Aluminum Base Patents (Class 148/415)
  • Patent number: 10889882
    Abstract: Provided herein are new aluminum alloy materials which are useful in replacing copper in a heat exchanger. The aluminum alloy materials are also useful in manufacturing components of heating, ventilating, air-conditioning, and refrigeration (HVAC&R) systems for indoor and outdoor units. The alloys are well-suited for tubing in a heat exchanger. The alloys display high strength and good corrosion resistance. Also provided herein are methods for making the aluminum alloy materials.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: January 12, 2021
    Assignee: Novelis Inc.
    Inventors: Jyothi Kadali, Eider Alberto Simielli, Kevin Michael Gatenby
  • Patent number: 10845557
    Abstract: An overhead cable for the transmission of low-voltage and medium-voltage energy and digital signals, including a central fiber-optic cable, surrounded by a protective covering of the central fiber-optic cable and around such protective covering of such fiber optics by at least an aluminum alloy layer for the transmission of low-voltage and medium-voltage electric power or neutral wire and the covering thereof, where at least one aluminum alloy layer includes a 6101 aluminum alloy wire that has been heat treated, submitting the same to a temperature within a range of 260 and 300° C. and a treatment process for the aluminum alloy drawn wire.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: November 24, 2020
    Inventors: José Antonio Di Ciommo, Edgardo Kliewer
  • Patent number: 10590515
    Abstract: New 6xxx aluminum alloys are disclosed. The new 6xxx aluminum alloys may include 1.05-1.50 wt. Mg, 0.60-0.95 wt. % Si, where the (wt. % Mg)/(wt. % Si) is from 1.30 to 1.90, 0.275-0.50 wt. % Cu, and from 0.05 to 1.0 wt. % of at least one secondary element, wherein the secondary element is selected from the group consisting of V, Fe, Cr, Mn, Zr, Ti, and combinations thereof.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: March 17, 2020
    Assignee: ARCONIC INC.
    Inventors: Jen C. Lin, Anton J. Rovito, Timothy P. Doyle, Shawn P. Sullivan, Gabriele F. Ciccola, Christopher J. Tan
  • Patent number: 10557186
    Abstract: Provided is a wrought aluminum alloy including 5.5 to 6.0 wt % of Zn, 2.0 to 2.5 wt % of Mg, 0.2 to 0.6 wt % of Cu, 0.1 to 0.2 wt % of Cr, at most 0.2 wt % (and more than 0 wt %) of Fe, at most 0.2 wt % (and more than 0 wt %) of Mn, at most 0.2 wt % (and more than 0 wt %) of Si, at most 0.1 wt % (and more than 0 wt %) of Ti, and at most 0.05 wt % (and more than 0 wt %) of Sr, with the remainder being Al.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: February 11, 2020
    Assignee: KOREA AUTOMOTIVE TECHNOLOGY INSTITUTE
    Inventors: Si Young Sung, Beom Suck Han, Se Hoon Kim, Jae Hyuk Shin, Jin Pyeong Kim
  • Patent number: 10553327
    Abstract: An aluminum alloy conductor wire has a composition comprising Mg: 0.1-1.0 mass %, Si: 0.1-1.20 mass %, Fe: 0.01-1.40 mass %, Zr: 0.01-0.50 mass %, Ti: 0-0.100 mass %, B: 0-0.030 mass %, Cu: 0-1.00 mass %, Ag: 0-0.50 mass %, Au: 0-0.50 mass %, Mn: 0-1.00 mass %, Cr: 0-1.00 mass %, Hf: 0-0.50 mass %, V: 0-0.50 mass %, Sc: 0-0.50 mass %, Co: 0-0.50 mass %, Ni: 0-0.50 mass %, and the balance: Al and inevitable impurities, where Ti, B, Cu, Ag, Au, Mn, Cr, Hf, V, Sc, Co and Ni are arbitrary additive components of which at least one component may be contained or none of the components may be contained. A density of a compound having a particle size of 0.5-5.0 ?m and containing Fe is 1 to 300 particles/10000 ?m2. Mg/Si ratio, which is a ratio of Mg in mass % to Si in mass %, is greater than 1.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: February 4, 2020
    Assignees: FURUKAWA ELECTRIC CO., LTD., FURUKAWA AUTOMOTIVE SYSTEMS INC.
