Electrically Coupled To A Power Supply Or Matching Circuit Patents (Class 156/345.44)
  • Patent number: 10672616
    Abstract: A plasma processing apparatus includes a microwave generation unit configured to generate a microwave, a processing vessel configured to introduce the microwave thereinto, and a gas supply mechanism configured to supply a gas into the processing vessel, plasma being generated within the processing vessel so that a plasma processing is performed on a processing target object. The microwave generation unit includes an oscillation circuit configured to oscillate the microwave, a pulse generation circuit configured to oscillate a control wave having a predetermined frequency bandwidth at a predetermined cycle, and a frequency modulation circuit configured to modulate a frequency of the microwave to a modulated wave having the predetermined frequency bandwidth by the control wave and output the modulated wave, and the frequency modulation circuit alternately and repeatedly outputs the modulated wave and a non-modulated microwave at the predetermined cycle.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: June 2, 2020
    Assignee: TOKYO ELECTON LIMITED
    Inventor: Shinji Kubota
  • Patent number: 10370764
    Abstract: A processing kit for a plasma processing chamber. The processing kit includes a plurality of ceramic arc-shaped pieces. Each arc-shaped piece has a concave first end and a convex second end and the first end of each arc-shaped piece is configured to mate with an adjacent end of a neighboring arc-shaped piece to form a ring shaped inner isolator.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: August 6, 2019
    Assignee: Applied Materials, Inc.
    Inventor: Ramprakash Sankarakrishnan
  • Patent number: 10340123
    Abstract: A method of etching a substrate is described. The method includes disposing a substrate having a surface exposing a first material and a second material in a processing space of a plasma processing system, and performing a modulated plasma etching process to selectively remove the first material at a rate greater than removing the second material. The modulated plasma etching process includes a power modulation cycle composed of applying a first power modulation sequence to the plasma processing system, and applying a second power modulation sequence to the plasma processing system, the second power modulation sequence being different than the first power modulation sequence.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: July 2, 2019
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Hiroto Ohtake
  • Patent number: 10319565
    Abstract: A method for generating an ion flow asymmetry in a capacitively coupled radiofrequency plasma reactor comprising a step for energization of a first electrode by a radiofrequency voltage waveform. The standardized voltage waveform is an approximate waveform with a degree of approximation of a standardized sawtooth radiofrequency function having different rising and falling slopes. The degree of approximation of the approximate waveform and the pressure P of the gas are sufficiently high for causing the appearance of an asymmetry of the ion flows between the ion flow at the first electrode and the ion flow at a second electrode.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: June 11, 2019
    Assignee: LE CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Bastien Bruneau, Erik Johnson, Tatiana Novikova, Jean-Paul Booth
  • Patent number: 10262886
    Abstract: Disclosed is an electrostatic chuck device for increasing electrostatic adsorptive force for a focus ring and uniformly cooling the focus ring. In such a device, a mounting table has a holder in the periphery of a placing surface along the circumferential direction of a focus ring, the holder has a pair of banks in the circumferential direction, and an annular groove formed between these banks, and in at least a bank on an outer circumferential position of the focus ring among the pair of the banks, a micro-protruding part including a plurality of micro-protrusions is on a surface facing the focus ring, or convex parts are on a bottom of the groove. The convex parts do not contact the focus ring, and the pair of banks or plurality of micro-protrusions contacts the focus ring and electrostatically adsorbs the focus ring in coordination with the convex parts.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: April 16, 2019
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Hitoshi Kouno, Kentaro Takahashi, Fumihiro Gobou
  • Patent number: 10264630
    Abstract: A plasma processing apparatus includes a processing chamber including a sidewall; a mounting table including a lower electrode and provided in the processing chamber; an upper electrode arranged to face the lower electrode in a first direction; a high frequency power supply configured to apply a high frequency power for plasma generation to the upper electrode; a gas supply system for supplying a processing gas into the processing chamber; and a grounding unit connected to a ground potential. A first space is defined between the mounting table and the sidewall. A second space is defined between the upper electrode and the lower electrode. The grounding unit is configured to move independently from the upper electrode in the first direction in a third space which extends to the first space in the first direction and also to the second space in a second direction perpendicular to the first direction.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: April 16, 2019
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Ryoichi Yoshida, Hiraku Murakami, Nobutaka Sasaki
  • Patent number: 10211029
