Tin Containing Patents (Class 148/433)
-
Patent number: 11315702Abstract: A covered electrical wire comprises a conductor and an insulating covering layer provided outside the conductor, the conductor being a stranded wire composed of a strand of a plurality of copper alloy wires: composed of a copper alloy containing Fe in an amount of 0.2% by mass or more and 1.6% by mass or less, P in an amount of 0.05% by mass or more and 0.4% by mass or less, and Sn in an amount of 0.05% by mass or more and 0.7% by mass or less, with the balance being Cu and impurities, and having a mass ratio of Fe/P of 4.0 or more; and having a wire diameter of 0.5 mm or less.Type: GrantFiled: December 28, 2016Date of Patent: April 26, 2022Assignees: Sumitomo Electric Industries, Ltd., AutoNetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd.Inventors: Kei Sakamoto, Akiko Inoue, Tetsuya Kuwabara, Minoru Nakamoto, Yusuke Oshima, Yoshihiro Nakai, Kazuhiro Nanjyo, Taichiro Nishikawa, Kiyotaka Utsunomiya, Yasuyuki Ootsuka, Kinji Taguchi, Hiroyuki Kobayashi
-
Patent number: 11315701Abstract: A covered electrical wire comprising a conductor and an insulating covering layer provided outside the conductor, the conductor being a stranded wire composed of a strand of a plurality of copper alloy wires: composed of a copper alloy containing Fe in an amount of 0.1% by mass or more and 1.6% by mass or less, P in an amount of 0.05% by mass or more and 0.7% by mass or less, and Sn in an amount of 0.05% by mass or more and 0.7% by mass or less, with the balance being Cu and impurities; and having a wire diameter of 0.5 mm or less, the copper alloy wire having a tensile strength of 385 MPa or more and a work-hardening exponent of 0.1 or more.Type: GrantFiled: June 21, 2017Date of Patent: April 26, 2022Assignees: Sumitomo Electric Industries, Ltd., AutoNetworks Technologies, Ltd., Sumitomo Wiring Systems. Ltd.Inventors: Kei Sakamoto, Akiko Inoue, Tetsuya Kuwabara, Minoru Nakamoto, Yusuke Oshima, Yoshihiro Nakai, Kazuhiro Nanjo, Taichiro Nishikawa, Kiyotaka Utsunomiya, Yasuyuki Ootsuka, Kinji Taguchi, Hiroyuki Kobayashi
-
Patent number: 11237520Abstract: A pivot arbor for a timepiece movement includes a pivot made of a first non-magnetic metal material at at least one end in order to limit the sensitivity to magnetic fields. An outer surface of the pivot is coated with a first layer of a second material such as Ni, NiB, and/or NiP. The first layer of the second material is partially coated with a second layer of a third material selected from gold, silver, copper, platinum, rhodium, palladium and their alloys.Type: GrantFiled: July 18, 2017Date of Patent: February 1, 2022Assignee: Nivarox-FAR S.A.Inventors: Alexandre Fussinger, Christian Charbon, Marco Verardo
-
Patent number: 11047023Abstract: A copper alloy sheet material that is excellent in surface smoothness of an etched surface has a composition containing, (mass %), from 1.0 to 4.5% of Ni, from 0.1 to 1.2% of Si, from 0 to 0.3% of Mg, from 0 to 0.2% of Cr, from 0 to 2.0% of Co, from 0 to 0.1% of P, from 0 to 0.05% of B, from 0 to 0.2% of Mn, from 0 to 0.5% of Sn, from 0 to 0.5% of Ti, from 0 to 0.2% of Zr, from 0 to 0.2% of Al, from 0 to 0.3% of Fe, from 0 to 1.0% of Zn, the balance Cu and unavoidable impurities. A number density of coarse secondary phase particles has a major diameter of 1.0 ?m or more of 4.0×103 per square millimeter or less. KAM value measured with a step size of 0.5 ?m is more than 3.00.Type: GrantFiled: October 14, 2016Date of Patent: June 29, 2021Assignee: DOWA METALTECH CO., LTD.Inventors: Toshiya Shutoh, Hisashi Suda, Fumiaki Sasaki
-
Patent number: 10718037Abstract: A copper alloy material production method is provided. A copper raw material including not higher than 30 ppm by mass of oxygen is melted to form a molten copper. Not lower than 4 ppm by mass and not higher than 55 ppm by mass of titanium is added to the molten copper. After the adding of the titanium, not lower than 100 ppm by mass and not higher than 7000 ppm by mass of magnesium is added.Type: GrantFiled: February 24, 2016Date of Patent: July 21, 2020Assignee: HITACHI METALS, LTD.Inventors: Shohei Hata, Takayuki Tsuji, Hiromitsu Kuroda, Keisuke Fujito
-
Patent number: 10711328Abstract: The present invention relates to a copper-zinc alloy with low lead content, as well as a process for the manufacturing of the same. The obtained allow allows the restriction of the amount of the generated Beta phase, thereby causing a lower deterioration of the materials due to the loss of zinc during its exposure to ponded, low movement or slightly acid waters.Type: GrantFiled: August 16, 2017Date of Patent: July 14, 2020Inventors: Jaime Rodríguez Angoli, Julio Alberto Rosas Franco, Roberto Montoya Rodriguez
-
Patent number: 10557185Abstract: This free-cutting copper alloy contains 75.0%-78.5% Cu, 2.95%-3.55% Si, 0.07%-0.28% Sn, 0.06%-0.14% P, and 0.022%-0.25% Pb, with the remainder being made up of Zn and inevitable impurities. The composition satisfies the following relations: 76.2?f1=Cu+0.8×Si?8.5×Sn+P+0.5×Pb?80.3, 61.5?f2=Cu?4.3×Si?0.7×Sn?P+0.5×Pb?63.3. The area ratios (%) of the constituent phases satisfy the following relations: 25???65, 0???1.5, 0???0.2, 0???2.0, 97.0?f3=?+?, 99.4?f4=?+?+?+?, 0?f5=?+??2.5, 27?f6=?+6×?1/2+0.5×??70. The long side of the ? phase does not exceed 40 ?m, the long side of the ? phase does not exceed 25 ?m, and the ? phase is present within the ? phase.Type: GrantFiled: February 13, 2019Date of Patent: February 11, 2020Assignee: Mitsubishi Shindoh Co., Ltd.Inventors: Keiichiro Oishi, Kouichi Suzaki, Shinji Tanaka, Takayuki Oka
