Electrically Coupled To A Power Supply Or Matching Circuit Patents (Class 156/345.44)
  • Patent number: 8671882
    Abstract: A plasma processing apparatus capable of, over a prolonged period of time, controlling a decrease in the value of a DC current flowing within an accommodating compartment. The plasma processing apparatus comprises an accommodating compartment adapted to accommodate a substrate and perform a plasma treatment thereon, a high-frequency power source adapted to supply high-frequency power to the inside of the accommodating compartment; a DC electrode adapted to apply a DC voltage to the inside of the accommodating compartment, a ground electrode provided within the accommodating compartment and used for the applied DC voltage, and an exhaust unit adapted to evacuate the inside of the accommodating compartment.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: March 18, 2014
    Assignee: Tokyo Electron Limited
    Inventor: Masanobu Honda
  • Publication number: 20140069584
    Abstract: A plasma reactor includes an RF-driven ceiling electrode overlying a process zone and two (or more) counter electrodes underlying the process zone and facing different portions of the process zones, two (or more) variable reactances connected between respective ones of the counter electrodes and ground, and a controller governing the variable reactances to control distribution of a plasma parameter such as plasma ion density or ion energy.
    Type: Application
    Filed: August 5, 2013
    Publication date: March 13, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Yang Yang, Kartik Ramaswamy, Kenneth S. Collins, Steven Lane, Douglas A. Buchberger, JR., Lawrence Wong, Nipun Misra
  • Publication number: 20140060740
    Abstract: The invention provides a plasma processing device, wherein the upper electrode and the lower electrode are in the vacuum chamber. The chip is placed in the lower electrode. The first plate is placed between the upper electrode and the lower electrode, and the first plate includes a plurality of first voids. The second plate is placed between the first plate and the lower electrode, and the second plate includes a plurality of second voids. The high frequency power is provided by the upper electrode and the lower electrode in the vacuum chamber, and the plasma is generated between the third plate and the upper electrode. The plasma is filtered by the third void, the first void, and the second void.
    Type: Application
    Filed: October 17, 2012
    Publication date: March 6, 2014
    Applicant: Chang Gung University
    Inventors: Chi-Hsien HUANG, Chao-Sung LAI, Chien CHOU, Chu-Fa CHAN
  • Publication number: 20140054268
    Abstract: System and methods for plasma processing of a wafer include a chamber with an electrode having a support surface and an outer edge region defined thereon. A radio frequency power is communicated to the electrode via a conductive delivery connection and returned through a conductive return connection. A capacitance is applied to a first end that causes appropriate capacitive adjustment and opposite impedance adjustment at a second end of the conductive delivery connection that is coupled to a dielectric surround structure that surrounds the electrode. The dielectric surround structure presents the opposite impedance adjustment near an outer edge of the electrode, such that increasing the capacitance at the first end causes a corresponding increase of impedance at the second end and a corresponding increase in voltage distribution near the outer edge region of the electrode that decreases toward a center of the support surface of the electrode.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 27, 2014
    Applicant: Lam Research Corporation
    Inventors: Zhigang Chen, Eric Hudson
  • Publication number: 20140057447
    Abstract: Semiconductor processing systems are described including a process chamber. The process chamber may include a lid assembly, grid electrode, conductive insert, and ground electrode. Each component may be coupled with one or more power supplies operable to produce a plasma within the process chamber. Each component may be electrically isolated through the positioning of a plurality of insulation members. The one or more power supplies may be electrically coupled with the process chamber with the use of switching mechanisms. The switches may be switchable to electrically couple the one or more power supplies to the components of the process chamber.
    Type: Application
    Filed: March 14, 2013
    Publication date: February 27, 2014
    Applicant: Applied Materials, Inc.
    Inventor: Applied Materials, Inc.
  • Publication number: 20140048210
    Abstract: A substrate processing apparatus includes a chamber accommodating a wafer, a susceptor disposed inside the chamber and on which the wafer is held, an upper electrode facing the susceptor, and a second high frequency power source connected to the susceptor, wherein the upper electrode is electrically connected to a ground and is moveable with respect to the susceptor. The substrate processing apparatus divides a potential difference between plasma generated in a processing space and the ground into a potential difference between the plasma and a dielectric and a potential difference between the dielectric and the ground by burying the dielectric in the upper electrode, and changes a gap between the upper electrode and the susceptor.
    Type: Application
    Filed: October 23, 2013
    Publication date: February 20, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Nobuhiro WADA, Makoto KOBAYASHI, Hiroshi TSUJIMOTO, Jun TAMURA, Mamoru NAOI, Jun OYABU
  • Patent number: 8652342
    Abstract: A semiconductor fabrication apparatus and a method of fabricating a semiconductor device using the same performs semiconductor etching and deposition processes at an edge of a semiconductor substrate after disposing the semiconductor substrate at a predetermined place in the semiconductor fabrication apparatus. The semiconductor fabrication apparatus has lower, middle and upper electrodes sequentially stacked. The semiconductor substrate is disposed on the middle electrode. Semiconductor etching and deposition processes are performed on the semiconductor substrate in the semiconductor fabrication apparatus. The semiconductor fabrication apparatus forms electrical fields along an edge of the middle electrode during performance of the semiconductor etching and deposition processes.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: February 18, 2014
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Kyung-Woo Lee, Jin-Sung Kim, Joo-Byoung Yoon, Yeong-Cheol Lee, Sang-Jun Park, Hee-Kyeong Jeon
  • Patent number: 8652297
    Abstract: A coaxial VHF power coupler includes conductive element inside a hollow cylindrical outer conductor of the power coupler and surrounding an axial section of a hollow cylindrical inner conductor of the power coupler. Respective plural motor drives contacting the hollow cylindrical outer conductor are connected to respective locations of the movable conductive element.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: February 18, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Zhigang Chen, Kartik Ramaswamy, James D. Carducci, Shahid Rauf, Andrew Nguyen
  • Patent number: 8628640
    Abstract: A plasma processing unit of the present invention includes a processing container whose inner pressure can be reduced, a first electrode arranged in the processing container, a process gas supplying unit that supplies a process gas into the processing container, a high-frequency electric power source that outputs high-frequency electric power having a frequency in a VHF band, a matching unit electrically connected to the high-frequency electric power source and the first electrode for impedance matching, and a transmission line that transmits the high-frequency electric power from the high-frequency electric power source to the matching unit. A substrate to be processed is adapted to be arranged in the processing container. The high-frequency electric power transmitted to the first electrode is adapted to generate plasma in such a manner that the substrate to be processed can undergo a plasma process by means of the plasma.