    Abstract: A method for producing a steady-state three dimensional shape in a plasma includes filling a space with a gas, ionizing the gas with a radio frequency source to form a plasma, and directing acoustic waves into the plasma from a plurality of acoustic sources. The acoustic waves from each of the plurality of acoustic sources interact to create standing wave pattern forming a three dimensional shape in the plasma.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: February 19, 2019
    Assignee: Lockheed Martin Corporation
    Inventor: Jonathon R. Heinrich
  • Patent number: 10204794
    Abstract: Embodiments of the invention describe semiconductor devices with high aspect ratio fins and methods for forming such devices. According to an embodiment, the semiconductor device comprises one or more nested fins and one or more isolated fins. According to an embodiment, a patterned hard mask comprising one or more isolated features and one or more nested features is formed with a hard mask etching process. A first substrate etching process forms isolated and nested fins in the substrate by transferring the pattern of the nested and isolated features of the hard mask into the substrate to a first depth. A second etching process is used to etch through the substrate to a second depth. According to embodiments of the invention, the first etching process utilizes an etching chemistry comprising HBr, O2 and CF4, and the second etching process utilizes an etching chemistry comprising Cl2, Ar, and CH4.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: February 12, 2019
    Assignee: Intel Corporation
    Inventors: Muralidhar S. Ambati, Ritesh Jhaveri, Moosung Kim
  • Patent number: 10109481
    Abstract: Embodiments of the invention described herein generally relate to an apparatus and methods for forming high quality buffer layers and Group III-V layers that are used to form a useful semiconductor device, such as a power device, light emitting diode (LED), laser diode (LD) or other useful device. Embodiments of the invention may also include an apparatus and methods for forming high quality buffer layers, Group III-V layers and electrode layers that are used to form a useful semiconductor device. In some embodiments, an apparatus and method includes the use of one or more cluster tools having one or more physical vapor deposition (PVD) chambers that are adapted to deposit a high quality aluminum nitride (AlN) buffer layer that has a high crystalline orientation on a surface of a plurality of substrates at the same time.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: October 23, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Mingwei Zhu, Nag B. Patibandla, Rongjun Wang, Vivek Agrawal, Anantha Subramani, Daniel Lee Diehl, Xianmin Tang
  • Patent number: 10096480
    Abstract: A method for controlling the temperature profile of phosphoric acid process over a wafer surface through the dynamic control of radial dispensing of sulfuric acid at a selected temperature, which includes providing a substrate with a layer formed thereupon; dispensing a first chemical and second chemicals onto the layer while adjusting at least one parameter of the second chemical dispense to vary the etch rate across a region of the substrate.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: October 9, 2018
    Assignee: Tokyo Electron Limited
    Inventors: Antonio Luis Pacheco Rotondaro, Wallace P. Printz
  • Patent number: 10067418
    Abstract: A method of removing particles from a surface of a reticle is disclosed. The reticle is placed in a carrier, a source gas is flowed into the carrier, and a plasma is generated within the carrier. Particles are then removed from a surface of the reticle using the generated plasma. A system of removing particles from a surface includes a carrier configured to house a reticle, a reticle stocker including the carrier, a power supply configured to apply a potential between an inner cover and an inner baseplate of the carrier, and a gas source configured to flow a gas into the carrier. A plasma may be generated within the carrier, and particles can be removed from a surface of the reticle using the generated plasma. An acoustic energy source configured to agitate at least one of the source gas and the generated plasma may be provided to facilitate particle removal using an agitated plasma.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: September 4, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shu-Hao Chang, Chi-Lun Lu, Shang-Chieh Chien, Ming-Chin Chien, Jui-Ching Wu, Jeng-Horng Chen, Chieh-Jen Cheng, Chia-Chen Chen
  • Patent number: 9947513
    Abstract: Systems and methods for performing edge ramping are described. A system includes a base RF generator for generating a first RF signal. The first RF signal transitions from one state to another. The transition from one state to another of the first RF signal results in a change in plasma impedance. The system further includes a secondary RF generator for generating a second RF signal. The second RF signal transitions from one state to another to stabilize the change in the plasma impedance. The system includes a controller coupled to the secondary RF generator. The controller is used for providing parameter values to the secondary RF generator to perform edge ramping of the second RF signal when the second RF signal transitions from one state to another.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: April 17, 2018
    Assignee: Lam Research Corporation
    Inventors: John C. Valcore, Jr., Bradford J. Lyndaker, Andrew S. Fong
  • Patent number: 9911607
