With Lamina Formation By Molding Or Casting Patents (Class 156/242)
  • Patent number: 12034877
    Abstract: Provided is an outer shell member for communication equipment, capable of enhancing metallic luster design while suppressing the generation of radio wave shielding that affects communication. A metallic tone print sheet 51 is arranged at least on a portion of an outer shell member for communication equipment including a mobile device 1 with a communication device and a protective case mounted thereon. The metallic tone print sheet 51 includes, when viewed from the front, a metallic portion equipped with a metallic reflective layer and a transmission portion not equipped with a metallic reflective layer. The metallic reflective layer is provided with a metallic concave reflective surface that is curved in a cross-section in the thickness direction of the metallic tone print sheet. The transmission portion has a radio wave permeability that transmits radio waves to the communication device.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: July 9, 2024
    Assignee: YAMAMOTO PRINTING CO., LTD.
    Inventors: Keiko Ichihara, Michiyo Hattori
  • Patent number: 11912979
    Abstract: A novel method of growing fungi is disclosed which uses an engineered artificial media and produces high density filamentous fungi biomats that can be harvested with a minimum of processing and from which fungal products such as antibiotics, proteins, and lipids can be isolated, the method resulting in lowered fungus cultivation costs for energy usage, oxygenation, water usage and waste stream production.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: February 27, 2024
    Assignee: The Fynder Group, Inc.
    Inventors: Mark A. Kozubal, Richard E. Macur, Yuval C. Avniel
  • Patent number: 11904531
    Abstract: Disclosed are selective deposition based additive manufacturing systems (10) and methods for printing a 3D part. Layers of a powder material (22) are developed using one or more electrostatography-based engines (12). The layers (22) are transferred for deposition on a part build surface. For each of the layers (22), the part build surface is heated to a temperature within a range between a flowable temperature and a thermal oxidation threshold to form a flowable part build surface, and the developed layer (22) is pressed into contact with the flowable build surface (88) to heat the developed layers (22) to a flowable state and form a new part build surface (88) which is fully consolidated. The new part build surface (88) is then cooled to remove the heat energy added during heating step before repeating the steps for the next developed layer.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: February 20, 2024
    Inventors: Chris Counts, J. Samuel Batchelder
  • Patent number: 11827006
    Abstract: The present invention relates to composite materials and the use thereof as energy resistant, for example blast-resistant, materials. Preferred aspects of the invention relate to layered composite panels comprising solid foam materials which have both a blast attenuation function and an anti-ballistic function. In further aspects, the invention provides novel composite panels which are suitable for use as blast resistant and/or anti-ballistic materials. In some examples described, the layered composite panel comprises a polymeric material (10) bonded to a first solid open-cell foam panel (12), and a cured polymeric material (14) penetrates a surface of the first solid open-cell foam panel (12).
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: November 28, 2023
    Assignee: Acell Industries Limited
    Inventors: Aldino Albertelli, Michael Frieh
  • Patent number: 11794462
    Abstract: The present invention belongs to the technical field of energy conversion devices, which provides an rGO-PEI/PVDF pyroelectric thin film, and the method for preparing the film, as well as a self-energized bracelet produced based on such film, which utilizes the reduced graphite oxide after modified by polyethyleneimine (PEI) (rGO-PEI) as photothermal conversion material, and the silver-plated polarized polyvinylidene fluoride (PVDF) film as pyroelectric conversion material. The rGO-PEI photothermal material is fixed to the surface of the PVDF through a transparent film, and prepare the self-energized bracelet based on it. The obtained bracelet has an output power of up to 21.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: October 24, 2023
    Assignee: CHINA UNIVERSITY OF GEOSCIENCES, BEIJING
    Inventors: Yihe Zhang, Haitao Li, Qi An, Wangshu Tong
  • Patent number: 11785074
    Abstract: Methods, configured mobile devices, and computer-readable media for displaying content on mobile devices are disclosed. An exemplary of displaying content on a mobile device includes receiving a first content request provided by a native app executing on one or more processors of the mobile device; responsive to receiving the first content request, determining whether the native app is permitted to display app content on a lock screen of the mobile device, wherein said determining includes examining at least one of: mobile device location, mobile device motion, and date/time; and in the event that the native app is permitted to display app content on the lock screen of the mobile device: transmitting a second content request to a content server; receiving app content from the content server in response to the second content request; and displaying the app content on the lock screen of the mobile device.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: October 10, 2023
    Assignee: Adenda Media Inc.