    Inventors: Sho Yoshida, Ryosuke Matsuo, Shigeki Sekiya, Kengo Mitose
  • Patent number: 10525529
    Abstract: A coated article comprising: a substrate; and a coating on the substrate comprising: a metallic matrix comprising, by weight: Al as a largest constituent; 3.0-6.0 Cr; 1.5-4.0 Mn; 0.1-3.5 Co; and 0.3-2.0 Zr; and a filler and optionally porosity.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: January 7, 2020
    Assignee: United Technologies Corporation
    Inventors: Pantcho P. Stoyanov, Christopher W. Strock, Thomas J. Watson
  • Patent number: 10525782
    Abstract: A composite part for an air spring component of a motor vehicle includes a first element made of a first material and a second element made of a second material. The second element at least partially surrounds the first element. In the air spring component, the composite part can be bonded to at least one second component in an adhesive-bonded manner.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: January 7, 2020
    Assignee: VIBRACOUSTIC GMBH
    Inventors: Sergej Derr, Joerg Hechenblaikner
  • Patent number: 10501829
    Abstract: A method for producing a structural sheet metal component formed from an aluminum alloy for a motor vehicle includes providing an aluminum sheet blank in a state T4 or T5 or T6 or T7, heating the aluminum sheet blank to a heating temperature between 100° C. and 450° C., forming the aluminum sheet blank to a structural sheet metal component, and heat post-treatment of the formed structural sheet metal component.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: December 10, 2019
    Assignee: BENTELER AUTOMOBILTECHNIK GMBH
    Inventors: Friedrich Bohner, Jochen Dörr, Jochem Grewe
  • Patent number: 10461441
    Abstract: An aluminum alloy element wire has a chemical composition including in mass percent: Mg: 0.3% or more and 0.9% or less, Si: 0.1% or more and 0.7% or less, Fe: 0.1% or more and 0.4% or less, at least one element selected from the group consisting of Cu, Cr, Ni, and Zr: 0.01% or more and 0.5% or less in total, and the balance being Al and unavoidable impurities. The aluminum alloy element wire has a surface roughness Ra in the range of 0.15 ?m or more and 2 ?m or less as measured with a non-contact surface roughness measuring machine. An aluminum alloy stranded wire includes a plurality of the aluminum alloy element wires twisted together. An automotive electric wire includes the aluminum alloy stranded wire. A wire harness includes the automotive electric wire, and a terminal crimped to the aluminum alloy stranded wire of the automotive electric wire.
    Type: Grant
    Filed: April 12, 2016
    Date of Patent: October 29, 2019
    Assignees: AUTONETWORKS TECHNOLOGIES, LTD., SUMITOMO WIRING SYSTEMS, LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Hiroyuki Kobayashi
  • Patent number: 10415128
    Abstract: A method for manufacturing a part including steps of (1) casting an ingot, (2) scalping the ingot to yield a scalped ingot, (3) homogenizing the scalped ingot to yield a homogenized ingot, (4) breakdown of the homogenized ingot to yield a slab, (5) rolling the slab to yield a rolled aluminum material, (6) annealing the rolled aluminum material to yield an aluminum starting material, (7) cold working the aluminum starting material to obtain an aluminum cold worked material, and (8) forming the part from the aluminum cold worked material.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: September 17, 2019
    Assignee: The Boeing Company
    Inventors: David H. Gane, Ryan J. Glamm, Gary R. Weber, Ricole A. Johnson, Terry C. Tomt, Azzreal Pugh, Daniel J. Kane, Peter D. Verge
  • Patent number: 10273564
    Abstract: The present disclosure relates to aluminum based alloys and a method for producing the aluminum based alloys. The method comprises acts of, casting of the aluminum based alloy in a chilled casting mold. Then, aging the cast aluminum based alloy at a first predetermined temperature for a first predetermined time. The aging results in the formation of a first precipitate. Followed by this, solutionizing the aluminum based alloy at a second predetermined temperature for a second predetermined time such that the major alloying element is dissolved in aluminum matrix without much affecting the first precipitate. Then, aging the aluminum based alloy at a third predetermined temperature for a third predetermined time. The aging results in the formation of a second precipitate.
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: April 30, 2019
    Assignee: INDIAN INSTITUTE OF SCIENCE
    Inventors: Surendra Kumar M, Sukla Mondol, Subodh Kumar, Satyam Suwas, K. Chattopadhyay
  • Patent number: 10167898
    Abstract: The invention relates to a sliding bearing composite comprising a carrier layer made of steel, an intermediate layer arranged on the carrier layer and made of aluminum or an aluminum alloy that is lead-free except for impurities, and a bearing metal layer arranged on the intermediate layer and made of an aluminum alloy that is lead-free except for impurities. Said aluminum alloy contains 6.0-10.0 wt. % tin, 2.0-4.0 wt. % silicon, 0.7-1.2 wt. % copper, 0.15-0.25 wt. % chromium, 0.02-0.20 wt. % titanium, 0.1-0.3 wt. % vanadium and optionally less than 0.5 wt. % other elements, the remaining portion being aluminum.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: January 1, 2019
    Assignee: Federal-Mogul Wiesbaden GmbH
    Inventors: Karl-Heinz Lindner, Gerd Andler, Matthias Schnatz
  • Patent number: 10030294
    Abstract: A method for manufacturing a part including steps of providing an aluminum starting material, wherein the aluminum starting material is in an anneal temper, cold working the aluminum starting material to obtain an aluminum cold worked material, and forming the part from the aluminum cold worked material.