-
Patent number: 10533244Abstract: To contribute to an improvement in a dezincification resistance of a copper alloy, focusing attention on a relation between a dezincification resistance of a copper alloy and the crystal grain size of an ? phase, and the specific object is to provide a method of producing a hot forged product using a lead-free brass capable of ensuring corrosion resistances such as a prescribed dezincification resistance and the like even at sites of different thickness and shape, a hot forged product, and a wetted product such as a valve and a water faucet, molded using the same. A method of producing a hot forged product using a brass, comprising heat-treating a raw material to be subjected to forging work using a brass having a composition containing at least 59.2 to 63.0% by mass of Cu, 1.00 to 2.00% by mass of Sn and 0.05 to 0.25% by mass of Pb and containing the residue composed of Zn and inevitable impurities at a heating rate of 5.2° C./s or more from 350° C. until reaching the forging temperature.Type: GrantFiled: April 30, 2015Date of Patent: January 14, 2020Assignee: KITZ CORPORATIONInventors: Junichi Hanaoka, Kazuhito Kurose
-
Patent number: 10533098Abstract: A conductive paste having excellent electroconductivity and thermal conductivity is provided. A conductive paste comprising a conductive filler comprising a copper alloy powder comprising at least one transition metal belonging to group 8 to group 10 of the periodic table, and a carbon allotrope covering a surface of the copper alloy powder; and a binder resin.Type: GrantFiled: July 29, 2014Date of Patent: January 14, 2020Assignee: SEKISUI CHEMICAL CO., LTD.Inventor: Shigekatsu Ohnishi
-
Patent number: 10518950Abstract: Cable ties including an antimicrobial component and optionally a detectable component are disclosed. More particularly, cable ties including a composition having a base plastic, an antimicrobial additive and optionally a detectable additive selected from a detectable metal additive, an X-ray detectable additive and combinations thereof as well as methods of making the same are disclosed. Also, cable ties including an antimicrobial metallic barb and a composition having a base plastic and optionally an antimicrobial additive and/or a detectable additive selected from a detectable metal additive, an X-ray detectable additive and combinations thereof are disclosed.Type: GrantFiled: September 9, 2015Date of Patent: December 31, 2019Assignee: Thomas & Betts International LLCInventor: Yan Gao
-
Patent number: 10357943Abstract: Various touch surfaces can lead to the spread of many types of secondary infections. Although copper has some capacity for conveying antiseptic properties, it can be problematic to form a copper-containing surface upon an article that does not otherwise contain copper. Copper nanoparticles can be used to address this situation by forming a plurality of copper islands upon the substructure of an article. Articles having antiseptic properties can include an exposed surface coating containing a plurality of copper islands, and a substructure underlying the exposed surface coating, in which the substructure contains a material differing from copper. The copper nanoparticles can remain in their original form in the exposed surface coating, or at least a portion of the copper nanoparticles can be fused together to form the copper islands. Biocidal activity beyond limiting transfer of secondary infections can also be expressed in the articles.Type: GrantFiled: January 11, 2016Date of Patent: July 23, 2019Assignee: Lockheed Martin CorporationInventor: Alfred A. Zinn
-
Patent number: 10167397Abstract: Method and apparatus for determining a quality or characteristic of connectors in electronic components is provided. Methods include applying a UV-responsive indicator solution active for Pd, Ni, or Cu to a connector on an electrical component; irradiating the connector with UV radiation; detecting a response to the UV radiation; and determining a quality of the connector based on the response to the UV radiation. Apparatus includes an enclosure; a support; a dispenser oriented toward the substrate support; a source of UV-responsive indicator solution active for Pd, Ni, or Cu ions fluidly coupled to the dispenser; a UV source coupled to the enclosure; and a radiation sensor positioned to detect light inside the enclosure.Type: GrantFiled: December 6, 2017Date of Patent: January 1, 2019Assignee: International Business Machines CorporationInventors: Eric J. Campbell, Sarah K. Czaplewski, Joseph Kuczynski, Timothy J. Tofil
-