    Inventor: Francis George Doumet
  • Patent number: 11773298
    Abstract: Dry adhesives and methods for forming dry adhesives. A method of forming a dry adhesive structure on a backing material, comprises: forming a template backing layer of energy sensitive material on the backing material; forming a template layer of energy sensitive material on the template backing layer; exposing the template layer to a predetermined pattern of energy; removing a portion of the template layer related to the predetermined pattern of energy, and leaving a template structure formed from energy sensitive material and connected to the substrate via the template backing layer.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: October 3, 2023
    Assignee: CARNEGIE MELLON UNIVERSITY
    Inventors: Metin Sitti, Michael Murphy, Burak Aksak
  • Patent number: 11659938
    Abstract: The present disclosure provides for a coated flexible open-cell polyurethane foam structure. The coated flexible open-cell polyurethane foam structure includes a flexible open-cell polyurethane foam having a first major surface and a second major surface opposite the first major surface. The coated flexible open-cell polyurethane foam structure further includes a flexible heat conductive material covering 30 to 90 percent (cov., expressed in %) of a surface area of the first major surface of the flexible open-cell polyurethane foam in a predefined shape to provide one or more gaps exposing the flexible open-cell polyurethane foam between defined edges of the flexible heat conductive material, where each gap of the one or more gaps has a gap width according to Formula I: gap width (mm)??0.196×cov. (%)+20.6 (Formula I) where a total surface area of the one or more gaps provides 70 to 10 percent of the surface area of the first major surface of the flexible open-cell polyurethane foam.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: May 30, 2023
    Assignee: Dow Global Technologies, LLC
    Inventors: Kaoru Aou, Wenbo Xu, Yibei Gu, Douglas A. Brune, Laura J. Dietsche, Marc S. Black
  • Patent number: 11529186
    Abstract: A structure of a surgical instrument configured for thermally cutting tissue. The structure includes a frame and a thermal cutting element. The frame includes a proximal flange portion and a distal body portion. The distal body portion includes a proximal section extending from the proximal flange portion, a distal section, and a center section extending between the proximal and distal sections. The distal body portion includes first and second distal body portion segments. The distal body portion segments are disposed a first distance apart from one another at the proximal section, a second distance apart from one another at the distal section, and a third distance apart from one another at the center section. The third distance is greater than the first and second distances. The thermal cutting element is disposed within the distal body portion of the frame and extends from the proximal section, through the center section, to the distal section.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: December 20, 2022
    Assignee: Covidien LP
    Inventor: John A. Hammerland, III
  • Patent number: 11435797
    Abstract: A power module and a manufacturing method thereof are disclosed. The power module includes a substrate, a power device, a leading component and a molding component. The substrate includes a first side, a second side and a conductive wire. The power device is disposed on the substrate and electrically connected with the conductive wire. The leading component is disposed on the substrate and includes a first horizontal portion and a vertical portion connected with each other. The vertical portion is electrically connected with the conductive wire. The leading component includes a first contact surface and a second contact surface, which are non-coplanar. The molding component is disposed on the substrate and covers at least portion of the substrate and at least portion of the leading component. The first contact surface and the second contact surface are uncovered by the molding component.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: September 6, 2022
    Assignee: DELTA ELECTRONICS (SHANGHAI) CO., LTD.
    Inventors: Shouyu Hong, Yiqing Ye, Kai Lu, Qingdong Chen, Le Liang, Jianhong Zeng
  • Patent number: 11292181
    Abstract: A method for manufacturing a sheet laminate to be affixed to an adherent surface of an object, the method comprising preparing a sheet member having a front surface to become a design surface and a rear surface on which an adhesive part has been formed, bending an edge part of the sheet member by sandwiching the sheet member from a front surface side and a rear surface side in a mold, and heating a part of a bent sheet member. The sheet laminate has a flat part spreading out in a flat plate shape, a side surface on which the edge part bent by the bending step is configured, and a connecting surface protruding and curving toward the front surface side between the flat part and the side surface, and in the heating step, the connecting surface is partially heated after the side surface is molded in the bending step.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: April 5, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventor: Ken Egashira
  • Patent number: 11277900
    Abstract: At least one embodiment of a power supply includes a printed circuit board formed from a plurality of double-sided laminates and a plurality of thermally conductive, electrically insulating pre-preg sheets interleaved with the plurality of double-sided laminates. Each double-sided laminate illustratively includes an electrically insulating core, a first patterned layer of electrically conductive material arranged on a first side of the electrically insulating core, and a second patterned layer of electrically conductive material arranged on a second side of the electrically insulating core opposite the first side.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: March 15, 2022
    Assignee: ABB Power Electronics Inc.
