of Sr, 0-0.3 wt % of Er, 80.25-88.1 wt % of Al, and 0.1 wt % or below of impurities.Type: GrantFiled: May 29, 2019Date of Patent: March 4, 2025Assignee: BYD COMPANY LIMITEDInventors: Qiang Guo, Yongliang Xie, Yunchun Li, Mengjue Liao
-
Patent number: 11932928Abstract: Provided are new high strength 6xxx and 7xxx series aluminum alloys and methods of making aluminum products thereof. These aluminum products may be used to fabricate components which may replace steel in a variety of applications including the automotive industry. In some examples, the disclosed high strength 6xxx and 7xxx series aluminum alloys can replace high strength steels with aluminum. In one example, steels having a yield strength below 450 MPa may be replaced with the disclosed 6xxx or 7xxx series aluminum alloys without the need for major design modifications.Type: GrantFiled: May 14, 2019Date of Patent: March 19, 2024Assignee: NOVELIS INC.Inventors: Aude Despois, Guillaume Florey, Rajeev G. Kamat, Cyrille Bezencon, David Leyvraz, Samuel R. Wagstaff
-
Patent number: 11821065Abstract: Described herein are 6xxx series aluminum alloys with unexpected properties and novel methods of producing such aluminum alloys. The aluminum alloys are highly formable and exhibit high strength. The alloys are produced by continuous casting and can be hot rolled to a final gauge and/or a final temper. The alloys can be used in automotive, transportation, industrial, and electronics applications, just to name a few.Type: GrantFiled: September 27, 2017Date of Patent: November 21, 2023Assignee: Novelis Inc.Inventors: Sazol Kumar Das, Milan Felberbaum
-
Patent number: 11814706Abstract: An aluminum alloy conductive wire that includes 0.15 mass % or more and 0.25 mass % or less of Si; 0.6 mass % or more and 0.9 mass % or less of Fe; 0.05 mass % or more and 0.15 mass % or less of Cu; 0.2 mass % or more and 2.7 mass % or less of Mg, and 0.03 mass % or less in total of Ti, V, and B. The aluminum alloy conductive wire has tensile strength of equal to or less than T1 MPa represented by T1=59.5 ln(x)+231 and conductivity of equal to or more than C % IACS represented by C=1.26x2?11.6x+63.4 in a case where a content rate of Mg in the aluminum alloy conductive wire is x mass %.Type: GrantFiled: June 16, 2017Date of Patent: November 14, 2023Assignee: Fujikura Ltd.Inventor: Tatsunori Shinoda
-
Patent number: 11718898Abstract: An alloy includes aluminum, a rare earth element, and an alloying element selected from the following: Si, Cu, Mg, Fe, Ti, Zn, Zr, Mn, Ni, Sr, B, Ca, and a combination thereof. The aluminum (Al), the rare earth element (RE), and the alloying element are characterized by forming at least one form of an intermetallic compound. An amount of the rare earth element in the alloy is in a range of about 1 wt. % to about 12 wt. %, and an amount of the alloying element in the alloy is greater than an amount of the alloying element present in the intermetallic compound.Type: GrantFiled: July 13, 2020Date of Patent: August 8, 2023Assignees: Lawrence Livermore National Security, LLC, University of Tennessee Research Foundation, Iowa State University Research Foundation, Inc., UT-Battelle, LLC, Eck Industries, Inc.Inventors: Emily E. Moore, Hunter B. Henderson, Aurelien Perron, Scott K. McCall, Orlando Rios, Zachary C. Sims, Michael S. Kesler, David Weiss, Patrice E. A. Turchi, Ryan T. Ott
-
Patent number: 11708628Abstract: Provided is a method for processing an aluminum alloy comprising: 0.5% by mass or more and 1.0% by mass or less of Mg, 0.5% by mass or more and 3.0% by mass or less of Si, 0.2% by mass or more and 0.4% by mass or less of Cu, 0.15% by mass or more and 0.25% by mass or less of Mn, 0.1% by mass or more and 0.2% by mass or less of Ti, 0.05% by mass or more and 0.2% by mass or less of Cr, and 120 ppm by mass or less of Sr, the method comprising casting the aluminum alloy and forging the cast aluminum at a temperature of 500° C. or more and 535° C. or less.Type: GrantFiled: February 7, 2022Date of Patent: July 25, 2023Assignee: HONDA MOTOR CO., LTD.Inventors: Ayaka Yamaguchi, Satomi Mano
-
Patent number: 11674203Abstract: New 6xxx aluminum alloys having an improved combination of properties are disclosed. The new 6xxx aluminum alloy generally include from 0.30 to 0.53 wt. % Si, from 0.50 to 0.65 wt. % Mg wherein the ratio of wt. % Mg to wt. % Si is at least 1.0:1 (Mg:Si), from 0.05 to 0.24 wt. % Cu, from 0.05 to 0.14 wt. % Mn, from 0.05 to 0.25 wt. % Fe, up to 0.15 wt. % Ti, up to 0.15 wt. % Zn, up to 0.15 wt. % Zr, not greater than 0.04 wt. % V, and not greater than 0.04 wt. % Cr, the balance being aluminum and other elements.Type: GrantFiled: January 22, 2019Date of Patent: June 13, 2023Assignee: ARCONIC TECHNOLOGIES LLCInventors: Timothy A. Hosch, Russell S. Long
-