Patent number: 10023941Abstract: By enhancing a stress corrosion cracking resistance in a leadless brass alloy, specifically by suppressing a velocity of propagation of corrosion cracks in the brass alloy, a straight line crack peculiar to the leadless brass alloy is suppressed, a probability of cracks coming into contact with ? phases is heightened and local corrosion on the brass surface is prevented to suppress induction of cracks by the local corrosion, thereby providing a leadless brass alloy contributable to enhancement of the stress corrosion cracking resistance. The present invention is directed to an Sn-containing Bi-based, Sn-containing Bi+Sb-based or Sn-containing Bi+Se+Sb-based leadless brass alloy excellent in stress corrosion cracking resistance, having an ?+? structure or ?+?+? structure and having ? phases distributed uniformly therein at a predetermined proportion to suppress local corrosion and induction of stress corrosion cracks.Type: GrantFiled: December 27, 2012Date of Patent: July 17, 2018Assignee: KITZ CORPORATIONInventors: Hidenobu Tameda, Kazuhito Kurose, Teruhiko Horigome, Tomoyuki Ozasa, Hisanori Terui, Masaru Yamazaki, Hideki Kotsuji
-
Patent number: 10020088Abstract: A copper alloy sheet for terminal and connector materials contains 4.5 mass % to 12.0 mass % of Zn, 0.40 mass % to 0.9 mass % of Sn, 0.01 mass % to 0.08 mass % of P, and 0.20 mass % to 0.85 mass % of Ni with a remainder being Cu and inevitable impurities, a relationship of 11?[Zn]+7.5×[Sn]+16×[P]+3.5×[Ni]?19 is satisfied, a relationship of 7?[Ni]/[P]?40 is satisfied in a case in which the content of Ni is in a range of 0.35 mass % to 0.85 mass %, an average crystal grain diameter is in a range of 2.0 ?m to 8.0 ?m, an average particle diameter of circular or elliptical precipitates is in a range of 4.0 nm to 25.0 nm or a proportion of the number of precipitates having a particle diameter in a range of 4.0 nm to 25.0 nm in the precipitates is 70% or more, an electric conductivity is 29% IACS or more, a percentage of stress relaxation is 30% or less at 150° C. for 1000 hours as stress relaxation resistance, bending workability is R/t?0.Type: GrantFiled: November 19, 2015Date of Patent: July 10, 2018Assignees: MITSUBISHI SHINDOH CO., LTD., MITSUBISHI MATERIALS CORPORATIONInventors: Keiichiro Oishi, Takashi Hokazono, Michio Takasaki, Yosuke Nakasato
-
Patent number: 9994933Abstract: A copper alloy sheet has a chemical composition containing 0.7 to 4.0 wt % of Ni, 0.2 to 1.5 wt % of Si, and the balance being copper and unavoidable impurities, the copper alloy sheet having a crystal orientation which satisfies I{200}/I0{200}?1.0, assuming that the intensity of X-ray diffraction on the {200} crystal plane on the surface of the copper alloy sheet is I{200} and that the intensity of X-ray diffraction on the {200} crystal plane of the standard powder of pure copper is I0{200}, and which satisfies I{200}/I{422}?15, assuming that the intensity of X-ray diffraction on the {422} crystal plane on the surface of the copper alloy sheet is I{422}.Type: GrantFiled: April 26, 2010Date of Patent: June 12, 2018Assignee: DOWA METAL TECH CO., LTD.Inventors: Weilin Gao, Tomotsugu Aoyama, Hisashi Suda, Hiroto Narieda, Akira Sugawara, Akifumi Onodera
-
Patent number: 9982327Abstract: A brass alloy is provided having good mechanical properties and castability, and excellent general-purpose properties, while its dezincification corrosion is inhibited. The brass alloy contains 0.4% by mass or more and 3.2% by mass or less of Al; 0.001% by mass or more and 0.3% by mass or less of P; 0.1% by mass or more and 4.5% by mass or less of Bi; 0% by mass or more and 5.5% by mass or less of Ni; 0% by mass or more and 0.5% by mass or less of Mn, Fe, Pb, Sn, Si, Mg, and Cd, respectively; and Zn; the balance being Cu and a trace element or elements. The zinc equivalent (Zneq) calculated from the content of Zn and other elements, and the content of Al (% by mass) satisfy the following Equations (1) and (2): Zneq+1.7×Al?35.0??(1) Zneq?0.45×Al?37.0??(2).Type: GrantFiled: February 21, 2013Date of Patent: May 29, 2018Assignee: KURIMOTO, LTD.Inventors: Hiroshi Yamada, Masaaki Yamamoto
-
Patent number: 9845521Abstract: A copper alloy containing Ni: 1.5%-3.6% and Si: 0.3%-1.0% in terms of mass percent with the remainder consisting of copper and unavoidable impurities, wherein: the average crystal grain size of the crystal grains in the copper alloy is 5 to 30 ?m; the area ratio of the crystal grains having crystal grain sizes not less than twice the average crystal grain size is not less than 3%; and the ratio of the area of cube orientation grains to the area of the crystal grains having crystal grain sizes not less than twice the average crystal grain size is not less than 50%.Type: GrantFiled: November 18, 2011Date of Patent: December 19, 2017Assignee: Kobe Steel, Ltd.Inventors: Hisao Shishido, Shinya Katsura, Yasuhiro Aruga, Katsushi Matsumoto
-
Patent number: 9751760Abstract: The invention provides a process for exfoliating a 3-dimensional layered material to produce a 2-dimensional material, said process comprising the steps of mixing the layered material in a solvent to provide a mixture; applying energy, for example ultrasound, to said mixture, and removing the energy applied to the mixture, such that sedimentation of the 2-dimensional material out of solution as a weakly re-aggregated, exfoliated 2-dimensional material is produced. The invention provides a fast, simple and high yielding process for separating 3-dimensional layered materials into individual 2-dimensional layers or flakes, which do not strongly re-aggregate, without utilising hazardous solvents.Type: GrantFiled: June 28, 2013Date of Patent: September 5, 2017Assignee: The Provost, Fellows, Foundation Scholars, and the Other Members of Board of the College of the Holy and Undivided Trinity of Queen Elizabeth Near DublinInventors: Jonathan Coleman, Umar Khan