    Inventors: Robert Joseph Roessler, Anjana Shyamsundar
  • Patent number: 11246230
    Abstract: Configurable smart object systems with methods of making modules and contactors are provided. Example systems implement machine learning based on neural networks that draw low power for use in smart phones, watches, drones, automobiles, and medical devices. Example assemblies can be configured from pluggable, interchangeable modules that have compatible ports for interconnecting and integrating functionally dissimilar sensor systems. An example method includes mounting an element of a configurable machine learning assembly on a substrate, creating at least one fold in the substrate, folding the substrate at the fold into a housing of a module of the configurable machine learning assembly, and adding a molding material to the housing to at least partially fill the module of the configurable machine learning assembly. The example module construction may also form contactors on folded edges of the module for making physical and electrical contact with other modules of the smart object machine learning assembly.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: February 8, 2022
    Assignee: Xcelsis Corporation
    Inventors: Belgacem Haba, Ilyas Mohammed, Gabriel Z. Guevara, Min Tao
  • Patent number: 11242140
    Abstract: A method of mounting a replacement tip section to an exposed end of a rotor blade includes removing an existing tip section from the rotor blade to create the exposed end of the rotor blade, installing the rotor blade having the exposed end onto a holding fixture, assembling the replacement tip section about the exposed end of the rotor blade, positioning a bonding fixture about the replacement tip section, and curing the replacement tip section to the exposed end of the rotor blade.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: February 8, 2022
    Assignee: SIKORSKY AIRCRAFT CORPORATION
    Inventors: Joseph Pantalone, III, Timothy James Conti, Frank M. Caputo, Sven R. Lofstrom, Keith M. Schenone, Robert D. Higbie, Eric Charles Boyle, Alicia Fernandez
  • Patent number: 11225037
    Abstract: A production method for a fiber reinforced composite material includes heating a preform formed by laminating a prepreg layer (I) including a reinforcement fiber (A) and a thermosetting resin (B-1) with a resin layer (II) including a thermosetting resin (B-2) and a solid additive (C) to cure the thermosetting resin (B-1) and the thermosetting resin (B-2), the cured resin layer (II?) formed by curing the resin layer (II) having an average thickness of 35 ?m or more and 300 ?m or less.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: January 18, 2022
    Assignee: Toray Industries, Inc.
    Inventors: Tomohiro Takehara, Satoshi Seike, Masato Honma, Satomi Matsuo
  • Patent number: 11180237
    Abstract: A method of making an aircraft acoustic structural panel (10) begins with preforming a core honeycomb laminate (12) having preformed foam (3) bonded inside cells (14) thereof by a distinct adhesive (2). The preformed honeycomb laminate (12) is then stacked between opposite top and bottom structural outer laminates (16,18). The stacked honeycomb laminate (12) and outer structural laminates (16,18) are then compressed together under heat and pressure into a unitary structural panel (10) having the core honeycomb laminate (12) integrally bonded between outer skins (20,22). The outer laminates (16,18) may include imperforate acoustic septums (4) bounding the core honeycomb laminate (12) followed by an outer honeycomb (5) and structural fiber layers (6,7,8) defining the outer skins (20,22).
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: November 23, 2021
    Assignee: The NORDAM Group LLC
    Inventors: Timothy Dustin Penn, Matthew Shaun Fritz, Jane Alice Benbenek
  • Patent number: 11179902
    Abstract: A bladder mandrel package, used to manufacture a composite structure, includes a mandrel and a wrap ply, surrounding the mandrel to form a wrapped mandrel. The bladder mandrel package also includes a first radius filler, coupled to the wrap ply at a first radius of the wrapped mandrel, and a second radius filler coupled to the wrap ply at a second radius of the wrapped mandrel. The mandrel, the wrap ply, the first radius filler, and the second radius filler are consolidated to from the bladder mandrel package.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: November 23, 2021
    Assignee: The Boeing Company
    Inventors: Richard A. Prause, Andrew E. Modin, Allen J. Halbritter, Richard E. Heath
  • Patent number: 11174363
    Abstract: A method of preparing a thermoplastic polyurethane membrane with high adhesion and high elasticity includes the following steps: (a) preparing a modifying solution, wherein the modifying solution is one or a mixture of at least two of diethylenetriamine, diethylaminopropylamine, and diaminodiphenylmethane; (b) preparing a semi-finished product by applying the modifying solution on at least one surface of a thermoplastic polyurethane membrane; and (c) subjecting the semi-finished product to a temperature of 50° C.˜180° C. in order for the semi-finished product to undergo a reaction and thus form the thermoplastic polyurethane membrane with high adhesion and high elasticity.
    Type: Grant
    Filed: June 16, 2019
    Date of Patent: November 16, 2021
    Assignee: TAIWAN TEXTILE FEDERATION, R.O.C.