    Type: Grant
    Filed: February 16, 2015
    Date of Patent: July 24, 2018
    Assignee: The Boeing Company
    Inventors: David H. Gane, Ryan J. Glamm, Gary R. Weber, Ricole A. Johnson, Terry C. Tomt, Azzréal Pugh, Daniel J. Kane, Peter D. Verge
  • Patent number: 10024611
    Abstract: Disclosed is an aluminum alloy material for a heat exchanger fin, the aluminum alloy material containing Si: 1.0% to 5.0% by mass, Fe: 0.1% to 2.0% by mass, and Mn: 0.1% to 2.0% by mass with balance being Al and inevitable impurities, wherein 250 pieces/mm2 or more to 7×104 pieces/mm2 or less of Si-based intermetallic compound particles having equivalent circle diameters of 0.5 to 5 ?m are present in a cross-section of the aluminum alloy material; and wherein 10 pieces/mm2 or more and 1000 pieces/mm2 or less of the Al—Fe—Mn—Si-based intermetallic compounds having equivalent circle diameters of more than 5 ?m are present in a cross-section of the aluminum alloy material. The aluminum alloy material may further contain one or more additive elements of Mg, Cu, Zn, In, Sn, Ti, V, Zr, Cr, Ni, Be, Sr, Bi, Na, and Ca.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: July 17, 2018
    Assignee: UACJ Corporation
    Inventors: Kazuko Fujita, Akio Niikura, Takashi Murase
  • Patent number: 10023943
    Abstract: An Al—Mg—Si-based aluminum alloy includes 0.015 to 0.12 mass % of Sr, the aluminum alloy producing a cast metal structure in which Mg2Si is crystallized in a fine agglomerate form.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: July 17, 2018
    Assignees: National University Corporation University of Toyama, Ahresty Corporation
    Inventors: Seiji Saikawa, Gen Okazawa, Hiroshige Niwa, Kiyoshi Terayama, Susumu Ikeno, Emi Yanagihara, Shin Orii, Suguru Takeda
  • Patent number: 9991024
    Abstract: An aluminum alloy wire rod comprising 0.1-1.0 mass % Mg; 0.1-1.0 mass % Si; 0.01-1.40 mass % Fe; 0.01-0.50 mass % Zr; 0.000-0.100 mass % Ti; 0.000-0.030 mass % B; 0.00-1.00 mass % Cu; 0.00-0.50 mass % Ag; 0.00-0.50 mass % Au; 0.00-1.00 mass % Mn; 0.00-1.00 mass % Cr; 0.00-0.50 mass % Hf; 0.00-0.50 mass % V; 0.00-0.50 mass % Sc; 0.00-0.50 mass % Co; and 0.00-0.50 mass % Ni, a Mg/Si ratio being greater than 1, wherein a dispersion density of an Mg2Si compound having a particle size of 0.5 ?m to 5.0 ?m is less than or equal to 3.0×10?3 particles/?m2, and in the sectional structure, a concentration of each of Mg and Si other than a compound is less than or equal to 2.00 mass %.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: June 5, 2018
    Assignees: FURUKAWA ELECTRIC CO., LTD., FURUKAWA AUTOMOTIVE SYSTEMS INC.
    Inventors: Shigeki Sekiya, Sho Yoshida, Kyota Susai, Kengo Mitose
  • Patent number: 9957588
    Abstract: The present invention pertains to the field of metal alloy, and discloses an aluminum-zirconium-titanium-carbon grain refiner for magnesium and magnesium alloys, having a chemical composition of: 0.01%˜10% Zr, 0.01%˜10% Ti, 0.01%˜0.3% C, and Al in balance, based on weight percentage. Also, the present invention discloses the method for preparing the grain refiner. The grain refiner according to the present invention is an Al—Zr—Ti—C intermediate alloy having great nucleation ability and in turn excellent grain refining performance for magnesium and magnesium alloys, and is industrially applicable in the casting and rolling of magnesium and magnesium alloy profiles, enabling the wide use of magnesium in industries.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: May 1, 2018
    Assignee: SHENZHEN SUNXING LIGHT ALLOYS MATERIALS CO., LTD.
    Inventors: Xuemin Chen, Qingdong Ye, Yueming Yu, Jianguo Li
  • Patent number: 9937554
    Abstract: The present invention pertains to the field of metal alloy, and relates a grain refiner for magnesium and magnesium alloys, which is an aluminum-zirconium-carbon (Al—Zr—C) intermediate alloy, having a chemical composition of: 0.01%˜10% Zr, 0.01%˜0.3% C, and Al in balance, based on weight percentage. Also, the present invention discloses the method for preparing the grain refiner. The grain refiner according to the present invention is an intermediate alloy having great nucleation ability and in turn excellent grain refining performance for magnesium and magnesium alloys, and is industrially applicable in the casting and rolling of magnesium and magnesium alloy profiles, enabling the wide use of magnesium in industries.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: April 10, 2018
    Assignee: SHENZHEN SUNXING LIGHT ALLOYS MATERIALS CO., LTD.