-
Patent number: 9394589Abstract: Disclosed is a Ni—Si—Co copper alloy that is suitable for use for various kinds of electronic parts and has particularly good uniform plating adhesion properties. The copper alloy for electronic materials comprises Ni: 1.0-2.5 mass %, Co: 0.5-2.5 mass % and Si: 0.3-1.2 mass % and the remainder is made of Cu and unavoidable impurities. For the copper alloy for electronic materials, the mean crystal size, at the plate thickness center, is 20 ?m or less, and there are five or fewer crystal particles that contact the surface and have a long axis of 45 ?m or greater per 1 mm rolling direction length. The copper alloy may comprise a maximum of 0.5 mass % Cr and may comprise a maximum in total of 2.0 mass % of one, two or more selected from a group comprising Mg, P, As, Sb, Be, B, Mn, Sn, Ti, Zr, Al, Fe, Zn and Ag.Type: GrantFiled: December 11, 2009Date of Patent: July 19, 2016Inventor: Hiroshi Kuwagaki
-
Patent number: 9074629Abstract: A multi-layer slide member has a back metal layer mainly composed of a steel plate and a porous layer having a metallic porous member and a resin composition filled in the metallic porous member. The metallic porous member has granular portions and narrow portions and includes a structure, in which the granular portions are connected with each other through the narrow portion. Parts or the entirety of the narrow portions have a Bi phase and a Sn—Ni—Cu intermetallic compound phase.Type: GrantFiled: November 18, 2013Date of Patent: July 7, 2015Assignee: DAIDO METAL COMPANY LTD.Inventors: Takayoshi Yamauchi, Kentaro Tsujimoto
-
Patent number: 9034123Abstract: This invention provides a copper alloy sheet material containing, in mass %, Ni: 0.7%-4.2% and Si: 0.2%-1.0%, optionally containing one or more of Sn: 1.2% or less, Zn: 2.0% or less, Mg: 1.0% or less, Co: 2.0% or less, and Fe: 1.0% or less, and a total of 3% or less of one or more of Cr, B, P, Zr, Ti, Mn and V, the balance being substantially Cu, and having a crystal orientation satisfying Expression (1): I{420}/I0{420}>1.0??(1), where I{420} is the x-ray diffraction intensity from the {420} crystal plane in the sheet plane of the copper alloy sheet material and I0{420} is the x-ray diffraction intensity from the {420} crystal plane of standard pure copper powder. The copper alloy sheet material has highly improved strength, post-notching bending workability, and stress relaxation resistance property.Type: GrantFiled: February 12, 2008Date of Patent: May 19, 2015Assignee: DOWA METALTECH CO., LTD.Inventors: Weilin Gao, Hisashi Suda, Hiroto Narieda, Akira Sugawara
-
Patent number: 8992706Abstract: One aspect of this method of producing a copper alloy sheet includes: a hot rolling process; a cold rolling process; a recrystallization heat treatment process; and a finish cold rolling process in this order, wherein a hot rolling initiation temperature is 800° C. to 940° C., a cooling rate from a temperature after final rolling or 650° C. to 350° C. is 1° C./second or more, and a cold working rate is 55% or more. In the recrystallization heat treatment process, 550?Tmax?790, 0.04?tm?2, and 460?{Tmax?40×tm?1/2?50×(1?RE/100)1/2}?580 are fulfilled, in which Tmax is the highest arrival temperature, tm (min) is a retention time in a temperature range from a temperature lower than the highest arrival temperature by 50° C. to the highest arrival temperature, and RE (%) is a cold working rate.Type: GrantFiled: December 5, 2013Date of Patent: March 31, 2015Assignees: Mitsubishi Shindoh Co., Ltd., Mitsubishi Materials CorporationInventor: Keiichiro Oishi
-
Patent number: 8986471Abstract: A high strength and high thermal conductivity copper alloy tube contains: Co of 0.12 to 0.32 mass %; P of 0.042 to 0.095 mass %; and Sn of 0.005 to 0.30 mass %, wherein a relationship of 3.0?([Co]?0.007)/([P]?0.008)?6.2 is satisfied between a content [Co] mass % of Co and a content [P] mass % of P, and the remainder includes Cu and inevitable impurities. Even when a temperature is increased by heat generated by a drawing process, a recrystallization temperature is increased by uniform precipitation of a compound of Co and P and by solid-solution of Sn. Thus, the generation of recrystallization nucleuses is delayed, thereby improving heat resistance and pressure resistance of the high strength and high thermal conductivity copper alloy tube.Type: GrantFiled: November 10, 2008Date of Patent: March 24, 2015Assignee: Mitsubishi Shindoh Co., Ltd.Inventor: Keiichiro Oishi
-
Publication number: 20150044089Abstract: The free-cutting copper alloy according to the present invention contains a greatly reduced amount of lead in comparison with conventional free-cutting copper alloys, but provides industrially satisfactory machinability. The free-cutting alloys comprise 69 to 79 percent, by weight, of copper, 2.0 to 4.0 percent, by weight, of silicon, 0.02 to 0.4 percent, by weight, of lead, and the remaining percent, by weight, of zinc.Type: ApplicationFiled: August 19, 2014Publication date: February 12, 2015Inventor: Keiichiro Oishi