    Inventors: Shu-Hui Huang, Sheng-Jen Lin, Yao-Hung Kuo, Jian-Fan Chen, Hung-Kung Chien, Yu-chuan Lin, Yun-chin Kuo
  • Patent number: 11130285
    Abstract: A print head is disclosed for use with an additive manufacturing system. The print head may include a nozzle tip, a first matrix source configured to selectively supply a structural matrix to the nozzle tip, and a second matrix source configured to selectively supply a temporary support matrix to the nozzle tip. The print head may also include a reinforcement supply configured to supply a continuous reinforcement through the nozzle tip only when the first matrix source is supplying the structural matrix to the nozzle tip.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: September 28, 2021
    Assignee: Continuous Composites Inc.
    Inventors: Kenneth Lyle Tyler, Ryan C. Stockett
  • Patent number: 11127938
    Abstract: A method of fabricating a battery electrode includes forming a mixture including an electrode material and a binder; forming an electrode blank from the mixture; heating the electrode blank at a predetermined temperature for a predetermined time to form an annealed electrode blank; and laminating the annealed electrode blank to a current collector. The current collector may include a conductive carbon coating. In such event, the method may further include heating the current collector at a selected temperature for a selected time prior to laminating the annealed electrode blank to the current collector.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: September 21, 2021
    Assignee: Pacesetter, Inc.
    Inventor: Xiaofei Jiang
  • Patent number: 11091595
    Abstract: Presented are fiber-reinforced polymer (FRP) sandwich structures, methods for making/using such FRP sandwich structures, and motor vehicles with a vehicle component fabricated from a compression molded thermoset or thermoplastic FRP sandwich structure. A multidimensional composite sandwich structure includes first and second (skin) layers formed from a thermoset of thermoplastic polymer matrix, such as resin or nylon, filled with a fiber reinforcing material, such as chopped carbon fibers. A third (core) layer, which is encased between the first and second skin layers, is formed from a thermoset/thermoplastic polymer matrix filled with a fiber reinforcing material and a filler material, such as hollow glass microspheres. The first, second and third layers have respective rheological flow properties that are substantially similar such that all three layers flow in unison at a predetermined compression molding pressure.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: August 17, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Hamid G. Kia, Selina X. Zhao
  • Patent number: 11059239
    Abstract: Rib-and-sheet structures include a rib comprising continuous, aligned fibers. The rib is fabricated via compression molding from continuous, aligned fiber, thereby providing an aligned, continuously reinforced rib. In one embodiment, rib-and-sheet structures are produced in a two-step compression-molding process, wherein a near net-shape rib is molded, in a first mold, from fiber-bundle based preforms, and then a rib-and-sheet part is molded by placing, in a second mold, the rib with either: (i) a preformed sheet, (ii) plies that form a laminate/sheet or (iii) chopped fibers that form a sheet during the molding process. In another embodiment, rib-and-sheet structures are fabricated in a one-step compression-molding process, wherein fiber-bundle-based preforms and (i) a preformed sheet, (ii) plies that form a laminate/sheet, or (iii) chopped fibers are combined in a single mold and molded in a single step.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: July 13, 2021
    Assignee: Arris Composites Inc.
    Inventors: Erick Davidson, Riley Reese, Ethan Escowitz, J. Scott Perkins
  • Patent number: 11058008
    Abstract: A manufacturing method, Printed Circuit Board (PCB) panel, and a PCB are disclosed. The method includes forming a cavity in a PCB that is in a PCB panel that includes a frame and stays, mounting an electronic component, heating the PCB panel, and cutting the stays. The PCB panel includes a frame body and a PCB coupled to the frame body via stays. The PCB includes a cavity. A first cavity stay is located near the cavity. Extended lines extend from the cavity, and the cavity stay extends at least between the extended lines. The PCB includes a cavity and a connection point from a cavity stay near the cavity.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: July 6, 2021
    Assignee: Lenovo (Singapore) PTE. LTD.
    Inventors: Hirohide Komiyama, Seiji Yamasaki, Hua Wang, Yanping Zhou
  • Patent number: 11027597
    Abstract: A decorative member includes a light-transmitting substrate which is made of resin and is formed with a recessed portion on a back surface thereof, a hot stamping foil layer which is formed on the back surface of the light-transmitting substrate except for the recessed portion, and a metal vapor deposition film layer which is laminated on the recessed portion on the back surface of the light-transmitting substrate and the hot stamping foil layer.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: June 8, 2021
    Assignee: KOITO MANUFACTURING CO., LTD.