Patent number: 11649536Abstract: The invention relates to a method for producing a stamped component of motor vehicle bodywork or body structure from aluminium alloy comprising the steps of producing a metal sheet or strip of thickness between 1.0 and 3.5 mm in an alloy of composition (% by weight): Si: 0.60-0.85; Fe: 0.05-0.25; Cu: 0.05-0.30; Mn: 0.05-0.30; Mg: 0.50-1.00; Ti: 0.02-0.10; V: 0.00-0.10 with Ti+V?0.10, other elements each <0.05, and <0.15 in total, remainder aluminium, with Mg<?2.67×Si+2.87, dissolving and steeping, pre-tempering, maturation for between 72 hours and 6 months, stamping, tempering at a temperature of around 205° C. with a hold time between 30 and 170 minutes or tempering at a time-temperature equivalent, painting and “bake hardening” of the paints at a temperature of 150 to 190° C. for 15 to 30 minutes.Type: GrantFiled: April 3, 2018Date of Patent: May 16, 2023Assignee: CONSTELLIUM NEUF-BRISACHInventors: Estelle Muller, Olivier Rebuffet, Guillaume Delgrange
-
Patent number: 11597984Abstract: An Al—Mg-based or Al—Mg—Si-based or Al—Zn-based or Al—Si-based starting material in the form of a powder or wire for an additive manufacturing process, the use thereof, and an additive manufacturing process using this starting material are disclosed.Type: GrantFiled: April 5, 2018Date of Patent: March 7, 2023Assignees: AMAG casting GmbH, AUDI AGInventors: Helmut Kaufmann, Werner Fragner, Helmut Suppan, Adriaan Bernardus Spierings, Peter J. Uggowitzer, Andreas Schubert, Marc Hummel
-
Patent number: 11525175Abstract: The present invention is applicable to the technical field of material processing and provides an aluminum alloy and a preparation method thereof. The preparation method of the aluminum alloy includes: weighing raw material components according to a preset weight ratio; melting the weighed raw materials, sequentially performing refinement, standing, slag removal, degassing and filtering, and then performing horizontal casting to obtain an aluminum alloy ingot; homogenizing the ingot; heating the ingot to 440-500° C., and placing the ingot in an extruder with an extrusion ratio of 30-100 for extrusion treatment; annealing the extruded blank; heating the annealed blank to 440-480° C. for deformation treatment, and controlling the deformation amount in the thickness direction to be 12%-28%; carrying out solution treatment on the deformed blank; and subjecting the blank after the solution treatment to artificial aging treatment.Type: GrantFiled: January 7, 2020Date of Patent: December 13, 2022Assignee: Guangdong Hoshion Industrial Aluminum Co., Ltd.Inventors: Xiaoli Ding, Jie Luo, Zhicheng Liu, Jianxiang Li, Zhongxin Wang, Qiang Ren
-
Patent number: 11396687Abstract: Some variations provide a method of making an additively manufactured metal component, comprising: providing a feedstock that includes a high-vapor-pressure metal; exposing a first amount of the feedstock to an energy source for melting; and solidifying the melt layer, thereby generating a solid layer of an additively manufactured metal component. The metal-containing feedstock is enriched with a higher concentration of the high-vapor-pressure metal compared to its concentration in the additively manufactured metal component. The high-vapor-pressure metal may be selected from Mg, Zn, Li, Al, Cd, Hg, K, Na, Rb, Cs, Mn, Be, Ca, Sr, or Ba, for example. Additively manufactured metal components are provided.Type: GrantFiled: November 5, 2018Date of Patent: July 26, 2022Assignee: HRL Laboratories, LLCInventors: John H. Martin, Brennan D. Yahata
-
Patent number: 11341995Abstract: An aluminum alloy sheet for a magnetic disk, a method for manufacturing same, and a magnetic disk using same. The aluminum alloy sheet is made of an aluminum alloy comprising 0.10 to 3.00 mass % of Fe, 0.003 to 1.000 mass % of Cu, and 0.005 to 1.000 mass % of Zn, with a balance of Al and unavoidable impurities, wherein a value obtained by dividing a difference in an area ratio (%) of second phase particles between a region (A) and a region (B) by an average value of area ratios (%) of second phase particles in the regions (A) and (B) is 0.05 or less, the region (A) being a region from a sheet thickness center plane to a front surface of the sheet, and the region (B) being a region from the sheet thickness center plane to a rear surface of the plate.Type: GrantFiled: October 15, 2019Date of Patent: May 24, 2022Assignees: UACJ CORPORATION, FURUKAWA ELECTRIC CO.. LTD.Inventors: Kotaro Kitawaki, Yu Igarashi, Keisuke Kamiya, Yu Matsui, Makoto Yonemitsu, Ryo Sakamoto, Hideyuki Hatakeyama, Hiroki Ota
-
Patent number: 11306374Abstract: Provided is a high-strength aluminum alloy including 2.0 to 13.0% by weight of copper (Cu), 0.4 to 4.0% by weight of manganese (Mn), 0.4 to 2.0% by weight of iron (Fe), 6.0 to 10.0% by weight of silicon (Si), greater than 0.0% by weight and 7.0 or less % by weight of zinc (Zn), greater than 0.0% by weight and 2.0 or less % by weight of magnesium (Mg), greater than 0.0% by weight and 1.0 or less % by weight of chromium (Cr), greater than 0.0% by weight and 3.0 or less % by weight of nickel (Ni), greater than 0.0% by weight and 0.05 or less % by weight of production-induced impurities, and the balance of aluminum (Al).Type: GrantFiled: February 14, 2018Date of Patent: April 19, 2022Assignee: GAM CO., LTD.Inventors: Jin Yeol Choi, Byung-Cheol Lee