    Abstract: A controllability of a size of a mask can be improved in a multi-patterning method. A process of forming a silicon oxide film on a first mask and an antireflection film is performed. In this process, plasma of a first gas including a silicon halide gas and plasma of a second gas including an oxygen gas are alternately generated. Then, a region of the silicon oxide film is removed such that only a region along a side wall of the first mask is left, and then, the first mask is removed and the antireflection film and an organic film is etched.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: March 6, 2018
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Yoshihide Kihara, Toru Hisamatsu
  • Patent number: 9852905
    Abstract: The present disclosure is directed an apparatus for regulating gas flow in a deposition chamber during a deposition process. The apparatus includes an interior wall that forms an accommodating portion that accommodates a wafer support structure and an exterior wall disposed opposite the interior wall. The apparatus further includes an upper surface, coupled to both the interior wall and the exterior wall, that has a plurality of openings therethrough. The plurality of openings are configured to distribute a flow of gas originating above the apparatus when the apparatus is positioned over a gas outlet port of the deposition chamber.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: December 26, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Su-Jen Sung
  • Patent number: 9826888
    Abstract: An endoscope system having: an endoscope having: an endoscope insertion section configured to be inserted into a subject, wherein the endoscope insertion section defines a channel having a distal opening; and a power transmission electrode arranged to the endoscope insertion section and electrically connected to a power source configured to output a high-frequency power; and a treatment tool having: an electrically powered treatment device; a treatment tool insertion section attached to the electrically powered treatment device, wherein the treatment tool insertion section is configured to be arranged in the channel of the endoscope; and a power reception electrode arranged to the treatment tool insertion section, wherein the power reception electrode is separated from the power transmission electrode to form a capacitor to transfer power from the power source through an electric field between the power transmission electrode and the power reception electrode to power the electrically powered treatment device
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: November 28, 2017
    Assignee: OLYMPUS CORPORATION
    Inventors: Shoei Tsuruta, Yuta Sugiyama, Akira Matsui
  • Patent number: 9805963
    Abstract: Apparatuses, systems, and techniques for providing enhanced electrostatic chucks are provided. Such apparatuses, systems, and techniques may include, for example, a common RF and DC electrode in an electrostatic chuck, connection, at a location external to a semiconductor processing chamber, of a high-voltage DC power source and a high-voltage RF power source to a common conductive pathway leading to an electrostatic chuck in the interior of the semiconductor processing chamber, a very thin dielectric layer located on an upper surface of an electrostatic chuck, and/or an axial thermal choke that may be used to control heat flow within an electrostatic chuck.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: October 31, 2017
    Assignee: Lam Research Corporation
    Inventors: Maolin Long, Alex Paterson, Ying Wu, Quan Chau
  • Patent number: 9779962
    Abstract: A plasma etching method is provided to perform a desired etching by switching a process condition while maintaining plasma by supplying high frequency power. A first plasma etching process is performed based on a first process condition. A second plasma etching process different from the first process conditions is performed based on a second process condition while supplying first high frequency power having first effective power. Second high frequency power having second effective power is intermittently supplied between the first plasma etching process and the second plasma etching process during a switch from the first plasma etching process to the second plasma etching process. The second effective power of the second high frequency power is equal to or lower than the first effective power of the first high frequency power in the second plasma etching process.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: October 3, 2017
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Takao Funakubo, Shinichi Kozuka, Yuta Seya, Aritoshi Mitani
  • Patent number: 9736921
    Abstract: An output of a modulated high frequency power is started from a high frequency power supply of a plasma processing apparatus. Here, a first period and a second period are repeated alternately. A moving average value of a load impedance of the high frequency power supply in a first sub-period in the past first period and a moving average value of a load impedance of the high frequency power supply in a second sub-period in the past first period are acquired. A frequency of the modulated high frequency power in the first sub-period and a frequency of the modulated high frequency power in the second sub-period are set according to the moving average values such that the load impedance of the high frequency power supply in the first sub-period and the load impedance of the high frequency power supply in the second sub-period approximate to a matching point.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: August 15, 2017
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Koichi Nagami, Naoyuki Umehara, Norikazu Yamada
  • Patent number: 9711330
    Abstract: A plasma source assembly for use with a processing chamber is described. The assembly includes a multi-feed RF power connection to a single or multiple RF hot electrodes.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: July 18, 2017
    Assignee: Applied Materials, Inc.