    Inventor: Yasuhiro Kameoka
  • Patent number: 11014272
    Abstract: A laundry bead molding mold is disclosed, including a first mold cavity and a second mold cavity which are separated from each other and could be filled with detergent or detergent additives to meet different washing demands. The first mold cavity has two opposite side walls at a certain angle, which could ensure the shape of the bead product is a preset shape. The mold could be used to mold a laundry bead having at least two cavities, and could obtain a multifunctional laundry bead, has a simple structure and a high yield of the formed bead. A laundry bead formed by the mold is also disclosed, including a plurality of beads, which facilitates the washing process. A laundry bead molding method is also disclosed.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: May 25, 2021
    Assignee: WHEALTHFIELDS (GUANGZHOU) CO., LTD.
    Inventors: Tai Yung Titus Cho, Jing Wang, Haitao Liu
  • Patent number: 11007549
    Abstract: This flocking powder coated article comprises a base material (10) and a flocking coating layer (11). The flocking coating layer (11) includes: a coating film (110) constituted by a powder coating, and a portion of a flocking organic filler (13) buried in the powder coating; and a flocking layer (111) constituted by another portion of the flocking organic filler (13) projecting from the coating film (110). This flocking powder coated article does not have an adhesive layer for fixing the flocking organic filler (13).
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: May 18, 2021
    Assignee: CHUO HATSUJO KABUSHIKI KAISHA
    Inventors: Takashi Yamashita, Hidekazu Ito, Seiki Ito, Toshio Kuwayama
  • Patent number: 10923412
    Abstract: Systems and methods include an integrated circuit assembly that includes a semiconductor substrate; a heat transfer element; and an ambulatory thermal interface arranged between the semiconductor substrate and the heat transfer element, the ambulatory thermal interface comprising: a thermally conductive material, and a friction reduction material, wherein: the thermally conductive material is arranged along a surface of the heat transfer element, the friction reduction material is arranged along a surface of the semiconductor substrate, opposing surfaces of the thermally conductive material and the friction reduction material define a slidable interface when placed in contact.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: February 16, 2021
    Assignee: Cerebras Systems Inc.
    Inventor: Jean-Philippe Fricker
  • Patent number: 10905014
    Abstract: Depicted embodiments are directed to an Application Specific Electronics Packaging (“ASEP”) system, which enables the manufacture of additional products using reel to reel (68a, 68b) manufacturing processes as opposed to the “batch” processes used to currently manufacture electronic products and MIDs. Through certain ASEP embodiments, it is possible to integrate connectors, sensors, LEDs, thermal management, antennas, RFID devices, microprocessors, memory, impedance control, and multi-layer functionality directly into a product.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: January 26, 2021
    Assignee: Molex, LLC
    Inventors: Marko Spiegel, Victor Zaderej, Amrit Panda
  • Patent number: 10889032
    Abstract: A method for producing a laminated moulded part comprises a pressure moulding of a blank to form a moulded part in a moulding cavity between a first moulding tool unit and a second moulding tool unit, introducing of a laminating element into the moulding cavity after the pressure moulding of the blank, and a bonding of the moulded part with the laminating element in the moulding cavity.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: January 12, 2021
    Assignee: INTERNATIONAL AUTOMOTIVE COMPONENTS GROUP GMBH
    Inventor: Fritz Schweindl
  • Patent number: 10865283
    Abstract: The present disclosure relates to sheet moulding compounds (SMC) and to a method for producing composite fiber components from said SMC, based on a polyurethane reaction mixture consisting of (A) at least one aromatic isocyanate component, (B) 70 to 100 wt % of at least one polyol component having at least 70% secondary OH groups, a number average OH count of 15-500 mg KOH/g and functionality of 1.9-2.5, (C) 0-30 wt % of at least one polyol having a number average OH count of 15-500 mg KOH/g and a functionality of 1.9-2.5, (D) as applicable, short-chain polyol, (E) internal separating agent, (F) a thermolatent catalyst, and (G) as applicable, auxiliary and/or additional substances, wherein the PUR reaction mixture has an initial viscosity of 2,500-14,000 mPas at 23° C. and the ratio of NCO groups/OH groups is 1.35:1-10:1.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: December 15, 2020
    Assignee: COVESTRO DEUTSCHLAND AG
    Inventor: Marcel Schornstein
  • Patent number: 10856082
    Abstract: An audio system with sound-field-type nature sound effect includes: a first primary channel playing device for playing a primary audio signal generated according to a left channel audio signal and/or a right channel audio signal; a first secondary signal circuit for generating a first secondary audio signal according to the left channel audio signal and the right channel audio signal; and a first sound field control playing device connected to the first secondary signal circuit and adapted to play the first secondary audio signal; wherein a first playing delay period exists between the playing of the first secondary audio signal and the playing of the primary audio signal; wherein the first secondary audio signal played by the first sound field control playing device does not undergo audio mixing with the primary audio signal by a first audio mixing circuit.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: December 1, 2020
    Assignee: ECHOWELL ELECTRONIC CO., LTD.