-
Patent number: 11280292Abstract: The invention relates to a method for producing an engine component, in particular a piston for an internal combustion engine, wherein an aluminum alloy is cast in the gravity die casting process and wherein the aluminum alloy has 7 to <14.5 wt % silicon, >1.2 to ?4 wt % nickel, >3.7 to <10 wt % copper, <1 wt % cobalt, 0.1 to 1.5 wt % magnesium, 0.1 to ?0.7 wt % iron, 0.1 to ?0.7 wt % manganese, >0.1 to <0.5 wt % zirconium, ?0.1 to ?0.3 wt % vanadium, 0.05 to 0.5 wt % titanium, and 0.004 to ?0.05 wt % phosphorus as alloying elements and aluminum and unavoidable contaminants as the remainder. The aluminum alloy can optionally comprise beryllium, wherein the calcium content is limited to a low level.Type: GrantFiled: May 11, 2015Date of Patent: March 22, 2022Assignee: Federal-Mogul Nurnberg GmbHInventors: Roman Morgenstern, Stephan Silvio, Scott Kenningley, Philipp Koch, Isabella Sobota, Klaus Lades, Martin Popp, Rainer Weiss, Robert Willard
-
Patent number: 11203800Abstract: An aluminum alloy for a piston may include aluminum (Al) as a base, magnesium (Mg) and zinc (Zn); and wherein the magnesium content is 10-20 wt % with reference to the total weight. In the aluminum alloy, the zinc content is 2.0-6.4 wt % with reference to the total weight. The aluminum alloy further includes copper (Cu) of 1.5-3.5 wt % with reference to the total weight. In the aluminum alloy, T-AlCuMgZn phase is generated.Type: GrantFiled: November 15, 2019Date of Patent: December 21, 2021Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATIONInventor: Hee-Sam Kang
-
Patent number: 11180838Abstract: Provided herein are high performance aluminum alloy products having desirable mechanical properties and methods of making the same. The high performance aluminum alloy products described herein contain a high content of recycled material and are prepared by casting an aluminum alloy to form a cast aluminum alloy product and processing the cast aluminum alloy product. The method of processing the cast aluminum alloy product can include two hot rolling steps.Type: GrantFiled: July 5, 2018Date of Patent: November 23, 2021Assignee: NOVELIS INC.Inventors: Milan Felberbaum, Sazol Kumar Das, Simon William Barker, Tudor Piroteala, Duane E. Bendzinski
-
Patent number: 11098391Abstract: An aluminum alloy including aluminum, about 2.5 to about 17.4 weight percent by weight magnesium, about 50 to about 3000 ppm calcium, and at least one of chromium up to about 0.2 percent by weight, zirconium up to about 0.2 percent by weight and manganese up to about 0.3 percent by weight.Type: GrantFiled: April 15, 2017Date of Patent: August 24, 2021Assignees: The Boeing Company, Korea Institute of Industrial TechnologyInventors: Donald S. Shih, Paul N. Wilson, Shae-Kwang Kim, Bong-Hwan Kim, Young-Ok Yoon
-
Patent number: 11053576Abstract: The present disclosure relates to a method for producing an aluminum alloy rolled material for deformation molding, the method including: a step of performing homogenization treatment of an ingot including an aluminum alloy with predetermined composition; a step of cooling the aluminum alloy after the homogenization treatment so that an average cooling rate in an ingot thickness of ¼ part from 500° C. to 320° C. is 30° C./h to 2000° C./h; and a step of starting hot rolling at 370° C. to 440° C. and winding the hot-rolled aluminum alloy at 310 to 380° C., in which the method for producing an aluminum alloy rolled material for deformation molding further includes a step of retaining the aluminum alloy after the cooling step for 0.17 hours or more at a heating temperature before rolling set within a range of 370° C. to 440° C. before the hot rolling.Type: GrantFiled: July 12, 2017Date of Patent: July 6, 2021Assignee: UACJ CorporationInventors: Yusuke Yamamoto, Yoshifumi Shinzato, Mineo Asano
-
Patent number: 11015233Abstract: A titanium alloy part is characterized in that it includes, by mass %: Al: 1.0 to 8.0%; Fe: 0.10 to 0.40%; O: 0.00 to 0.30%; C: 0.00 to 0.10%; Sn: 0.00 to 0.20%; Si: 0.00 to 0.15%; and the balance: Ti and impurities, in which: an average grain diameter of ?-phase crystal grains is 15.0 ?m or less; an average aspect ratio of the ?-phase crystal grains is 1.0 or more and 3.0 or less; and a coefficient of variation of a number density of ?-phase crystal grains distributed in the ? phase is 0.30 or less.Type: GrantFiled: August 28, 2018Date of Patent: May 25, 2021Assignee: NIPPON STEEL CORPORATIONInventors: Genki Tsukamoto, Kazuhiro Takahashi, Hideto Seto
-