    Inventors: Xuemin Chen, Qingdong Ye, Yueming Yu, Jianguo Li
  • Patent number: 9899118
    Abstract: An aluminum alloy wire rod has a composition including Mg: 0.10-1.0 mass %, Si: 0.10-1.20 mass %, Fe: 0.01-1.40 mass %, Ti: 0.000-0.100 mass %, B: 0.000-0.030 mass %, Cu: 0.00-1.00 mass %, Ag: 0.00-0.50 mass %, Au: 0.00-0.50 mass %, Mn: 0.00-1.00 mass %, Cr: 0.00-1.00 mass %, Zr: 0.00-0.50 mass %, Hf: 0.00-0.50 mass %, V: 0.00-0.50 mass %, Sc: 0.00-0.50 mass %, Co: 0.00-0.50 mass %, Ni: 0.00-0.50 mass %, and the balance: Al and incidental impurities, Mg/Si mass ratio being 0.4 to 0.8. The aluminum alloy wire rod has a tensile strength of greater than or equal to 200 MPa, an elongation of greater than or equal to 13%, a conductivity of 47% IACS, and a ratio (YS/TS) of 0.2% yield strength (YS) to the tensile strength (TS) of less than or equal to 0.7.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: February 20, 2018
    Assignees: FURUKAWA ELECTRIC CO., LTD., FURUKAWA AUTOMOTIVE SYSTEMS INC.
    Inventors: Sho Yoshida, Shigeki Sekiya, Kengo Mitose
  • Patent number: 9875822
    Abstract: An aluminum alloy conductor wire has a composition comprising Mg: 0.1-1.0 mass %, Si: 0.1-1.20 mass %, Fe: 0.01-1.40 mass %, Ti: 0-0.100 mass %, B: 0-0.030 mass %, Cu: 0-1.00 mass %, Ag: 0-0.50 mass %, Au: 0-0.50 mass %, Mn: 0-1.00 mass %, Cr: 0-1.00 mass %, Zr: 0-0.50 mass %, Hf: 0-0.50 mass %, V: 0-0.50 mass %, Sc: 0-0.50 mass %, Co: 0-0.50 mass %, Ni: 0-0.50 mass %, and the balance: Al and inevitable impurities, where Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co and Ni are arbitrary additive components of which at least one component may be contained or none of the components may be contained. A density of a compound having a particle size of 0.5-5.0 ?m and containing Fe is 1 to 300 particles/10000 ?m2.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: January 23, 2018
    Assignees: FURUKAWA ELECTRIC CO., LTD., FURUKAWA AUTOMOTIVE SYSTEMS INC.
    Inventors: Sho Yoshida, Ryosuke Matsuo, Shigeki Sekiya, Kengo Mitose
  • Patent number: 9677158
    Abstract: Copper-free aluminum alloys suitable for high pressure die casting and capable of age-hardening under elevated temperatures are provided. The allow includes about 9.5-13 wt % silicon, about 0.2 to 0.6 wt % Magnesium, about 0.1 to 2 wt % iron, about 0.1 to 2 wt % manganese, about 0.1 to 1 wt % nickel, about 0.5 to 3 wt % zinc, and 0 to 0.1 wt % strontium, with a balance of aluminum. Methods for making high pressure die castings and castings manufactured from the alloy are also provided.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 13, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Qigui Wang, Wenying Yang, Jason R. Traub
  • Patent number: 9650706
    Abstract: An aluminum alloy wire rod has a composition consisting of 0.1-1.0 mass % Mg; 0.1-1.0 mass % Si; 0.01-1.40 mass % Fe; 0.000-0.100 mass % Ti; 0.000-0.030 mass % B; 0.00-1.00 mass % Cu; 0.00-0.50 mass % Ag; 0.00-0.50 mass % Au; 0.00-1.00 mass % Mn; 0.00-1.00 mass % Cr; 0.00-0.50 mass % Zr; 0.00-0.50 mass % Hf; 0.00-0.50 mass % V; 0.00-0.50 mass % Sc; 0.00-0.50 mass % Co; 0.00-0.50 mass % Ni; and the balance being Al and incidental impurities, wherein at least one or none of Ti, B, Cu, Ag, Au, Mn, Cr, Zr, —Hf, V, Sc, Co and Ni is contained in the composition. A dispersion density of an Mg2Si compound having a particle size of 0.5 ?m to 5.0 ?m is less than or equal to 3.0×10?3 particles/?m2. In a sectional structure, a concentration of each of Si and Mg other than a compound is less than or equal to 2.00 mass %.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: May 16, 2017
    Assignees: Furukawa Electric Co., Ltd., Furukawa Automotive Systems Inc.