-
Patent number: 8871354Abstract: Provided is a copper-based sliding material including a steel back-metal layer and a Cu alloy layer. The Cu alloy layer contains, by mass %, 10 to 30% of Bi, 0.5 to 5% of an inorganic compound, and the balance being Cu and inevitable impurities. The Cu alloy layer may further contain 0.5 to 5% of Sn and/or at least one element selected from the group consisting of Ni, Fe, P and Ag in a total amount of 0.1 to 10%. The inorganic compound has an average particle size of 1 to 5 ?m and a specific gravity of 70 to 130% relative to the specific gravity of Bi. Bi phase is formed in the Cu alloy layer in an average particle size of 2 to 15 ?m, and the Bi phase is dispersed in the Cu alloy layer and isotropic.Type: GrantFiled: February 23, 2011Date of Patent: October 28, 2014Assignee: Daido Metal Company Ltd.Inventors: Takuo Imai, Kouji Zusi, Kentaro Tujimoto
-
Publication number: 20140311633Abstract: A spinodal copper-nickel-tin alloy with a combination of improved impact strength, yield strength, and ductility is disclosed. The alloy is formed by process treatment steps including solution annealing, cold working and spinodal hardening. These include such processes as a first heat treatment/homogenization step followed by hot working, solution annealing, cold working, and a second heat treatment/spinodally hardening step. The spinodal alloys so produced are useful for applications demanding enhanced strength and ductility such as for pipes and tubes used in the oil and gas industry.Type: ApplicationFiled: April 23, 2014Publication date: October 23, 2014Applicant: Materion CorporationInventors: W. Raymond Cribb, Chad A. Finkbeiner, Fritz C. Grensing
-
Publication number: 20140305551Abstract: A copper alloy material for electrical and electronic components and a method of preparing the same are disclosed. In particular, a copper alloy material with excellent mechanical strength characteristics, high electrical conductivity, and high thermal stability as a material for information transmission and electrical contact of connectors or the like for home appliances and automobiles, including semiconductor lead frames and a method of preparing the same are disclosed.Type: ApplicationFiled: October 22, 2013Publication date: October 16, 2014Applicant: POONGSAN CORPORATIONInventors: CHEOL MIN PARK, In Youb Hwang
-
Patent number: 8834747Abstract: Compositions containing tin nanoparticles and electrically conductive particles are described herein. The tin nanoparticles can have a size below about 25 nm so as to make the compositions fusable at temperatures below that of bulk tin (m.p.=232° C.). Particularly, when the tin nanoparticles are less than about 10 nm in size, the compositions can have a fusion temperature of less than about 200° C. The compositions can contain a whisker suppressant to inhibit or substantially minimize the formation of tin whiskers after tin nanoparticle fusion. In some embodiments, the compositions contain tin nanoparticles, electrically conductive particles comprising copper particles, and a whisker suppressant comprising nickel particles. Methods for using the present compositions are also described herein. The present compositions can be used as a lead solder replacement that allows rework to be performed.Type: GrantFiled: March 3, 2011Date of Patent: September 16, 2014Assignee: Lockheed Martin CorporationInventor: Alfred A. Zinn
-
Patent number: 8821655Abstract: A copper base alloy achieves a breakthrough electrical conductor product of strength, flexure and conductivity of minimal inverse in relationship of at least 85% IACS electrical conductivity while providing an 80 to 85 ksi tensile strength, an increase of at least 33% in strength compared to prior art and is made from an alloy containing 0.2-0.5 w/o chromium, 0.02-0.20 w/o silver and 0.04-0.16 w/o of a third metallic component selected from tin, magnesium and tin/magnesium together.Type: GrantFiled: December 2, 2010Date of Patent: September 2, 2014Assignee: Fisk Alloy Inc.Inventor: Joseph Saleh
-
Patent number: 8795446Abstract: A copper alloy material, having an alloy composition containing any one or both of Ni and Co in an amount of 0.4 to 5.0 mass % in total, and Si in an amount of 0.1 to 1.5 mass %, with the balance being copper and unavoidable impurities, wherein a ratio of an area of grains in which an angle of orientation deviated from S-orientation {2 3 1}<3 4 6> is within 30° is 60 % or more, according to a crystal orientation analysis in EBSD measurement; an electrical or electronic part formed by working the copper alloy material; and a method of producing the copper alloy material.Type: GrantFiled: April 21, 2011Date of Patent: August 5, 2014Assignee: Furukawa Electric Co., Ltd.Inventors: Hiroshi Kaneko, Kiyoshige Hirose, Tatsuhiko Eguchi
-
Patent number: 8715431Abstract: A Cu—Fe—P copper alloy sheet which has the high strength and the high electrical conductivity compatible with excellent bendability is provided. The Cu—Fe—P copper alloy sheet contains 0.01% to 3.0% of Fe and 0.01% to 0.3% of P on a percent by mass basis, wherein the orientation density of the Brass orientation is 20 or less and the sum of the orientation densities of the Brass orientation, the S orientation, and the Copper orientation is 10 or more and 50 or less in the microstructure of the copper alloy sheet.Type: GrantFiled: August 11, 2005Date of Patent: May 6, 2014Assignee: Kobe Steel, Ltd.Inventors: Yasuhiro Aruga, Katsura Kajihara