    Inventor: Hsi-Hsien Chen
  • Patent number: 10841547
    Abstract: The present invention provides a method for fabricating small right angle prism mirrors, projecting system, and small right angle prism mirrors fabricated by a semiconductor process. The method comprises: coating a reflecting layer on a top surface of a glass substrate; forming an optical glue layer on a bottom surface of the glass substrate; utilizing a mold to form a 3D shape on the optical glue layer; exposing the optical glue layer having the 3D shape to solidify the optical glue layer having the 3D shape and combine the glass substrate having the reflecting layer and the optical glue layer having the 3D shape; removing the mold to form a small prism array; and dicing the small prism array to generate a plurality of small right angle prism mirrors.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: November 17, 2020
    Assignee: HIMAX TECHNOLOGIES LIMITED
    Inventors: Han-Yi Kuo, Yin-Dong Lu, Shi-Jen Wu, Chih-Sheng Chang, Teng-Te Huang
  • Patent number: 10828591
    Abstract: A method is provided for producing at least one ash-forming element (1) for a particulate filter of an exhaust gas system of a gasoline engine or diesel engine. The method includes providing of a strip-shaped center layer (3), and making receiving holes (6) in the center layer (3). The method continues by providing of a strip-shaped bottom layer (4), and permanently connecting of the bottom layer (4) to the center layer (3). The method proceeds by filling the receiving holes (6) of the center layer (3) with ash-forming components (2), providing a strip-shaped top layer (5), and permanently connecting the top layer (5) to the center layer (3). The method then includes punching out of at least one ash-forming means (1) from the wafer, and making throughflow openings (7) in regions where there are no ash-forming components (2).
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: November 10, 2020
    Assignee: Dr. Ing. h.c. F. Porsche Aktiengesellschaft
    Inventors: Lukas Engin, Michael Wessels
  • Patent number: 10827602
    Abstract: At least one embodiment of a power supply includes a printed circuit board formed from a plurality of double-sided laminates and a plurality of thermally conductive, electrically insulating pre-preg sheets interleaved with the plurality of double-sided laminates. Each double-sided laminate illustratively includes an electrically insulating core, a first patterned layer of electrically conductive material arranged on a first side of the electrically insulating core, and a second patterned layer of electrically conductive material arranged on a second side of the electrically insulating core opposite the first side.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: November 3, 2020
    Assignee: ABB Power Electronics Inc.
    Inventors: Robert Joseph Roessler, Anjana Shyamsundar
  • Patent number: 10774173
    Abstract: The present invention relates to a thermosetting resin composition, and a prepreg and a printed circuit board using the same and, more particularly, to a thermosetting resin composition, and a prepreg and a printed circuit board using the same, wherein the thermosetting resin composition can be used for a printed circuit board which simultaneously has excellent low dielectric loss characteristics, good moisture absorption and heat resistance, low thermal expansion characteristics, and thermal stability.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: September 15, 2020
    Assignee: KOLON INDUSTRIES, INC.