    Inventors: Shigeki Sekiya, Sho Yoshida, Kyota Susai, Kengo Mitose
  • Patent number: 9512510
    Abstract: A high-strength aluminum alloy material having a chemical composition which includes Zn: more than 7.2% (mass %, the same applies hereafter) and 8.7% or less, Mg: 1.3% or more and 2.1% or less, Cu: 0.01% or more and 0.10% or less, Zr: 0.01% or more and 0.10% or less, Cr: less than 0.02%, Fe: 0.30% or less, Si: 0.30% or less, Mn: less than 0.05%, Ti: 0.001% or more and 0.05% or less, the balance being Al and unavoidable impurities, is provided. It has a proof stress of 350 MPa or more, and a metallographic structure formed of a recrystallized structure, and L* and b* values, as defined in JIS Z8729 (ISO 7724-1), are 85 or more and 95 or less and 0 or more and 0.8 or less, respectively, as measured after anodization using a sulfuric acid bath.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: December 6, 2016
    Assignee: UACJ CORPORATION
    Inventor: Hidenori Hatta
  • Patent number: 9453272
    Abstract: Aluminum-zirconium and aluminum-zirconium-lanthanide superalloys are described that can be used in high temperature, high stress and a variety of other applications. The lanthanide is preferably holmium, erbium, thulium or ytterbium, most preferably erbium. Also, methods of making the aforementioned alloys are disclosed. The superalloys, which have commercially-suitable hardness at temperatures above about 220° C., include nanoscale Al3Zr precipitates and optionally nanoscale Al3Er precipitates and nanoscale Al3(Zr,Er) precipitates that create a high-strength alloy capable of withstanding intense heat conditions. These nanoscale precipitates have a L12-structure in ?-Al(f.c.c.) matrix, an average diameter of less than about 20 nanometers (“nm”), preferably less than about 10 nm, and more preferably about 4-6 nm and a high number density, which for example, is larger than about 1021 m?3, of the nanoscale precipitates.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: September 27, 2016
    Assignee: NanoAl LLC
    Inventors: Nhon Q Vo, David N Seidman, David C Dunand
  • Patent number: 9431552
    Abstract: A metallization paste or ink for making electrical contacts on solar cells has reduced diffusion in a silicon wafer. The paste or ink is configured for printing on a crystalline silicon substrate of a solar cell, wherein the paste comprises silicon particles, aluminum particles, and a paste vehicle. Alternatively, the paste comprises aluminum-silicon alloy particles.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: August 30, 2016
    Assignee: Starsource Scientific LLC
    Inventors: Yunjun Li, James P. Novak, Patrick Paul Ferguson, Mohshi Yang
  • Patent number: 9397064
    Abstract: The invention is related to a bonding wire containing a core having a surface. The core contains aluminum as a main component and scandium in an amount between 0.05% and 1.0%.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: July 19, 2016
    Assignee: Heraeus Deutschland GmbH & Co. KG
    Inventors: Eugen Milke, Sven Thomas, Ute Geissler, Martin Schneider-Ramelow
  • Patent number: 9324471
    Abstract: An aluminum alloy wire rod has a composition consisting of 0.1-1.0 mass % Mg; 0.1-1.0 mass % Si; 0.01-1.40 mass % Fe; 0.000-0.100 mass % Ti; 0.000-0.030 mass % B; 0.00-1.00 mass % Cu; 0.00-0.50 mass % Ag; 0.00-0.50 mass % Au; 0.00-1.00 mass % Mn; 0.00-1.00 mass % Cr; 0.00-0.50 mass % Zr; 0.00-0.50 mass % Hf; 0.00-0.50 mass % V; 0.00-0.50 mass % Sc; 0.00-0.50 mass % Co; 0.00-0.50 mass % Ni; and the balance being Al and incidental impurities, wherein at least one or none of Ti, B, Cu, Ag, Au, Mn, Cr, Zr, Hf, V, Sc, Co and Ni is contained in the composition. A dispersion density of an Mg2Si compound having a particle size of 0.5 ?m to 5.0 ?m is less than or equal to 3.0×10?3 particles/?m2. Each of Si and Mg at a grain boundary between crystal grains of a parent phase has a concentration of less than or equal to 2.00 mass %.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: April 26, 2016
    Assignees: FURUKAWA ELECTRIC CO., LTD., FURUKAWA AUTOMOTIVE SYSTEMS INC.
    Inventors: Shigeki Sekiya, Sho Yoshida, Kyota Susai, Kengo Mitose
  • Patent number: 8961714
    Abstract: A lightweight automobile suspension part having high strength is an aluminum alloy automobile suspension part having a through-hole, which has a yield strength of a normal section as a region where a crystal grain is not coarsened being 270 MPa or larger, and a minimum length between a rib end as a predetermined region on a side of the through-hole in a rib and a through-hole end as a predetermined region on a side of the through-hole in a web is 6 mm or larger.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: February 24, 2015
    Assignee: Kobe Steel, Ltd.
    Inventors: Shogo Sakamoto, Yoshiya Inagaki
  • Publication number: 20150027595
    Abstract: An aluminum material for producing light-weight components includes aluminum (Al), scandium (Sc), zirconium (Zr) and ytterbium (Yb), where a weight ratio of scandium (Sc) to zirconium (Zr) to ytterbium (Yb) [Sc/Zr/Yb] is in a range from 10/5/2.5 to 10/2.5/1.25.
    Type: Application
    Filed: July 23, 2014
    Publication date: January 29, 2015
    Inventor: Frank PALM
  • Publication number: 20150013857
    Abstract: An aluminum alloy and a method for improving the ability of a semi-finished or finished product to age artificially, includes an age-hardenable aluminum alloy on an Al—Mg—Si, Al—Zn, Al—Zn—Mg or Al—Si—Mg basis, wherein the aluminum alloy is transformed to a solid solution state, in particular by solution heat treatment (1), is quenched and subsequently forms precipitations by a process of natural aging (3), the method involving at least one measure for reducing a negative effect of natural aging (3) of the aluminum alloy on artificial aging (4) thereof.