    Inventor: Kallol Bera
  • Patent number: 9627182
    Abstract: Systems and methods for tuning a parameter associated with plasma impedance are described. One of the methods includes receiving information to determine a variable. The information is measured at a transmission line and is measured when the parameter has a first value. The transmission line is used to provide power to a plasma chamber. The method further includes determining whether the variable is at a local minima and providing the first value to tune the impedance matching circuit upon determining that the variable is at the local minima. The method includes changing the first value to a second value of the parameter upon determining that the variable is not at the local minima and determining whether the variable is at a local minima when the parameter has the second value.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: April 18, 2017
    Assignee: Lam Research Corporation
    Inventors: John C. Valcore, Jr., Bradford J. Lyndaker
  • Patent number: 9520276
    Abstract: An electrode assembly of a plasma processing apparatus that enables damage to an electrode plate to be prevented, and enables an increase in the number of parts to be prevented, so that the ability to carry out maintenance can be easily maintained. An upper electrode assembly has an upper electrode plate, a cooling plate (C/P) and a spacer interposed between the upper electrode plate and the C/P. The upper electrode plate has therein electrode plate gas-passing holes that penetrate through the upper electrode plate. The C/P has therein C/P gas-passing holes that penetrate through the C/P. The spacer has therein spacer gas-passing holes that penetrate through the spacer. The electrode plate gas-passing holes, the C/P gas-passing holes and the spacer gas-passing holes are not disposed collinearly.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: December 13, 2016
    Assignee: Tokyo Electron Limited
    Inventors: Chikako Takahashi, Takashi Suzuki, Masato Horiguchi, Takashi Yamamoto
  • Patent number: 9514967
    Abstract: A plasma processing apparatus includes a processing chamber for processing a sample with a plasma, an RF power supply for generating the plasma within the processing chamber, an RF bias power supply for supplying RF bias power to a sample stage on which the sample is mounted, a pulse generation unit for creating first pulses for modulating the output from the RF power supply for generating the plasma and second pulses for modulating the output from the RF bias power supply, and a controller for providing control of the processing of the sample with the sample. The pulse generation unit creates the first pulses and the second pulses synchronized based on a pulse delay time transmitted from the controller. The pulse delay time is established to delay the second pulses relative to the first pulses.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: December 6, 2016
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Yasuo Ohgoshi, Michikazu Morimoto, Yuuzou Oohirabaru, Tetsuo Ono
  • Patent number: 9502217
    Abstract: A plasma processing apparatus includes a processing chamber which plasma-processes a sample, a first high-frequency power supply which supplies first high-frequency power for plasma generation to the processing chamber, a second high-frequency power supply which supplies second high-frequency power to a sample stage on which the sample is placed and a pulse generation device which generate first pulses for time-modulating the first high-frequency power and second pulses for time-modulating the second high-frequency power. The pulse generation device includes a control device which controls the first and second pulses so that frequency of the first pulses is higher than frequency of the second pulses and the on-period of the second pulse is contained in the on-period of the first pulse.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: November 22, 2016
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Shunsuke Kanazawa, Naoki Yasui, Michikazu Morimoto, Yasuo Ohgoshi
  • Patent number: 9490105
    Abstract: A plasma processing apparatus includes a first and second electrodes disposed on upper and lower sides and opposite each other within a process container, a first RF power application unit and a DC power supply both connected to the first electrode, and second and third radio frequency power application units both connected to the second electrode. A conductive member is disposed within the process container and grounded to release through plasma a current caused by a DC voltage applied from the DC power supply. The conductive member is supported by a first shield part around the second electrode and laterally protruding therefrom at a position between the mount face of the second electrode and an exhaust plate for the conductive member to be exposed to the plasma. The conductive member is grounded through a conductive internal body of the first shield part.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: November 8, 2016
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Akira Koshiishi, Masaru Sugimoto, Kunihiko Hinata, Noriyuki Kobayashi, Chishio Koshimizu, Ryuji Ohtani, Kazuo Kibi, Masashi Saito, Naoki Matsumoto, Yoshinobu Ohya, Manabu Iwata, Daisuke Yano, Yohei Yamazawa, Hidetoshi Hanaoka, Toshihiro Hayami, Hiroki Yamazaki, Manabu Sato
  • Patent number: 9401264
    Abstract: A plasma system includes an RF generator and a matchbox including an impedance matching circuit, which is coupled to the RF generator via an RF cable. The plasma system includes a chuck and a plasma reactor coupled to the matchbox via an RF line. The RF line forms a portion of an RF supply path, which extends between the RF generator through the matchbox, and to the chuck. The plasma system further includes a phase adjusting circuit coupled to the RF supply path between the impedance matching circuit and the chuck. The phase adjusting circuit has an end coupled to the RF supply path and another end that is grounded. The plasma system includes a controller coupled to the phase adjusting circuit. The controller is used for changing a parameter of the phase adjusting circuit to control an impedance of the RF supply path based on a tune recipe.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: July 26, 2016
    Assignee: Lam Research Corporation
    Inventors: Alexei Marakhtanov, Rajinder Dhindsa, Ken Lucchesi, Luc Albarede
  • Patent number: 9337000
    Abstract: A system for controlling an impedance of a radio frequency (RF) return path includes a matchbox further including a match circuitry. The system further includes an RF generator coupled to the matchbox to supply an RF supply signal to the matchbox via a first portion of an RF supply path. The RF generator is coupled to the matchbox to receive an RF return signal via a first portion of an RF return path. The system also includes a switch circuit and a plasma reactor coupled to the switch circuit via a second portion of the RF return path. The plasma reactor is coupled to the match circuitry via a second portion of the RF supply path. The system includes a controller coupled to the switch circuit, the controller configured to control the switch circuit based on a tune recipe to change an impedance of the RF return path.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: May 10, 2016