-
Patent number: 8652274Abstract: A copper alloy includes Si to facilitate deoxidation, and can be easily manufactured even when including elements such as Cr or Sn. The copper alloy has high conductivity and high workability without negatively affecting the tensile strength. The copper alloy contains 0.2 to 0.4 wt % of Cr, 0.05 to 0.15 wt % of Sn, 0.05 to 0.15 wt % of Zn, 0.01 to 0.30 wt % of Mg, 0.03 to 0.07 wt % of Si, with the remainder being Cu and inevitable impurities. A method for manufacturing the copper alloy includes obtaining a molten metal having the described composition; obtaining an ingot; heating the ingot at a temperature of 900-1000° C. to perform a hot rolling process; cold rolling; performing a first aging process at a temperature of 400-500° C. for 2 to 8 hours; cold rolling; and performing a second aging process at a temperature of 370-450° C. for 2 to 8 hours.Type: GrantFiled: December 7, 2010Date of Patent: February 18, 2014Assignee: Poonsgan CorporationInventors: Dae Hyun Kim, Dong Woo Lee, In Dal Kim, Sang Young Choi, Ji Hoon Lee, Bo Min Jeon
-
Patent number: 8641838Abstract: A copper alloy sheet material, having a composition containing any one or both of Ni and Co in an amount of 0.5 to 5.0 mass % in total, and Si in an amount of 0.3 to 1.5 mass %, with the balance of copper and unavoidable impurities, wherein an area ratio of cube orientation {0 0 1} <1 0 0> is 5 to 50%, according to a crystal orientation analysis in EBSD measurement.Type: GrantFiled: December 1, 2010Date of Patent: February 4, 2014Assignee: The Furukawa Electric Co., Ltd.Inventors: Hiroshi Kaneko, Kiyoshige Hirose, Koji Sato
-
Patent number: 8641837Abstract: A Cu—Ni—Sn—P alloy is provided, which is excellent in stress relaxation property in a direction perpendicular to a rolling direction, and has any of high strength, high conductivity, and excellent bendability. A copper alloy contains 0.1 to 3.0% of Ni, 0.1 to 3.0% of Sn, and 0.01 to 0.3% of P in mass percent respectively, and includes copper and inevitable impurities as the remainder; wherein in a radial distribution function around a Ni atom according to a XAFS analysis method, a first peak position is within a range of 2.16 to 2.35 ?, the position indicating a distance between a Ni atom in Cu and an atom nearest to the Ni atom. Thus, distances to atoms around the Ni atom in Cu are comparatively increased, so that the stress relaxation property in a direction perpendicular to the rolling direction of the copper alloy is improved.Type: GrantFiled: September 1, 2006Date of Patent: February 4, 2014Assignee: Kobe Steel, Ltd.Inventors: Yasuhiro Aruga, Katsura Kajihara
-
Patent number: 8603390Abstract: A brazing alloy including copper (Cu), phosphorus (P), and strontium (Sr) and any one element of indium (In), boron (B), silver (Ag), tin (Sn), cesium (Cs), germanium (Ge), and nickel (Ni). The brazing alloy includes 5.0 to 7.5 wt % of phosphorus (P) and 0.1 to 5.0 wt % of strontium (Sr) and the remainder is composed of copper (Cu). The brazing alloy includes copper (Cu), phosphorus (P), and strontium (Sr) unlike the existing alloy element. The brazing alloy further includes, as alloy components, one or more elements of indium (In), boron (B), silver (Ag), and tin (Sn). The brazing alloy includes no silver (Ag) or the silver (Ag) content is reduced compared to an existing brazing alloy containing silver (Ag).Type: GrantFiled: May 8, 2012Date of Patent: December 10, 2013Assignee: Alcoma, Ltd.Inventor: Chu Hyon Cho
-
Publication number: 20130284327Abstract: A copper alloy for an electric device contains Mg in a range of 1.3 atomic % or more and less than 2.6 atomic %, Al in a range of 6.7 atomic % or more and 20 atomic % or less, and the balance substantially consisting of Cu and unavoidable impurities. A method of producing a copper alloy includes: performing heating of a copper material to a temperature of not lower than 500° C. and not higher than 1000° C.; performing quenching to cool the heated copper material to 200° C. or lower with a cooling rate of 200° C./min or more; and performing working of the cooled copper material, wherein the copper material is composed of a copper alloy containing Mg in a range of 1.3 atomic % or more and less than 2.6 atomic %, Al in a range of 6.7 atomic % or more and 20 atomic % or less.Type: ApplicationFiled: November 24, 2011Publication date: October 31, 2013Applicant: MITSUBISHI MATERIALS CORPORATIONInventors: Kazunari Maki, Yuki Ito
-
Publication number: 20130276938Abstract: The free-cutting copper alloy according to the present invention contains a greatly reduced amount of lead in comparison with conventional free-cutting copper alloys, but provides industrially satisfactory machinability. The free-cutting alloys comprise 69 to 79 percent, by weight, of copper, 2.0 to 4.0 percent, by weight, of silicon, 0.02 to 0.4 percent, by weight, of lead, and the remaining percent, by weight, of zinc.Type: ApplicationFiled: March 14, 2013Publication date: October 24, 2013Inventor: Mitsubishi Shindoh Co., Ltd.