    Type: Application
    Filed: February 22, 2013
    Publication date: January 15, 2015
    Applicant: AMAG ROLLING GMBH
    Inventors: Peter J. Uggowitzer, Stefan Pogatscher, Helmut Antrekowitsch, Marion Werinos, Thomas Ebner, Carsten Melzer
  • Publication number: 20150007909
    Abstract: This aluminum alloy sheet is a 6000-series aluminum alloy sheet of a specific composition which, after rolling, has undergone solution hardening and reheating as tempering treatments. The aluminum alloy sheet in differential scanning calorimetry gives a curve in which the exothermic-peak heights A, B, and C in respective specific temperature ranges have relationships within specific given ranges to thereby raise the increase in 0.2% proof stress through low-temperature short-time artificial age-hardening to 100 MPa or more.
    Type: Application
    Filed: January 29, 2013
    Publication date: January 8, 2015
    Inventors: Katsushi Matsumoto, Yasuhiro Aruga, Hisao Shishido
  • Publication number: 20140261907
    Abstract: Copper-free aluminum alloys suitable for high pressure die casting and capable of age-hardening under elevated temperatures are provided. The allow includes about 9.5-13 wt % silicon, about 0.2 to 0.6 wt % Magnesium, about 0.1 to 2 wt % iron, about 0.1 to 2 wt % manganese, about 0.1 to 1 wt % nickel, about 0.5 to 3 wt % zinc, and 0 to 0.1 wt % strontium, with a balance of aluminum. Methods for making high pressure die castings and castings manufactured from the alloy are also provided.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: GM Global Technology Operations LLC
    Inventors: Qigui Wang, Wenying Yang, Jason R. Traub
  • Publication number: 20140251508
    Abstract: The invention relates to a cast part.
    Type: Application
    Filed: September 14, 2012
    Publication date: September 11, 2014
    Applicant: KSM CASTINGS GROUP GMBH
    Inventors: Lutz Wolkenstein, Klaus Greven
  • Publication number: 20140224385
    Abstract: A method of manufacturing a turbocharger component for an internal combustion engine is disclosed. The method may include introducing a material into a mold, wherein the material includes at least one added alloying element. The method may further include applying a pressure to the material, and solidifying the material by cooling the material at a cooling rate, wherein the solidifying preserves an amount of the at least one added alloying element in solid solution in the material. The method may also include forming precipitates within the material by aging the material at an aging temperature.
    Type: Application
    Filed: February 13, 2013
    Publication date: August 14, 2014
    Applicant: Caterpillar Incorporated
    Inventors: Nan YANG, Jeff Alan Jensen
  • Publication number: 20140224523
    Abstract: An aluminium-based conductive material used in a driving part of robots or various devices and used, for example, in a wiring that is loaded with cyclic bending, as well as an electric wire and a cable using the same, contains 0.1 to 1.0 mass % of scandium and further contains, as a rest part, aluminium and unavoidable impure substances and is formed of a metal texture 10 having crystal grains 11 with an average grain size of 2 ?m or less and aluminium-scandium series nanoprecipitates generated in a grain boundary 12 of the crystal grains 11. Further, it is preferable that the metal texture 10 contains the crystal grains 11 of 1 ?m or less at a cross sectional ratio of 15% or more.
    Type: Application
    Filed: September 4, 2012
    Publication date: August 14, 2014
    Applicants: FUKUOKA PREFECTURAL GOVERNMENT, DYDEN CORPORATION
    Inventors: Hiroyuki In, Fumiyo Annou, Daisuke Matsunaga, Hiromoto Kitahara, Shinji Ando, Masayuki Tsushida, Toshifumi Ogawa
  • Publication number: 20140212324
    Abstract: Provided by the present invention are a fine crystallite high-function metal alloy member, a method for manufacturing the same, and a business development method thereof, in which a crystallite of a metal alloy including a high-purity metal alloy whose crystal lattice is a face-centered cubic lattice, a body-centered cubic lattice, or a close-packed hexagonal lattice is made fine with the size in the level of nanometers (10?9 m to 10?6 m) and micrometers (10?6 m to 10?3 m), and the form thereof is adjusted, thereby remedying drawbacks thereof and enhancing various characteristics without losing superior characteristics owned by the alloy.
    Type: Application
    Filed: April 10, 2012
    Publication date: July 31, 2014
    Applicant: THREE-O CO., LTD.
    Inventor: Kazuo Ogasa
  • Patent number: 8771441
    Abstract: An aluminum alloy comprising 2.1 to 2.8 wt. % Cu, 1.1 to 1.7 wt. % Li, 0.1 to 0.8 wt. % Ag, 0.2 to 0.6 wt. % Mg, 0.2 to 0.6 wt. % Mn, a content of Fe and Si less or equal to 0.1 wt. % each, and a content of unavoidable impurities less than or equal to 0.05 wt. % each and 0.15 wt. % total, and the alloy being substantially zirconium free.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: July 8, 2014
    Inventors: Bernard Bes, Herve Ribes, Christophe Sigli, Timothy Warner
  • Publication number: 20130307383
    Abstract: An aluminum alloy casting having high electric resistance, high toughness and high corrosion resistance and optimally usable in manufacturing of electric motor housings, and a method of manufacturing said aluminum alloy casting are provided. The aluminum alloy casting has a composition including Si: 11.0-13.0 mass %, Fe: 0.2-1.0 mass %, Mn: 0.2-2.2 mass %, Mg: 0.7-1.3 mass %, Cr: 0.5-1.3 mass % and Ti: 0.1-0.5 mass %, with the balance consisting of Al and unavoidable impurities, wherein the content of Cu as an unavoidable impurity is limited to 0.2 mass % or less. In some cases, heat treatments such as solution heat treatment or artificial aging hardening treatment are performed after casting.