    Assignee: Lam Research Corporation
    Inventors: Alexei Marakhtanov, Rajinder Dhindsa, Ken Lucchesi, Luc Albarede
  • Patent number: 9336999
    Abstract: In a plasma processing apparatus including a first radio-frequency power supply which supplies first radio-frequency power for generating plasma in a vacuum chamber, a second radio-frequency power supply which supplies second radio-frequency power to a sample stage on which a sample is mounted, and a matching box for the second radio-frequency power supply, the matching box samples information for performing matching during a sampling effective period which is from a point of time after elapse of a prescribed time from a beginning of on-state of the time-modulated second radio-frequency power until an end of the on-state and maintains a matching state attained during the sampling effective period from after the end of the on-state until a next sampling effective period.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: May 10, 2016
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Michikazu Morimoto, Naoki Yasui, Yasuo Ohgoshi
  • Patent number: 9155182
    Abstract: Systems and methods for tuning a parameter associated with plasma impedance are described. One of the methods includes receiving information to determine a variable. The information is measured at a transmission line and is measured when the parameter has a first value. The transmission line is used to provide power to a plasma chamber. The method further includes determining whether the variable is at a local minima and providing the first value to tune the impedance matching circuit upon determining that the variable is at the local minima. The method includes changing the first value to a second value of the parameter upon determining that the variable is not at the local minima and determining whether the variable is at a local minima when the parameter has the second value.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: October 6, 2015
    Assignee: Lam Research Corporation
    Inventors: John C. Valcore, Jr., Bradford J. Lyndaker
  • Patent number: 9055661
    Abstract: A plasma processing apparatus comprises an upper electrode 42, a lower electrode, a grounding member 61 provided above the upper electrode 42 via an insulating member 60; and a DC power supply for applying a DC voltage to the upper electrode 42. Gas diffusion rooms 54 and 55 communicating with a gas supply opening 53 formed at a lower surface of the upper electrode 42 are formed in the upper electrode 42 and a gas flow path 62 communicating with the gas diffusion rooms 54 and 55 is formed in the insulating member 60. A bent portion 63 for allowing a gas within the gas flow path to flow in a direction having at least a horizontal component is formed at the gas flow path 62 such that an end of the gas flow path 62 cannot be seen from the other end thereof when viewed from the top.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: June 9, 2015
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Kiyoshi Tanaka
  • Publication number: 20150144266
    Abstract: The substrate processing apparatus includes a lower electrode on which a substrate is capable of being held, a high frequency power source electrically connected to the lower electrode, an upper electrode facing the lower electrode, a plasma processing space being formed between the lower electrode and the upper electrode, wherein the upper electrode includes an inner upper electrode facing a center portion of the lower electrode and an outer upper electrode facing a circumferential portion of the lower electrode, the inner electrode and the outer electrode being electrically insulated from each other, a first direct current power source electrically connected to the inner upper electrode to apply a positive direct current voltage, and a dielectric member covering a bottom surface of the upper electrode, the dielectric member facing the lower electrode with the plasma processing space in-between.
    Type: Application
    Filed: January 20, 2015
    Publication date: May 28, 2015
    Inventors: Nobuhiro WADA, Makoto KOBAYASHI, Hiroshi TSUJIMOTO, Jun TAMURA, Mamoru NAOI
  • Patent number: 9038567
    Abstract: The object of the invention is to provide a plasma processing apparatus having enhanced plasma processing uniformity. The plasma processing apparatus comprises a processing chamber 1, means 13 and 14 for supplying processing gas into the processing chamber, evacuation means 25 and 26 for decompressing the processing chamber 1, an electrode 4 on which an object 2 to be processed such as a wafer is placed, and an electromagnetic radiation power supply 5A, wherein at least two kinds of processing gases having different composition ratios of O2 or N2 are introduced into the processing chamber through different gas inlets so as to control the in-plane uniformity of the critical dimension while maintaining the in-plane uniformity of the process depth.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: May 26, 2015
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Hiroyuki Kobayashi, Kenji Maeda, Kenetsu Yokogawa, Masaru Izawa, Tadamitsu Kanekiyo
  • Patent number: 9039864
    Abstract: An electrical ground (36) of an RF impedance matching network (33) is connected to a connection area (50) on the grounded chamber cover (18) of a plasma chamber. The connection area is offset away from the center of the chamber cover toward a workpiece passageway (20). Alternatively, an RF power supply (30) has an electrically grounded output (32) that is connected to a connection area (52) on the chamber cover having such offset. Alternatively, an RF transmission line (37) has an electrically grounded conductor (39) that is connected between a grounded output of an RF power supply and a connection area (52) on the chamber cover having such offset.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: May 26, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Jonghoon Baek, Beom Soo Park, Sam Hyungsam Kim
  • Publication number: 20150136325
    Abstract: A system for modifying the uniformity pattern of a thin film deposited in a plasma processing chamber includes a single radio-frequency (RF) power source that is coupled to multiple points on the discharge electrode of the plasma processing chamber. Positioning of the multiple coupling points, a power distribution between the multiple coupling points, or a combination of both are selected to at least partially compensate for a consistent non-uniformity pattern of thin films produced by the chamber. The power distribution between the multiple coupling points may be produced by an appropriate RF phase difference between the RF power applied at each of the multiple coupling points.