Patent number: 10851447Abstract: Disclosed herein is a method of forming a high strength aluminum alloy. The method comprises heating an aluminum material to a solutionizing temperature for a solutionizing time such that the magnesium and zinc are dispersed throughout the extruded aluminum material to form a solutionized aluminum material. The method includes quenching the solutionized aluminum material to form a quenched aluminum material. The method also includes aging the quenched aluminum material to form an aluminum alloy, then subjecting the aluminum alloy to an ECAE process to form a high strength aluminum alloy.Type: GrantFiled: November 28, 2017Date of Patent: December 1, 2020Assignee: Honeywell International Inc.Inventors: Stephane Ferrasse, Wayne D. Meyer, Frank C. Alford, Marc D. Ruggiero, Patrick K. Underwood, Susan D. Strothers
-
Patent number: 10836464Abstract: The invention relates to a method for manufacturing a laminated or forged material, the thickness of which is 14 to 100 mm. The materials according to the invention are particularly suitable for manufacturing airplane underwing elements.Type: GrantFiled: December 2, 2014Date of Patent: November 17, 2020Assignee: CONSTELLIUM ISSOIREInventor: Nicolas Bayona-Carrillo
-
Patent number: 10745789Abstract: Aluminum can be used as a fuel source when reacted with water if its native surrounding oxide coating is penetrated with a gallium-based eutectic. When discrete aluminum objects are treated in a heated bath of eutectic, the eutectic penetrates the oxide coating. After the aluminum objects are treated, the aluminum objects can be reacted in a reactor to produce hydrogen which can, for example, react with oxygen in a fuel cell to produce electricity, for use in a variety of applications.Type: GrantFiled: June 2, 2016Date of Patent: August 18, 2020Assignee: LTAG Systems LLCInventor: Jonathan Thurston Slocum
-
Patent number: 10661338Abstract: A wrought aluminium material with improved damage tolerance while preserving the high strength of the material is disclosed. Furthermore, a cast aluminium material of a precipitation hardenable aluminium alloy is disclosed, the material comprising grains having two distinct zones with a first centre zone enriched in elements capable of reacting peritectically with aluminium and a second zone, surrounding the first zone, enriched in elements capable of reacting eutectically with aluminium.Type: GrantFiled: April 26, 2010Date of Patent: May 26, 2020Assignee: Hydro Extruded Solutions ABInventors: Stanislaw Zajac, Jonas Braam
-
Patent number: 10646914Abstract: Aluminum alloys described herein include silicon, iron, copper, manganese, magnesium, and chromium. In various implementations, the aluminum alloys also include one or more of zinc and titanium. Typically, a total amount of iron and manganese in the aluminum alloys is no less than 0.28% by weight and no greater than 0.45% by weight, and the grains in the aluminum alloys have an average grain length of no greater than 6 mm. Aluminum alloy billets can be forged for wheel production at selected temperatures.Type: GrantFiled: December 13, 2018Date of Patent: May 12, 2020Assignee: ACCURIDE CORPORATIONInventor: Nicholas E. Nanninga
-
Patent number: 10590518Abstract: A high strength cast aluminium alloy for high pressure die casting comprising magnesium silicide 6 to 12 wt. %, magnesium 4 to 10 wt. %, X element from copper (Cu), zinc (Zn), silver (Ag), gold (Au) and Lithium (Li) at 3 to 10 wt. %, manganese 0.1 to 1.2 wt. %, iron max. 1.5 wt. %, titanium or the other grain refining elements from Cr, Nb, and Sc with 0.02 to 0.4 wt. %, and impurity and minor alloying elements at a level of maximum 0.3 wt. % and totally <0.5% of at least one element selected from scandium (Sc), zirconium (Zr), Nickel (Ni), chromium (Cr), niobium (Nb), gadolinium (Gd), calcium (Ca), yttrium (Y), antinomy (Sb), bismuth (Bi), neodymium (Nd), ytterbium (Yb), vanadium (V), chromium (Cr), beryllium (Be) and boron (B) and the remainder aluminium.Type: GrantFiled: February 10, 2015Date of Patent: March 17, 2020Assignee: BRUNEL UNIVERSITY LONDONInventors: Shouxun Ji, Zhongyun Fan, Feng Yan
-
Patent number: 10570485Abstract: New 2xxx aluminum alloys containing vanadium are disclosed. In one embodiment, the aluminum alloy includes 3.3-4.1 wt. % Cu, 0.7-1.3 wt. % Mg, 0.01-0.16 wt. % V, 0.05-0.6 wt. % Mn, 0.01 to 0.4 wt. % of at least one grain structure control element, the balance being aluminum, incidental elements and impurities. The new alloys may realize an improved combination of properties, such as in the T39 or T89 tempers.Type: GrantFiled: May 20, 2014Date of Patent: February 25, 2020Assignee: ARCONIC INC.Inventors: Jen C. Lin, Ralph R. Sawtell, Gary H. Bray, Cindie Giummarra, Andre Wilson, Gregory B. Venema
-
Patent number: 10472707Abstract: An Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties. The present invention relates to an aluminum alloy product comprising or consisting essentially of, in weight %, about 6.5 to 9.5 zinc (Zn), about 1.2 to 2.2% magnesium (Mg), about 1.0 to 1.9% copper (Cu), preferable (0.9 Mg?0.6)?Cu?(0.9 Mg+0.05), about 0 to 0.5% zirconium (Zr), about 0 to 0.7% scandium (Sc), about 0 to 0.4% chromium (Cr), about 0 to 0.3% hafnium (Hf), about 0 to 0.4% titanium (Ti), about 0 to 0.8% manganese (Mn), the balance being aluminum (Al) and other incidental elements. The invention relates also to a method of manufacturing such as alloy.Type: GrantFiled: December 27, 2013Date of Patent: November 12, 2019Assignee: ALERIS ROLLED PRODUCTS GERMANY GMBHInventors: Rinze Benedictus, Christian Joachim Keidel, Alfred Ludwig Heinz, Nedia Telioui