    Inventors: Hee Jin Cho, Do Kyung Sung, Sae Rom Nam
  • Patent number: 10773473
    Abstract: The purpose of the present invention is to obtain a fiber-reinforced plastic that is capable of controlling anisotropy, has excellent mechanical characteristics, has little variation, has excellent heat resistance, and has good fluidity during forming. A production method for fiber-reinforced plastic, having: a step in which a material (A) (100) including a prepreg base material is obtained, said prepreg base material having cuts therein and having a thermoplastic resin impregnated in reinforcing fibers (110) arranged in parallel in one direction; a step in which a pressurizing device is used that applies a substantially uniform pressure in a direction (X) orthogonal to the travel direction of the material (A) (100) and the material (A) (100) is caused to travel in the one direction and is pressurized while being heated to a prescribed temperature (T), an angle (.theta.) of ?20-20 .degree.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: September 15, 2020
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Masao Tomioka, Takeshi Ishikawa, Takayuki Kobayashi
  • Patent number: 10766172
    Abstract: A method of bonding a thermoplastic component to a carpeted component is provided. The method includes providing a base component, a thermoplastic component and a fibrous carpet or mat between the components. The carpet has a large number of cavities. The carpet is made of a thermoplastic material adapted to bond to the thermoplastic component in response to heat at the interface between the thermoplastic component and the carpet. The method also includes heating the thermoplastic component and the carpet at the interface between the thermoplastic component and the carpet for a period of time to soften the carpet. The method finally includes pressing the components and the softened carpet together under a pressure to cause the softened carpet to flow and at least partially fill the cavities. The carpet at the interface is transformed into a solid bonding layer to bond the components together to create a finished structure.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: September 8, 2020
    Assignee: Global IP Holdings, LLC
    Inventors: Darius J. Preisler, Christopher A. Heikkila
  • Patent number: 10759713
    Abstract: A fibrous preform (1) is produced, provided with a sandwich structure comprising an intermediate flexible core (4) and two outer fibrous frames (2, 3), respectively arranged on opposing outer faces of said flexible core (4) and assembled by sections of wire (8, 9) passing through said fibrous frames (2, 3), said preform (1) being impregnated with resin. Said preform is then hardened and the core (4) is removed, preferably by pre-densification with chemical vapour infiltration, and the structure produced is then densified with liquid-phase infiltration.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: September 1, 2020
    Assignees: MBDA FRANCE, AIRBUS DEFENCE AND SPACE GMBH
    Inventors: Marc Bouchez, Steffen Beyer, Stephan Schmidt-Wimmer
  • Patent number: 10751984
    Abstract: A method of bonding a thermoplastic component to a carpeted component and the carpeted component to cellulose-based core in a single pressing step is provided. The method includes providing a base component of a reinforced thermoplastic material, the thermoplastic component, a fibrous thermoplastic carpet or mat between the components, a sheet of thermoplastic adhesive and a core of cellulose-based material. The method also includes heating the thermoplastic component and the carpet at the interface between the thermoplastic component and the carpet for a period of time to soften the carpet. The method finally includes pressing the components, the sheet, the core and the softened carpet together under a pressure to cause the softened carpet to flow. The carpet at the interface is transformed into a solid bonding layer to bond the components together and the sheet bonds the base component and the core together to create a finished structure.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: August 25, 2020
    Assignee: Global IP Holdings, LLC
    Inventors: Darius J. Preisler, Christopher A. Heikkila
  • Patent number: 10714259
    Abstract: A method for forming an MLCC with an identification mark consisting of non-active internal electrodes which can be used to determine chip orientation for mounting or reeling. The method includes printing layers, forming a stack of the layers, sintering the stack, dicing the stack and forming external terminations.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: July 14, 2020
    Assignee: KEMET Electronic Corporation
    Inventors: Randal J. Vaughan, Gregory L. Crosby
  • Patent number: 10688738
    Abstract: A pultrusion process for making a strip for an elongate reinforcing structure of a wind turbine blade, the process comprising drawing fibres (42) and resin through a pultrusion die (40) in a process direction to form a strip (102); and applying an infusion-promoting layer (110) to a surface of the strip down-stream from the die in the process direction. A pultrusion apparatus is also disclosed.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: June 23, 2020
    Assignee: Vestas Wind Systems A/S
    Inventor: Jonathan Smith
  • Patent number: 10668697
    Abstract: Included are removing an outermost layer or outermost layers on one side or both sides of liquid crystal polymer film; and a molding step of performing thermocompression molding on liquid crystal polymer film and metal foil stacked on the side of liquid crystal polymer film whose outermost layer is removed. A heating temperature in the molding step is in a range from a temperature equal to a melting start temperature, of the liquid crystal polymer film, measured by using a rigid body pendulum type viscoelasticity measuring device to a temperature 60° C. higher than the melting start temperature inclusive.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: June 2, 2020
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Masaya Koyama, Kiyotaka Komori, Hiroaki Takahashi, Yoshinori Matsuzaki, Tadashi Mori
  • Patent number: 10667407
    Abstract: Depicted embodiments are directed to an Application Specific Electronics Packaging (“ASEP”) system, which enables the manufacture of additional products using reel to reel (68a, 68b) manufacturing processes as opposed to the “batch” processes used to currently manufacture electronic products and MIDs. Through certain ASEP embodiments, it is possible to integrate connectors, sensors, LEDs, thermal management, antennas, RFID devices, microprocessors, memory, impedance control, and multi-layer functionality directly into a product.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: May 26, 2020