    Type: Application
    Filed: November 12, 2014
    Publication date: May 21, 2015
    Inventors: Zheng John YE, Ganesh BALASUBRAMANIAN, Thuy BRICHER, Jay D. PINSON, II, Hiroji HANAWA, Juan Carlos ROCHA-ALVAREZ, Kwangduk Douglas LEE, Martin Jay SEAMONS, Bok Hoen KIM, Sungwon HA
  • Patent number: 9021984
    Abstract: A plasma processing apparatus includes a processing chamber; a lower electrode provided in the processing chamber and having a base made of a conductive metal to which a high frequency power is applied, the lower electrode also serving as a mounting table for mounting thereon a target substrate; an upper electrode provided in the processing chamber to face the lower electrode; and a focus ring disposed above the lower electrode to surround the target substrate. An electrical connection mechanism is provided between the base of the lower electrode and the focus ring to electrically connect the base of the lower electrode to the focus ring through a current control element, and generates a DC current in accordance with a potential difference.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: May 5, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Takashi Yamamoto, Shunsuke Mizukami, Ryuji Ohtani, Kimlhiro Higuchi
  • Patent number: 9011636
    Abstract: A controller 90 of an automatic matching unit includes a first and a second matching control unit 100, 102 for respectively variably controlling the electrostatic capacitances of a first and a second variable capacitors 80, 82 through a first and a second stepping motor 86, 88 such that a measured absolute value ZMm and a measured phase Z?m of a load impedance obtained by an impedance measuring unit 84 become close to a predetermined reference absolute value ZMs and a predetermined reference phase Z?s, respectively; and a gain control unit 112. The gain control unit 112 variably controls a proportional gain of at least one of the first and the second matching unit based on current electrostatic capacitances NC1 and NC2 of the first and the second variable capacitors 80, 82 obtained by a first and a second electrostatic capacitance monitoring unit 108, 110, respectively.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: April 21, 2015
    Assignee: Tokyo Electron Limited
    Inventor: Mitsutoshi Ashida
  • Patent number: 8991331
    Abstract: A method for providing steerability in a plasma processing environment during substrate processing is provided. The method includes managing, power distribution by controlling power being delivered into the plasma processing environment through an array of electrical elements. The method also includes directing gas flow during substrate processing by controlling the amount of gas flowing through an array of gas injectors into the plasma processing environment, wherein individual ones of the array of gas injectors are interspersed between the array of electrical elements. The method further includes controlling gas exhausting during substrate processing by managing amount of gas exhaust being removed by an array of pumps, wherein the array of electrical elements, the array of gas injectors, and the array of pumps are arranged to create a plurality of plasma regions, each plasma region being substantially similar, thereby creating a uniform plasma region across the substrate.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: March 31, 2015
    Assignee: Lam Research Corporation
    Inventor: Neil Martin Paul Benjamin
  • Patent number: 8992724
    Abstract: A plasma processing apparatus includes a processing chamber which plasma-processes a sample, a first high-frequency power supply which supplies first high-frequency power for plasma generation to the processing chamber, a second high-frequency power supply which supplies second high-frequency power to a sample stage on which the sample is placed and a pulse generation device which generate first pulses for time-modulating the first high-frequency power and second pulses for time-modulating the second high-frequency power. The pulse generation device includes a control device which controls the first and second pulses so that frequency of the first pulses is higher than frequency of the second pulses and the on-period of the second pulse is contained in the on-period of the first pulse.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: March 31, 2015
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Shunsuke Kanazawa, Naoki Yasui, Michikazu Morimoto, Yasuo Ohgoshi
  • Publication number: 20150075719
    Abstract: The disclosure pertains to a capacitively coupled plasma source in which VHF power is applied through an impedance-matching coaxial resonator having a symmetrical power distribution.