-
Patent number: 8562764Abstract: A copper alloy tube according to the present invention includes Sn 0.1 to 2.0 mass %, P 0.005 to 0.1 mass %, S 0.005 mass % or less, O 0.005 mass % or less, and H 0.0002 mass % or less, and the remainder has a composition consisting of Cu and unavoidable impurities. And, as is annealed, the copper alloy tube has the following characteristics: a tensile strength in the longitudinal direction of the copper alloy tube is 250 N/mm2 or more; an average grain diameter is 30 ?m or less when measured in the direction perpendicular to the thickness direction of the tube, in the cross section perpendicular to the tube axis; and assuming that a tensile strength in the longitudinal direction of the copper alloy tube is ?L, and a tensile strength in the circumferential direction of the same is ?T, ?T/?L>0.93 holds.Type: GrantFiled: October 2, 2008Date of Patent: October 22, 2013Assignee: Kobelco & Materials Copper Tube, Ltd.Inventors: Masato Watanabe, Takashi Shirai
-
Patent number: 8518192Abstract: A lead-free copper alloy includes, in combination by weight, about 10.0% to about 20.0% bismuth, about 0.05% to about 0.3% phosphorous, about 2.2% to about 10.0% tin, up to about 5.0% antimony, and up to about 0.02% boron, the balance essentially copper and incidental elements and impurities. The alloy contains no more than about 0.05 wt. % or 0.10 wt. % lead.Type: GrantFiled: March 2, 2010Date of Patent: August 27, 2013Assignee: QuesTek Innovations, LLCInventors: Abhijeet Misra, Jason Sebastian, James A. Wright
-
Patent number: 8470100Abstract: Alloys containing copper, iron, tin and, optionally, phosphorus or copper, zinc, tin and, optionally, phosphorus, which can be used in, for example, a copper alloy tube for heat exchangers that provides excellent fracture strength and processability for reducing the weight of the tube and for use in high pressure applications with cooling media such as carbon dioxide.Type: GrantFiled: November 24, 2010Date of Patent: June 25, 2013Assignee: Luvata Espoo OyInventors: M. Parker Finney, Larz Ignberg, Claes Anders Kamf, Timothy L. Goebel, Ying Gong, Edward G. Rottmann
-
Patent number: 8449697Abstract: A silicon bearing, copper-nickel corrosion resistant and gall resistant alloy with the following weight percentage range is disclosed: Ni=10-40; Fe=1-10; Si=0.5-2.5; Mn=3-15; Sn=0-3; Cu=Balance. Embodiments of the alloy may be used in various sliding applications, such as bearings, bushings, gears and guides. The alloy is particularly suited for use in parts used in food processing equipment.Type: GrantFiled: February 27, 2011Date of Patent: May 28, 2013Inventors: Sudhari Sahu, Alpana Pradipkumar Sahu
-
Patent number: 8444779Abstract: The invention provides Cu—Ni—Si—Co alloys having excellent strength, electrical conductivity, and press-punching properties. In one aspect, the invention is a copper alloy for electronic materials, containing 1.0 to 2.5 mass % of Ni, 0.5 to 2.5 mass % of Co, and 0.30 to 1.2 mass % of Si, the balance being Cu and unavoidable impurities, wherein the copper alloy for electronic material has a [Ni+Co+Si] content in which the median value ? (mass %) satisfies the formula 20 (mass %)???60 (mass %), the standard deviation ? (Ni+Co+Si) satisfies the formula ? (Ni+Co+Si)?30 (mass %), and the surface area ratio S (%) satisfies the formula 1%?S?10%, in relation to the compositional variation and the surface area ratio of second-phase particles size of 0.1 ?m or greater and 1 ?m or less when observed in a cross section parallel to a rolling direction.Type: GrantFiled: August 22, 2008Date of Patent: May 21, 2013Assignee: JX Nippon Mining & Metals Co., Ltd.Inventors: Naohiko Era, Hiroshi Kuwagaki
-
Patent number: 8435361Abstract: A novel copper-zinc alloy is particularly suited for a valve guide. The copper-zinc alloy contains 59 to 73% copper, 2.7 to 8.3% manganese, 1.5 to 6% aluminum, 0.2 to 4% silicon, 0.2 to 3% iron, 0 to 2% lead, 0 to 2% nickel, 0 to 0.2% tin, remainder zinc and inevitable impurities.Type: GrantFiled: June 1, 2007Date of Patent: May 7, 2013Assignee: Diehl Metall Stiftung & Co. KGInventors: Norbert Gaag, Alexander Dehnelt
-
Patent number: 8430979Abstract: A copper alloy having an improved combination of yield strength and electrical conductivity contains, by weight, from 1% to 2.5% of nickel, from 0.5% to 2.0% of cobalt, with a total nickel plus cobalt content of from 1.7% to 4.3%, from 0.5% to 1.5% of silicon with a ratio of (Ni+Co)/Si of between 3.5 and 6, and the balance copper and inevitable impurities wherein the wrought copper alloy has an electrical conductivity in excess of 40% IACS. A further increase in the combination of yield strength and electrical conductivity as well as enhanced resistance to stress relaxation is obtained by a further inclusion of up to 1% of silver.Type: GrantFiled: October 26, 2006Date of Patent: April 30, 2013Assignee: GBC Metals, LLCInventors: Frank N. Mandigo, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank M. Keppeler, Joerg Seeger
-