-
Aluminum alloy products having improved property combinations and method for artificially aging same
Patent number: 10450640Abstract: Aluminum alloy products, such as plate, forgings and extrusions, suitable for use in making aerospace structural components like integral wing spars, ribs and webs, comprises about: 6 to 10 wt. % Zn; 1.2 to 1.9 wt. % Mg; 1.2 to 2.2 wt. % Cu, with Mg?(Cu+0.3); and 0.05 to 0.4 wt. % Zr, the balance Al, incidental elements and impurities. Preferably, the alloy contains about 6.9 to 8.5 wt. % Zn; 1.2 to 1.7 wt. % Mg; 1.3 to 2 wt. % Cu. This alloy provides improved combinations of strength and fracture toughness in thick gauges. When artificially aged per the 3-stage method of preferred embodiments, this alloy also achieves superior SCC performance, including under seacoast conditions.Type: GrantFiled: August 8, 2013Date of Patent: October 22, 2019Assignee: ARCONIC INC.Inventors: Dhruba J. Chakrabarti, John Liu, Jay H. Goodman, Gregory B. Venema, Ralph R. Sawtell, Cynthia M. Krist, Robert W. Westerlund -
Patent number: 10428411Abstract: Methods of processing an air-quenchable aluminum alloy component are provided. The method may include solution heat treating the component, air-quenching the component, and artificially aging the component to a yield strength of at least 200 MPa. The air-quenching may include cooling at a rate of 6° C./s to 25° C./s. The solution heat treatment may include heat treating the component at a temperature of 520° C. to 540° C. and the artificial aging step may include heat treating the component at 235° C. to 255° C. for 0.5 to 2 hours. The disclosed methods may produce a high strength (e.g., over 200 MPa) and high bendability (e.g., r/t ratio up to 0.3) component that does not significantly distort during the quenching process. The disclosed methods may be used to produce structural components having complex shapes, such as multiple, non-coplanar mating surface, while staying within predetermined tolerances.Type: GrantFiled: December 10, 2014Date of Patent: October 1, 2019Assignee: Ford Global Technologies, LLCInventors: S. George Luckey, Jr., Stephen Thomas Kozak, Mark Keller, Suranjeeta Dhar
-
Patent number: 10392132Abstract: Systems and methods are provided for a curved aircraft substructure repair stiffener. The curved aircraft substructure repair stiffener may be formed by cutting a flat pattern, cutting a plurality of slits into the flat pattern, and bending the flat pattern a plurality of times. The curved aircraft substructure repair stiffener may be coupled to a portion of an aircraft to strengthen a portion of the aircraft. In certain examples, the portion of the aircraft may have been weakened due to repairs and the curved aircraft substructure repair stiffener may strengthen the section. In certain examples, one or more web stock may be coupled to the curved aircraft substructure repair stiffener to further stiffen the curved aircraft substructure repair stiffener.Type: GrantFiled: July 29, 2016Date of Patent: August 27, 2019Assignee: The Boeing CompanyInventors: Nicholas Batzakis, Steve Georgiadis
-
Patent number: 10322448Abstract: An alloy modifying agent for use in preparing a metal semisolid slurry, where the components and mass ratio thereof is silicon:iron:copper:manganese:magnesium:zinc:titanium:lead:aluminum having a mass ratio of (6.05-6.95):(0.15-0.45):(0.12-0.65):(0.002-0.006):(0.001-0.5):(0.025-0.05):(0.002-0.08):(0.002-0.06):(90.5-93.2). Also, a method for preparing the alloy modifying agent and a method for using the alloy modifying agent. The alloy modifying agent is capable of increasing the solid-liquid ratio and the spherical crystal content of the semisolid slurry, increasing the preparation efficiency of the semisolid slurry and the quality of the slurry, and ensuring the quality of a final die casting product.Type: GrantFiled: September 17, 2015Date of Patent: June 18, 2019Assignee: Zhuhai Runxingtai Electrical Co., LtdInventors: Huaide Ren, Victor Wang, Gunan Li, Ying Zhang
-
Patent number: 10308998Abstract: An armor component produced from a 7xxx series aluminum alloy, wherein the aluminum alloy consists essentially of: 8.4 wt. %?Zn?10.5 wt. %; 1.3 wt. %?Mg?2 wt. %; 1.2 wt. %?Cu?2 wt. %; at least one dispersoid forming element with a total dispersoid forming element content higher than 0.05 wt. %; the remainder substantially aluminum, incidental elements and impurities.Type: GrantFiled: March 3, 2015Date of Patent: June 4, 2019Assignees: CONSTELLIUM ROLLED PRODUCTS RAVENSWOOD, LLC, CONSTELLIUM VALAIS SAInventors: Jack Franklin, Christophe Jaquerod, Michael Niedzinski
-