    Type: Application
    Filed: November 20, 2014
    Publication date: March 19, 2015
    Inventors: Kartik Ramaswamy, Igor Markovsky, Zhigang Chen, James D. Carducci, Kenneth S. Collins, Shahid Rauf, Nipun Misra, Leonid Dorf, Zheng John Ye
  • Patent number: 8968514
    Abstract: A gas distribution device for a substrate treating apparatus includes a plurality of plasma source electrodes having a first side surface; a plurality of plasma ground electrodes having a second side surface facing the first side surface, the plurality of plasma ground electrodes being alternately arranged with the plurality of plasma source electrodes; and a first gas providing part disposed at each plasma source electrode and including a first space, a plurality of first through-holes in communication with the first space for providing a first process gas between one of the plurality of plasma source electrodes and a corresponding ones of the plurality of plasma ground electrodes, and a first discharging portion at the first side surface.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: March 3, 2015
    Assignee: Jusung Engineering Co., Ltd.
    Inventors: Jae-Chul Do, Bu-Il Jeon, Myung-Gon Song, Jung-Rak Lee
  • Patent number: 8968513
    Abstract: An intensity distribution of an electric field of a high frequency power used for generating plasma is controlled by using an electrode made of a homogeneous material and a moving body. There is provided a plasma processing apparatus for introducing a processing gas into an evacuable processing chamber 100 and generating plasma by a high frequency power and performing a plasma process on a wafer W by the plasma. The plasma processing apparatus includes a dielectric base 105a having a multiple number of fine holes A; a varying member 200 as the moving body provided with a multiple number of rod-shaped members B capable of being inserted into and separated from the fine holes A; and a driving mechanism 215 configured to drive the varying member 200 to allow the rod-shaped members B to be inserted into and separated from the fine holes A.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: March 3, 2015
    Assignee: Tokyo Electron Limited
    Inventor: Daisuke Hayashi
  • Publication number: 20150053645
    Abstract: The plasma processing apparatus includes a dielectric member for defining a chamber, a gas introducing part for introducing a gas into the chamber, a discharge coil disposed on one side of the dielectric member and supplied with AC power to generate a plasma in the chamber into which the gas has been introduced, a conductor member disposed on the other side of the dielectric member and facing the discharge coil with the chamber of the dielectric member interposed therebetween, an AC power source for supplying AC voltage to the discharge coil, an opening communicating with the chamber and serving for applying the plasma to a substrate to be processed, and a moving mechanism for moving the substrate relative to the chamber so that the substrate passes across a front of the opening. The discharge coil is grounded or connected to the conductor member via a voltage generating capacitor or a voltage generating coil.
    Type: Application
    Filed: June 11, 2014
    Publication date: February 26, 2015
    Inventor: Tomohiro OKUMURA
  • Patent number: 8951385
    Abstract: A plasma processing apparatus is offered which has evacuable vacuum vessel, processing chamber disposed inside the vacuum vessel and having inside space in which plasma for processing sample to be processed is generated and in which the sample is placed, unit for supplying gas for plasma generation into processing chamber, vacuum evacuation unit for evacuating inside of processing chamber, helical resonator configured of helical resonance coil disposed outside the vacuum vessel and electrically grounded shield disposed outside the coil, RF power supply of variable frequency for supplying RF electric power in given range to the resonance coil, and frequency matching device capable of adjusting frequency of the RF power supply so as to minimize reflected RF power. The resonance coil has electrical length that is set to integral multiple of one wavelength at given frequency. The helical resonance coil has feeding point connected to ground potential using variable capacitive device.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: February 10, 2015
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Kenji Maeda, Ken Yoshioka, Hiromichi Kawasaki, Takahiro Shimomura
  • Patent number: 8940128
    Abstract: The invention aims at suppressing the self bias generated at the surface of the inner wall of the vacuum processing chamber, to thereby suppress the chipping of the inner wall surface of the vacuum processing chamber or the consumption of the inner parts of the vacuum processing chamber. The present invention provides a plasma processing apparatus comprising a vacuum processing chamber, a vacuum processing chamber lid sealing an upper portion of the vacuum processing chamber, an induction antenna, a Faraday shield disposed between the induction antenna and the vacuum processing chamber lid, and a high frequency power supply for supplying high frequency power to the induction antenna, wherein the induction antenna is divided into two or more parts, the Faraday shield is divided into a division number corresponding to the division number of the induction antenna, and high frequency voltages are applied thereto via a matching box from the one high frequency power supply.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: January 27, 2015
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yusaku Sakka, Ryoji Nishio, Ken Yoshioka
  • Patent number: 8932429
    Abstract: System and methods for plasma processing of a wafer include a chamber with an electrode having a support surface and an outer edge region defined thereon. A radio frequency power is communicated to the electrode via a conductive delivery connection and returned through a conductive return connection. A capacitance is applied to a first end that causes appropriate capacitive adjustment and opposite impedance adjustment at a second end of the conductive delivery connection that is coupled to a dielectric surround structure that surrounds the electrode. The dielectric surround structure presents the opposite impedance adjustment near an outer edge of the electrode, such that increasing the capacitance at the first end causes a corresponding increase of impedance at the second end and a corresponding increase in voltage distribution near the outer edge region of the electrode that decreases toward a center of the support surface of the electrode.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: January 13, 2015
    Assignee: Lam Research Corporation
    Inventors: Zhigang Chen, Eric Hudson
  • Patent number: 8931432
    Abstract: A vacuum processing apparatus is provided, in which a deposition characteristic is easily adjusted, and occurrence of difference in deposition characteristic between deposition chambers can be suppressed, and reduction in equipment cost can be achieved, and a deposition method using the vacuum processing apparatus is provided.