    Assignee: Molex, LLC
    Inventors: Marko Spiegel, Victor Zaderej, Amrit Panda
  • Patent number: 10640235
    Abstract: Disclosed is a method of producing an airframe component. The method comprises: providing an initial component having a first surface; providing an over press tool having a second surface complementary to the first surface; applying, to the first surface, an adhesive (94), one or more layers of a material; at least for some time during curing of the adhesive, positioning the over press tool such that the second surface is in contact with an outer surface of the material and the material is between the first and second surfaces, and forcing the over press tool against the first surface such that a normal force is exerted on the first surface; and, thereafter removing the over press tool from the one or more layers of material, thereby providing the airframe component.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: May 5, 2020
    Assignee: BAE Systems plc
    Inventors: Steven Neil Sanderson, William Smith Scott
  • Patent number: 10580679
    Abstract: Disclosed herein is a method comprising disposing on a first substrate a two-dimensional exfoliatable material; patterning an exfoliatable material using a photoresist in a manner such that a portion of the photoresist remains in contact with the two-dimensional exfoliatable material after the patterning; disposing a polymer layer on the two-dimensional exfoliatable material to form a printing block; contacting a substrate with the printing block; and removing the polymer layer and the photoresist from the printing block to leave behind the patterned exfoliatable material on the substrate.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: March 3, 2020
    Assignee: THE UNIVERSITY OF MASSACHUSETTS
    Inventors: Qiangfei Xia, Peng Lin
  • Patent number: 10563285
    Abstract: The method comprises the following steps: a) Providing a sonotrode (1) formed from an essentially inert material with respect to the liquid metal, such as a ceramic, and preferably a silicon nitride or a silicon oxynitride, such as SIALON, or a metal essentially inert to said liquid metal, b) Immersing at least partially the sonotrode (1) in a bath of said metal, c) Applying to the sonotrode (1) power ultrasounds, particularly ultrasounds having a power greater than 10 watts to obtain the wetting of said sonotrode by said metal, d) Applying continuously to the sonotrode (1) measurement ultrasounds, also known as testing ultrasounds, particularly ultrasounds wherein the frequency is between 1 and 25 MHz, e) Applying intermittently to the sonotrode (1) power ultrasounds, particularly ultrasounds having a power greater than 10 watts, to maintain said wetting.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: February 18, 2020
    Assignee: CONSTELLIUM ISSOIRE
    Inventors: Jean-Louis Achard, Pierre Le Brun
  • Patent number: 10549907
    Abstract: An apparatus includes a containment structure having a floor and one or more free-standing flexible walls extending along an outer perimeter of the floor and surrounding a central portion of the floor. The floor includes one or more pieces of fabric, and each free-standing flexible wall includes one or more pieces of shape memory material and extending above the floor. The one or more pieces of shape memory material are attached to the one or more pieces of fabric via a liquid-impervious material applied to the one or more pieces of fabric along the outer perimeter of the floor. The liquid-impervious material is located on the one or more pieces of fabric and the one or more pieces of shape memory material such that the floor and the one or more free-standing flexible walls are liquid-impervious and define a space configured to retain liquid in the containment structure.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: February 4, 2020
    Assignee: TitanLiner, Inc.
    Inventor: Joshua D. Hopkins
  • Patent number: 10525655
    Abstract: A composite material for a pharmaceutical packaging is provided that includes a substrate and a protective layer. The substrate has a contact region in contact with the protective layer. The contact region includes a contact area between the substrate and the protective layer and a region of the substrate close to the surface. The substrate is made of glass or of a cyclic olefin polymer or a cyclic olefin copolymer, while the protective layer is made of ceramic material. The substrate in the contact region is different from the substrate outside the contact region.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: January 7, 2020
    Assignee: SCHOTT AG
    Inventors: Matthias Bicker, Manfred Lohmeyer, Tanja Woywod
  • Patent number: 10507638
    Abstract: An additive manufacturing method may involve: Providing a first and a second material, the second material capable of reacting with the first material to form a reaction product; forming at least the first material into a first layer; subjecting at least a portion of the first layer to energy in the presence of the second material, the energy being sufficient to initiate a reaction between at least the first and second materials to form a portion of the article, the portion of the article comprising the reaction product; forming a second layer of at least the first material on the first layer; and subjecting at least a portion of the second layer to energy in the presence of the second material, the energy being sufficient to initiate a reaction between the first and second materials to form an additional portion of the article.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: December 17, 2019
    Assignee: Elementum 3D, Inc.
    Inventors: Jacob S. Nuechterlein, Jeremy Joseph Iten
  • Patent number: 10511389
    Abstract: Provided is a piezoelectric module capable of attempting further miniaturization. In the piezoelectric module, a resonance point is excluded from a frequency band of a transmitted signal to avoid shortening of a signal transmission distance, thereby attempting improvement in stability of communication. In addition, since a resonance space is not provided, further miniaturization may be easily attempted.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: December 17, 2019
    Assignee: TDK CORPORATION
    Inventors: Kaoru Kijima, Akira Satoh