Patent number: 10266933Abstract: Aluminum alloys are provided that can comprise boron and vanadium and high amounts of titanium and zirconium. The aluminum alloys described herein can exhibit superior tensile properties at both room temperature and elevated temperatures and still maintain desirable ductility. The aluminum alloys can be used in applications where resistance to fatigue and breakdown at elevated temperatures is desirable, which includes applications in the aerospace and aeronautical fields.Type: GrantFiled: August 27, 2013Date of Patent: April 23, 2019Assignee: SPIRIT AEROSYSTEMS, INC.Inventors: Rahbar Nasserrafi, David E. Jakstis, Gerald E. Hicks, Darrell Wade
-
Patent number: 10260136Abstract: Disclosed are an aluminum alloy composition for die casting and a method of heat treating the same. The aluminum alloy composition contains precipitation of an Mg—Zn-based strengthening phase through heat treatment to thus enhance strength thereof.Type: GrantFiled: September 28, 2016Date of Patent: April 16, 2019Assignee: Hyundai Motor CompanyInventor: Hyung Sop Yoon
-
Patent number: 10190200Abstract: The present invention relates to extruded, rolled and/or forged products. Also provided are methods of making such products based on aluminum alloy wherein a liquid metal bath is prepared comprising 2.0 to 3.5% by weight of Cu, 1.4 to 1.8% by weight of Li, 0.1 to 0.5% by weight of Ag, 0.1 to 1.0% by weight of Mg, 0.05 to 0.18% by weight of Zr, 0.2 to 0.6% by weight of Mn and at least one element selected from Cr, Sc, Hf and Ti, the quantity of said element selected, being 0.05 to 0.3% by weight for Cr and for Sc, 0.05 to 0.5% by weight for Hf and 0.01 to 0.15% by weight for Ti, the remainder being aluminum and inevitable impurities. The products and methods of the present invention offer an advantageous compromise between static mechanical strength and damage tolerance and are useful in aeronautical design.Type: GrantFiled: January 3, 2013Date of Patent: January 29, 2019Assignee: CONSTELLIUM ISSOIREInventors: Fabrice Heymes, Frank Eberl, Gaelle Pouget
-
Patent number: 10134500Abstract: An aluminum wire 10 has a composition containing at least one element of Fe: 0 to 2.0 mass %, Mg: 0 to 1.0 mass %, Zr: 0 to 0.5 mass %, Si: 0 to 1.2 mass %, or Ni: 0 to 0.3 mass %, with the remainder being composed of aluminum and unavoidable impurities. In a cross section 15 perpendicular to the longitudinal direction 11 of the aluminum wire, the surface area proportion of component crystals for which the angle 14 between the longitudinal direction and the <111> direction of the crystal is 10° or less, relative to the total surface area of the cross section, is 50% or greater, and the surface area proportion of component crystals for which the angle 14 between the longitudinal direction and the <111> direction of the crystal is 20° or less, relative to the total surface area of the cross section, is 85% or greater.Type: GrantFiled: October 17, 2017Date of Patent: November 20, 2018Assignee: YAZAKI CORPORATIONInventor: Hayato Ikeya
-
Patent number: 10113222Abstract: The invention relates to an aluminium alloy, the use of an aluminium alloy strip or sheet and a method for producing an aluminium alloy strip or sheet. An aluminium alloy which has only a slight tendency towards intercrystalline corrosion and which at the same time provides high levels of strength and good deformability and which contains standard alloy components so that the recycling of the aluminium alloy is simplified is provided herein.Type: GrantFiled: February 9, 2015Date of Patent: October 30, 2018Assignee: Hydro Aluminium Rolled Products GmbHInventors: Olaf Engler, Henk-Jan Brinkman, Thomas Hentschel, Eike Brünger
-
Patent number: 10053754Abstract: High strength forged aluminum alloys and methods for producing the same are disclosed. The forged aluminum alloy products may have grains having a high aspect ratio in at least two planes, generally the L-ST and the LT-ST planes. The forged aluminum alloy products may also have a high amount of texture. The forged products may realize increased strength relative to conventionally prepared forged products of comparable product form, composition and temper.Type: GrantFiled: December 12, 2013Date of Patent: August 21, 2018Assignee: Arconic Inc.Inventors: Dustin M. Bush, Edward L. Colvin, Roberto J. Rioja, Ralph R. Sawtell
-
Patent number: 10047425Abstract: A method of age hardening a 7xxx series aluminum alloy is provided that includes heat treating the alloy at a first temperature for a first exposure time and heat treating the alloy at a second temperature that is higher than the first temperature for a second exposure time. The age hardening process may be used to form an alloy having a yield strength of at least 490 MPa and the total age hardening time may be 8 hours or less. In one example, the first heat treatment is performed at 100° C. to 150° C. for 0.2 to 3 hours and the second heat treatment is be performed at 150° C. to 185° C. for 0.5 to 5 hours.Type: GrantFiled: October 16, 2013Date of Patent: August 14, 2018Assignee: Ford Global Technologies, LLCInventors: Nia R. Harrison, S. George Luckey, Jr.