    Type: Grant
    Filed: February 18, 2008
    Date of Patent: January 13, 2015
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Keisuke Kawamura, Hiroshi Mashima
  • Patent number: 8920597
    Abstract: The disclosure pertains to a capactively coupled plasma source in which VHF power is applied through an impedance-matching coaxial resonator having a folded structure and symmetrical power distribution.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: December 30, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Kartik Ramaswamy, Igor Markovsky, Zhigang Chen, James D. Carducci, Kenneth S. Collins, Shahid Rauf, Nipun Misra, Leonid Dorf, Zheng John Ye
  • Patent number: 8911588
    Abstract: Methods and apparatus for modifying RF current path lengths are disclosed. Apparatus includes a plasma processing system having an RF power supply and a lower electrode having a conductive portion. There is included an insulative component disposed in an RF current path between the RF power supply and the conductive portion. There are included a plurality of RF path modifiers disposed within the insulative component, the plurality of RF path modifiers being disposed at different angular positions relative to a reference angle drawn from a center of the insulative component, whereby at least a first one of the plurality of RF path modifiers is electrically connected to the conductive portion and at least a second one of the plurality of the plurality of RF path modifiers is not electrically connected to the conductive portion.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: December 16, 2014
    Assignee: Lam Research Corporation
    Inventors: Sang Ki Nam, Rajinder Dhindsa, Alexei Marakhtanov
  • Patent number: 8911637
    Abstract: A method for processing a substrate in a capacitively-coupled plasma processing system having a plasma processing chamber and at least an upper electrode and a lower electrode. The substrate is disposed on the lower electrode during plasma processing. The method includes providing at least a first RF signal, which has a first RF frequency, to the lower electrode. The first RF signal couples with a plasma in the plasma processing chamber, thereby inducing an induced RF signal on the upper electrode. The method also includes providing a second RF signal to the upper electrode. The second RF signal also has the first RF frequency. A phase of the second RF signal is offset from a phase of the first RF signal by a value that is less than 10%. The method further includes processing the substrate while the second RF signal is provided to the upper electrode.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: December 16, 2014
    Assignee: Lam Research Corporation
    Inventors: Rajinder Dhindsa, Hudson Eric, Alexei Marakhtanov, Andreas Fischer
  • Patent number: 8904957
    Abstract: An etching chamber 1 incorporates a focus ring 9 so as to surround a semiconductor wafer W provided on a lower electrode 4. The plasma processor is provided with an electric potential control DC power supply 33 to control the electric potential of this focus ring 9, and so constituted that the lower electrode 4 is supplied with a DC voltage of, e.g., ?400 to ?600 V to control the electric potential of the focus ring 9. This constitution prevents surface arcing from developing along the surface of a substrate to be processed.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: December 9, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Akihiro Kikuchi, Satoshi Kayamori, Shinya Shima, Yuichiro Sakamoto, Kimihiro Higuchi, Kaoru Oohashi, Takehiro Ueda, Munehiro Shibuya, Tadashi Gondai
  • Patent number: 8906246
    Abstract: A film deposition method includes steps of transferring a substrate having a pattern including a concave part into a vacuum chamber; supplying a first reaction gas to the substrate from a first reaction gas supplying part, thereby allowing the first reaction gas to be adsorbed on the substrate; supplying a second reaction gas that reacts with the first reaction gas to the substrate from a second reaction gas supplying part, thereby allowing the first reaction gas adsorbed on the substrate to react with the second reaction gas and forming a reaction product of the first and the second reaction gases on the substrate; supplying an alteration gas to the substrate through an activated gas supplying part capable of activating the alteration gas; and supplying an etching gas to the substrate chamber through the activated gas supplying part under an environment where the reaction product is not formed.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: December 9, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Hitoshi Kato, Takeshi Kumagai