Publication number: 20130087255Abstract: Disclosed is a Cu—Co—Si-based copper alloy for electronic materials, which is capable of achieving high levels of strength, electrical conductivity, and also anti-setting property; and contains 0.5 to 3.0% by mass of Co, 0.1 to 1.0% by mass of Si, and the balance of Cu and inevitable impurities; wherein out of second phase particles precipitated in the matrix a number density of the particles having particle size of 5 nm or larger and 50 nm or smaller is 1×1012 to 1×1014 particles/mm3, and a ratio of the number density of particles having particle size of 5 nm or larger and smaller than 10 nm relative to the number density of particles having particle size of 10 nm or larger and 50 nm or smaller is 3 to 6.Type: ApplicationFiled: April 8, 2011Publication date: April 11, 2013Applicant: JX Nippon Mining & Metals CorporationInventor: Hiroshi Kuwagaki
-
Publication number: 20130056116Abstract: A copper alloy for an electronic device containing Mg in a range of 2.6 atomic % or more and 9.8 atomic % or less, Al in a range of 0.1 atomic % or more and 20 atomic % or less, and the balance substantially consisting of Cu and unavoidable impurities.Type: ApplicationFiled: May 12, 2011Publication date: March 7, 2013Applicant: MITSUBISHI MATERIALS CORPORATIONInventors: Yuki Ito, Kazunari Maki
-
Patent number: 8366840Abstract: By enhancing a stress corrosion cracking resistance in a leadless brass alloy, specifically by suppressing a velocity of propagation of corrosion cracks in the brass alloy, a straight line crack peculiar to the leadless brass alloy is suppressed, a probability of cracks coming into contact with ? phases is heightened and local corrosion on the brass surface is prevented to suppress induction of cracks by the local corrosion, thereby providing a leadless brass alloy contributable to enhancement of the stress corrosion cracking resistance. The present invention is directed to an Sn-containing Bi-based, Sn-containing Bi+Sb-based or Sn-containing Bi+Se+Sb-based leadless brass alloy excellent in stress corrosion cracking resistance, having an ?+? structure or ?+?+? structure and having ? phases distributed uniformly therein at a predetermined proportion to suppress local corrosion and induction of stress corrosion cracks.Type: GrantFiled: December 28, 2007Date of Patent: February 5, 2013Assignee: Kitz CorporationInventors: Hidenobu Tameda, Kazuhito Kurose, Teruhiko Horigome, Tomoyuki Ozasa, Hisanori Terui, Masaru Yamazaki, Hideki Kotsuji
-
Publication number: 20130014861Abstract: The distribution of Ni—Si compound grains is controlled to thereby improve the properties of Corson alloys. The copper alloy for electronic materials comprises 0.4 to 6.0% mass of Ni and 0.1 to 1.4% by mass of Si, with the balance being Cu and unavoidable impurities. The copper alloy comprising: small particles of Ni—Si compound having a particle size of equal to or greater than 0.01 ?m and smaller than 0.3 ?m; and large particles of Ni—Si compound having a particle size of equal to of greater than 0.3 ?m and smaller than 1.5 ?m. The number density of the small particles is 1 to 2000 pieces/?m2 and the number density of the large particles is 0.05 to 2 pieces/?m2.Type: ApplicationFiled: April 2, 2010Publication date: January 17, 2013Applicant: JX Nippon Mining & Metal CorporationInventor: Mitsuhiro Ookubo
-
Patent number: 8349097Abstract: A dezincification-resistant copper alloy and a method for producing a product containing the same are proposed by the present invention. The dezincification-resistant alloy of the present invention contains 59.5 to 64 wt % of copper (Cu); 0.1 to 0.5 wt % of bismuth (Bi); 0.08 to 0.16 wt % of arsenic (As); 5 to 15 ppm of boron (B); 0.3 to 1.5 wt % of tin (Sn); 0.1 to 0.7 wt % of zirconium (Zr); less than 0.05 wt % of lead (Pb); and zinc (Zn) in balance. The dezincification-resistant copper alloy of the present invention has excellent casting properties, good toughness and machinability, and can be corrosion-resistant. Thus, the alloy can reduce dezincification on the surfaces.Type: GrantFiled: September 17, 2009Date of Patent: January 8, 2013Assignee: Modern Islands Co., Ltd.Inventors: Wen Lin Lo, Xiao Rong Fang
-
Publication number: 20120312430Abstract: The present invention relates to a copper alloy having particular benefits for electronic parts and a method for making the same. The alloy having the composition of 0.05 wt % of Fe, 0.025˜0.15 wt % P, 0.01˜0.25 wt % Cr, 0.01˜0.15 wt %, Si 0.01˜0.25 wt % Mg, and the balance of Cu and minor impurities. The method of making the copper alloy includes: forming the molten alloy, casting to obtain an ingot, hot rolling the ingot at 850˜1,000° C., cooling, cold rolling the hot rolled product (after cooling the same), annealing the cold rolled product at 400˜600° C. for 1˜10 hours, intermediate rolling the annealed product with a reduction ratio of 30˜70%, heat treating the intermediate rolled product at 500˜800° C. for 30˜600 seconds, and finishing rolling the heat treated product with a reduction ratio of 20˜40%.Type: ApplicationFiled: October 28, 2010Publication date: December 13, 2012Inventors: Dae Hyun Kim, Dong Woo Lee, In Dal Kim, Sang Young Choi, Ji Hoon Lee, Bo Min Jeon