-
Patent number: 9944153Abstract: A motor vehicle door and a method for producing the motor vehicle door is disclosed having a frame plate coupled to reinforcement components and at least half of all of the reinforcement components are produced as extruded profiles which are subsequently press-formed three-dimensionally. The extruded profiles have different wall thicknesses.Type: GrantFiled: October 16, 2015Date of Patent: April 17, 2018Assignee: BENTELER AUTOMOBILTECHNIK GMBHInventors: Edwin List Clausen, Jochem Grewe, Joern Toelle, Dariusz Straznikiewicz, Martin Schroeter, Gero Muellers
-
Patent number: 9834828Abstract: Aluminum alloy components having improved properties. In one form, the cast alloy component may include about 0.6 to about 14.5 wt % silicon, 0 to about 0.7 wt % iron, about 1.8 about 4.3 wt % copper, 0 to about 1.22 wt % manganese, about 0.2 to about 0.5 wt % magnesium, 0 to about 1.2 wt % zinc, 0 to about 3.25 wt % nickel, 0 to about 0.3 wt % chromium, 0 to about 0.5 wt % tin, about 0.0001 to about 0.4 wt % titanium, about 0.002 to about 0.07 wt % boron, about 0.001 to about 0.07 wt % zirconium, about 0.001 to about 0.14 wt % vanadium, 0 to about 0.67 wt % lanthanum, and the balance predominantly aluminum plus any remainders. Further, the weight ratio of Mn/Fe is between about 0.5 and about 3.5. Methods of making cast aluminum parts are also described.Type: GrantFiled: April 30, 2014Date of Patent: December 5, 2017Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventor: Herbert W. Doty
-
Patent number: 9828033Abstract: Method for producing a vehicle component, in particular a motor vehicle component, in particular a B-pillar, including providing a first aluminum alloy and a second aluminum alloy. The second alloy composition substantially matches the first aluminum alloy composition. Performing a heat-treatment of the first alloy to increase the ductility of the first alloy. Performing a heat-treatment of the second alloy. The heat-treatment of the first alloy differing from the heat-treatment of the second alloy. Welding together the heat-treated first alloy and the heat-treated second alloy to obtain a composite part. Shaping the composite parts into a motor vehicle component. The motor vehicle component sub-region of the first alloy can be designed as a predetermined deformation region when a force is applied due to an accident to achieve a good combination of rigid regions for example forming a safety cell, and deformable regions forming a crumple zone for absorbing energy.Type: GrantFiled: June 8, 2012Date of Patent: November 28, 2017Assignee: ALERIS ROLLED PRODUCTS GERMANY GMBHInventor: Wolfgang Braunschweig
-
Patent number: 9796157Abstract: The invention relates to a strip consisting of an aluminum material for producing components with improved bending behavior and exacting shaping requirements, a method for producing the strip and the use of sheets produced from the strip according to the invention. The strip has a core layer of an AlMgSi alloy and at least one outer aluminum alloy layer arranged on one or both sides, made from a non-hardenable aluminum alloy, wherein the at least one outer aluminum layer has a lower tensile strength in the (T4) state than the AlMgSi layer, wherein the strip has a uniform strain (Ag) in the (T4) state of more than 23% transverse to the rolling direction and, at a thickness of 1.5 mm-1.6 mm, achieves a bending angle of less than 40° in a bending test.Type: GrantFiled: March 12, 2014Date of Patent: October 24, 2017Assignee: Hydro Aluminium Rolled Products GmbHInventors: Henk-Jan Brinkman, Dietmar Schröder, Thomas Wirtz, Natalie Hörster, Werner Kehl, Olaf Engler
-
Patent number: 9611526Abstract: In at least one embodiment, an assembly is provided comprising a first member including a 6xxx series aluminum alloy heat treated to have a yield strength of at least 200 MPa and an r/t (bendability) ratio of up to 0.4. One or more members may be secured to the first member with a rivet (e.g., a self-piercing rivet). The heat treated alloy may have a yield strength of at least 260 MPa and may have a bendability ratio of up to 0.3. A method of forming an assembly is also provided, including heat treating a 6xxx series aluminum alloy to produce an alloy having a yield strength of at least 200 MPa and an r/t (bendability) ratio of up to 0.4 and riveting a member including the heat treated alloy to one or more additional members.Type: GrantFiled: February 25, 2014Date of Patent: April 4, 2017Assignee: Ford Global Technologies, LLCInventors: Nia R. Harrison, S. George Luckey, Jr., James Maurice Boileau, Aindrea McKelvey Campbell, Amanda Kay Freis
-