    Type: Application
    Filed: January 27, 2011
    Publication date: November 21, 2013
    Applicant: Nippon Light Metal Company, Ltd.
    Inventors: Satoru Suzuki, Atsushi Kishimoto, Pizhi Zhao, Kazuhiro Oda, Tomohiro Isobe
  • Publication number: 20130301151
    Abstract: Substrates suitable for mirrors used at wavelengths in the EUV wavelength range have substrates (1) including a base body (2) made of a precipitation-hardened alloy, of an intermetallic phase of an alloy system, of a particulate composite or of an alloy having a composition which, in the phase diagram of the corresponding alloy system, lies in a region which is bounded by phase stability lines. Preferably, the base body (2) is made of a precipitation-hardened copper or aluminum alloy. A highly reflective layer (6) is preferably provided on a polishing layer (3) of the substrate (1) of the EUV mirror (5).
    Type: Application
    Filed: July 19, 2013
    Publication date: November 14, 2013
    Inventors: Claudia EKSTEIN, Holger MALTOR
  • Patent number: 8551267
    Abstract: Aluminum or aluminum alloy sputter targets and methods of making same are provided. The pure aluminum or aluminum alloy is mechanically worked to produce a circular blank, and then the blank is given a recrystallization anneal to achieve desirable grain size and crystallographic texture. A 10-50% additional strain is provided to the blank step after the annealing to increase the mechanical strength. Further, in a flange area of the target, the strain is greater than in the other target areas with the strain in the flange area being imparted at a rate of about 20-60% strain. The blank is then finished to form a sputtering target with desirable crystallographic texture and adequate mechanical strength.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: October 8, 2013
    Assignee: Tosoh SMD, Inc.
    Inventors: Weifang Miao, David B. Smathers, Robert S. Bailey
  • Publication number: 20130199680
    Abstract: Aluminum die casting alloy comprising 2 to 6% by weight nickel, 0.1 to 0.4% by weight zirconium, 0.1 to 0.4% by weight vanadium, optionally up to 5% by weight manganese, optionally up to 2% by weight iron, optionally up to 1% by weight titanium, optionally total max. 5% by weight transition elements including scandium, lanthanum, yttrium, hafnium, niobium, tantalum, chromium and/or molybdenum, and aluminum as the remainder with further elements and impurities due to production total max. 1% by weight.
    Type: Application
    Filed: April 6, 2011
    Publication date: August 8, 2013
    Applicant: RHEINFELDEN ALLOYS GMBH & CO. KG
    Inventors: Diran Apelian, Makhlouf M. Makhlouf
  • Patent number: 8404059
    Abstract: The aluminum alloy for anodic oxidation treatment directed to the present invention comprises as alloy elements 0.1 to 2.0% Mg, 0.1 to 2.0% Si, and 0.1 to 2.0% Mn, wherein each content of Fe, Cr, and Cu is limited to 0.03 mass % or less, and wherein the remainder is composed of Al and inevitable impurities. An aluminum alloy more excellent in the durability can be obtained by subjecting the aluminum alloy ingot having the above element composition to a homogenization treatment at a temperature of more than 550° C. to 600° C. or less. An aluminum alloy member can be obtained by forming an anodic oxidation coating on the surface of the aluminum alloy.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: March 26, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Koji Wada, Jun Hisamoto, Toshiyuki Tanaka, Kozo Hoshino, Kazunori Kobayashi
  • Patent number: 8372220
    Abstract: There are provided an aluminum alloy forging having high strength, toughness, and resistance to corrosion in response to the thinning of automotive underbody parts, and a process for production thereof. The aluminum alloy forging includes an aluminum alloy containing predetermined amounts of Mg, Si, Mn, Fe, Zn, Cu, Cr, Zr, and Ti with the balance being composed of Al and inevitable impurities, and having a hydrogen gas concentration of 0.25 ml/100 g of Al. In the aluminum alloy forging mentioned above, the area ratio of Mg2Si having a maximum length of 0.1 ?m or above is 0.15% or below, the recrystallization ratio of the aluminum alloy is 20% or below, and a size distribution index value defined by V/r of dispersed particles of the aluminum alloy (V: the area ratio [%] of the dispersed particles, and r: the average radius [nm] of the dispersed particles) is 0.20 or above.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: February 12, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Yoshiya Inagaki, Manabu Nakai, Atsumi Fukuda
  • Patent number: 8366846
    Abstract: Disclosed is an Al—Mg—Si aluminum alloy sheet that can prevent ridging marks during press forming and has good reproducibility even with stricter fabricating conditions. In an Al—Mg—Si aluminum alloy sheet of a specific composition, hot rolling is performed on the basis of a set relationship between the rolling start temperature Ts and the rolling finish temperature Tf° C., whereby the relationship of the cube orientation distribution profile in the horizontal direction of the sheet with the cube orientation alone or another crystal orientation distribution profile at various locations in the depth direction of the sheet is made more uniform, suppressing the appearance of ridging marks that develop during sheet press forming.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: February 5, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Yasuo Takaki, Takeo Sakurai, Kwangjin Lee