Patent number: 9551054Abstract: An aluminum alloy member resistant to cracking and having high strengths and excellent stress corrosion cracking resistance is manufactured by expanding a 7xxx aluminum alloy hollow extrusion at a rate of 5% or more. Specifically, a 7xxx aluminum alloy hollow extrusion containing Zn of 3.0-9.5%, Mg of 0.4-2.5%, Cu of 0.05-2.0%, and Ti of 0.005-0.2%, in mass percent, and prepared through press quenching is subjected to a reversion treatment, to pipe expansion within 72 hours after the reversion treatment, and to temper aging. The reversion treatment includes heating at a temperature rise rate of 0.4° C./second or more, holding in a temperature range of 200-550° C. for longer than 0 second, and cooling at a rate of 0.5° C./second or more. The ratio Y (?rs/?0.2) of the tensile residual stress ?rs to the 0.2% yield stress ?0.2 after temper aging and the total content X of Mg and Zn satisfy Expression (1): Y??0.1X+1.4 ??(1).Type: GrantFiled: January 14, 2014Date of Patent: January 24, 2017Assignee: Kobe Steel, Ltd.Inventors: Takahiro Shikama, Shinji Yoshihara
-
Patent number: 9352377Abstract: A method for producing a joint in at least two overlapping metal work pieces using a joining tool to obtain a mechanical joint between the overlapping work pieces, in particular joining by mechanical folding or pressure joining At least one of the first work piece and second work piece is a sheet material made of an aluminum alloy of the AA7000-series. A heat-treatment is applied to at least the work piece of 7000-series sheet material within 120 minutes prior to the production of the joint and/or for at least part of the time during production of the joint to temporarily reduce the tensile strength in the joining area of at least the work piece of said 7000-series sheet material.Type: GrantFiled: September 10, 2012Date of Patent: May 31, 2016Assignee: ALERIS ALUMINUM DUFFEL BVBAInventors: Axel Alexander Maria Smeyers, Sunil Khosla
-
Patent number: 9272361Abstract: A method for joining metal materials, which joins a first member with at least a joining face made of Metal A, the Metal A being mainly composed of at least one selected from the group consisting of Al, Cu, Ag and Au, to a second member with at least a joining face made of Metal B, the Metal B being mainly composed of at least one selected from the group consisting of Al Cu, Ag and Au, includes interposing an insert between the joining faces of the first and second members, wherein the insert contains Zn as a metal capable of causing an eutectic reaction with at least one metal except for Au in Metal A as well as at least one metal except for Au in Metal B.Type: GrantFiled: February 25, 2013Date of Patent: March 1, 2016Assignee: Nissan Motor Co., Ltd.Inventors: Shigeyuki Nakagawa, Kenji Miyamoto, Toshikazu Nanbu
-
Patent number: 9175372Abstract: It is an object to provide an aluminum alloy forged material for an automobile excellent in tensile strength while maintaining excellent corrosion resistance, and a method for manufacturing the same. Provided are the aluminum alloy forged material for an automobile and a method for manufacturing the same, the aluminum alloy forged material being composed of an aluminum alloy including Si: 0.7-1.5 mass %, Fe: 0.1-0.5 mass %, Mg: 0.6-1.2 mass %, Ti: 0.01-0.1 mass % and Mn: 0.3-1.0 mass %, further including at least one element selected from Cr: 0.1-0.4 mass % and Zr: 0.01-0.2 mass %, restricting Cu: 0.1 mass % or less and Zn: 0.05 mass % or less, and a hydrogen amount: 0.25 ml/100 g-Al or less, the remainder being Al and unavoidable impurities, in which the depth of recrystallization from the surface is 5 mm or less.Type: GrantFiled: March 13, 2013Date of Patent: November 3, 2015Assignee: Kobe Steel, Ltd.Inventors: Masayuki Hori, Yoshiya Inagaki
-
Patent number: 9163304Abstract: High strength forged aluminum alloys and methods for producing the same are disclosed. The forged aluminum alloy products may have grains having a high aspect ratio in at least two planes, generally the L-ST and the LT-ST planes. The forged aluminum alloy products may also have a high amount of texture. The forged products may realize increased strength relative to conventionally prepared forged products of comparable product form, composition and temper.Type: GrantFiled: April 20, 2010Date of Patent: October 20, 2015Assignee: Alcoa Inc.Inventors: Dustin M. Bush, Edward L. Colvin, Roberto J. Rioja, Ralph R. Sawtell
-
Publication number: 20150144227Abstract: The present invention relates to an aluminum alloy having low density and enhanced heat resistance. An aluminum alloy having improved high temperature physical properties comprises: magnesium (Mg) in an amount of about 7 to about 11 wt %, silicon (Si) in an amount of about 4 to about 8 wt %, copper (Cu) in an amount of about 0.5 to about 2 wt % and manganese (Mn) in an amount of about 0.3 to about 0.7 wt %, and a balance of aluminum based on the total weight of the aluminum alloy. Vehicle parts such as a piston, a housing and/or a bed plate of high power engine, to which the aluminum alloy may be applied, are provided as well.Type: ApplicationFiled: September 24, 2014Publication date: May 28, 2015Inventor: Hee-Sam Kang