  • Patent number: 8323425
    Abstract: Embodiments of a method for non-isothermally aging an aluminum alloy are provided. The method comprises heating an aluminum alloy at a first ramp-up rate to a maximum temperature below a precipitate solvus value, cooling the alloy at a first cooling rate sufficient to produce a maximum number of primary precipitates, cooling at a second cooling rate until a minimum temperature is reached wherein the growth rate of primary precipitates is equal to or substantially zero, and heating the alloy at a second ramp-up rate to a temperature sufficient to produce a maximum number of secondary precipitates.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: December 4, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Qigui Wang, Peggy E. Jones
  • Publication number: 20120301732
    Abstract: Disclosed is an Al alloy film for use in a display device, which does not undergo the formation of hillocks even when exposed to high temperatures of about 450° C. to 600° C., and has excellent high-temperature heat resistance, low electrical resistance (wiring resistance) and excellent corrosion resistance under alkaline environments. Specifically disclosed is an Al alloy film for use in a display device, which comprises at least one element selected from a group X consisting of Ta, Nb, Re, Zr, W, Mo, V, Hf and Ti and at least one rare earth element, and which meets the following requirement (1) when heated at 450° C. to 600° C. (1) Precipitates each having an equivalent circle diameter of 20 nm or more are present at a density of 500,000 particles/mm2 or more in a first precipitation product containing at least one element selected from Al and the elements included in the group X and at least one rare earth element.
    Type: Application
    Filed: February 16, 2011
    Publication date: November 29, 2012
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
    Inventors: Hiroyuki Okuno, Toshihiro Kugimiya, Hiroshi Goto
  • Patent number: 8317947
    Abstract: The present invention provides an aluminum alloy sheet for press forming, having the crystallo-graphic texture in which the orientation density of CR orientation ({001}<520>) is higher than that of any orientation other than the CR orientation. The orientation density of the CR orientation is preferably 10 or more (random ratio). The orientation densities of all orientations other than the CR orientation are preferably less than 10. The aluminum alloy sheet is preferably made of an Al—Mg—Si alloy.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: November 27, 2012
    Assignee: Sumitomo Light Metal Industries, Ltd.
    Inventors: Mineo Asano, Hidetoshi Uchida
  • Publication number: 20120291925
    Abstract: Wrought product made of aluminum alloy composed as follows, as a percentage by weight Mg: 4.0-5.0; Li: 1.0-1.6; Zr: 0.05-0.15; Ti: 0.01-0.15; Fe: 0.02-0.2; Si: 0.02-0.2; Mn: ?0.5; Cr?0.5; Ag: ?0.5; Cu?0.5; Zn?0.5; Sc?0.01; other elements <0.05; the rest aluminum.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 22, 2012
    Applicant: CONSTELLIUM FRANCE
    Inventors: Bernard Bes, Frank Eberl
  • Patent number: 8303736
    Abstract: A casted aluminum alloy obtained by casting a molten metal of an aluminum alloy, an aluminum alloy material obtained by at least heating the casted aluminum alloy, and methods for producing them. In the production of the casted aluminum alloy, a molten metal is obtained by melting an aluminum alloy containing 0.8 to 5 mass % of Fe, 0.15 to 1 mass % of Ti, Zr or the like as third component elements in an specific amount, and a residual part containing Al and inevitable impurities at a certain temperature (melting step). Subsequently, the molten metal is cast into a plate-like shape by a casting mold while cooling the molten metal to a temperature that is lower by at least 10° C. than a solidus temperature of the aluminum alloy at a cooling rate of 150° C./sec. or more and less than 10000° C./sec. (casting step).
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: November 6, 2012
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventor: Hideaki Matsuoka
  • Patent number: RE44239
    Abstract: Disclosed is an electrode for semiconductor devices capable of suppressing the generation of hillocks and reducing the resistivity, which is suitable for an active matrixed liquid crystal display and the like in which a thin film transistor is used; its fabrication method; and a sputtering target for forming the electrode film for semiconductor devices. The electrode for semiconductor devices is made of an Al alloy containing the one or more alloying elements selected from Fe, Co, Ni, Ru, Rh and Ir, in a total amount from 0.1 to 10 At %, or one or more alloying elements selected from rare earth elements, in a total amount from 0.05 to 15 at %.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: May 28, 2013
    Assignee: Kobelco Research Institute, Inc.
    Inventors: Seigo Yamamoto, Katsutoshi Takagi, Eiji Iwamura, Kazuo Yoshikawa, Takashi Oonishi