    Type: Grant
    Filed: February 11, 2004
    Date of Patent: January 14, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Toshihiro Hayami, Masahide Iwasaki, Junichi Takahira, Kazuyoshi Watanabe, Shinichi Komatsu, Yuichi Sasaki
  • Publication number: 20140011356
    Abstract: A chuck, a system including a chuck and a method for making a semiconductor device are disclosed. In one embodiment the chuck includes a first conductive region configured to be capacitively coupled to a first RF power generator, a second conductive region configured to be capacitively coupled to a second RF power generator and an insulation region that electrically insulates the first conductive region from the second conductive region.
    Type: Application
    Filed: July 6, 2012
    Publication date: January 9, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventor: Manfred Engelhardt
  • Patent number: 8622021
    Abstract: A method of increasing mean time between cleans of a plasma etch chamber and chamber parts lifetimes is provided. Semiconductor substrates are plasma etched in the chamber while using at least one sintered silicon nitride component exposed to ion bombardment and/or ionized halogen gas. The sintered silicon nitride component includes high purity silicon nitride and a sintering aid consisting of silicon dioxide. A plasma processing chamber is provided including the sintered silicon nitride component. A method of reducing metallic contamination on the surface of a silicon substrate during plasma processing is provided with a plasma processing apparatus including one or more sintered silicon nitride components. A method of manufacturing a component exposed to ion bombardment and/or plasma erosion in a plasma etch chamber, comprising shaping a powder composition consisting of high purity silicon nitride and silicon dioxide and densifying the shaped component.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: January 7, 2014
    Assignees: Lam Research Corporation, Ceradyne Inc.
    Inventors: Travis R. Taylor, Mukund Srinivasan, Bobby Kadkhodayan, K. Y. Ramanujam, Biljana Mikijelj, Shanghua Wu
  • Patent number: 8617352
    Abstract: An apparatus and a method comprising same for removing metal oxides from a substrate surface are disclosed herein. In one particular embodiment, the apparatus comprises an electrode assembly that has a housing that is at least partially comprised of an insulating material and having an internal volume and at least one fluid inlet that is in fluid communication with the internal volume; a conductive base connected to the housing comprising a plurality of conductive tips that extend therefrom into a target area and a plurality of perforations that extend therethrough and are in fluid communication with the internal volume to allow for a passage of a gas mixture comprising a reducing gas.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: December 31, 2013
    Assignees: Air Products and Chemicals, Inc., BTU International, Inc.
    Inventors: Chun Christine Dong, Wayne Thomas McDermott, Alexander Schwarz, Gregory Khosrov Arslanian, Richard E. Patrick, Gary A. Orbeck, Donald A. Seccombe, Jr.
  • Patent number: 8613827
    Abstract: A plasma treatment system for treating a workpiece with a downstream-type plasma. The processing chamber of the plasma treatment system includes a chamber lid having a plasma cavity disposed generally between a powered electrode and a grounded plate, a processing space separated from the plasma cavity by the grounded plate, and a substrate support in the processing space for holding the workpiece. A direct plasma is generated in the plasma cavity. The grounded plate is adapted with openings that remove electrons and ions from the plasma admitted from the plasma cavity into the processing space to provide a downstream-type plasma of free radicals. The openings may also eliminate line-of-sight paths for light between the plasma cavity and processing space. In another aspect, the volume of the processing chamber may be adjusted by removing or inserting at least one removable sidewall section from the chamber lid.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: December 24, 2013
    Assignee: Nordson Corporation
    Inventors: James Scott Tyler, James D. Getty, Thomas V. Bolden, II, Robert Sergei Condrashoff
  • Patent number: 8603293
    Abstract: A plasma processing apparatus includes a processing container, an exhaust unit, an exhaust plate, an RF power application unit connected to a second electrode but not connected to the first electrode and configured to apply an RF power with a single frequency, the second electrode being connected to no power supply that applies an RF power other than the RF power with the single frequency, a DC power supply connected to the first electrode but not connected to the second electrode, the first electrode being connected to no power supply that applies an RF power, and a conductive member within the process container grounded to release through plasma a current caused by the DC voltage, the conductive member supported by the first shield part and laterally protruding therefrom only at a position that is located, in a height-wise direction, between a mount face and the exhaust plate and below a bottom of a focus ring.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: December 10, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Akira Koshiishi, Masaru Sugimoto, Kunihiko Hinata, Noriyuki Kobayashi, Chishio Koshimizu, Ryuji Ohtani, Kazuo Kibi, Masashi Saito, Naoki Matsumoto, Yoshinobu Ohya, Manabu Iwata, Daisuke Yano, Yohei Yamazawa, Hidetoshi Hanaoka, Toshihiro Hayami, Hiroki Yamazaki, Manabu Sato
  • Publication number: 20130306240
    Abstract: A system and method for controlling plasma. The system includes a semiconductor chamber comprising a powered electrode, another electrode, and an adjustable coupling to ground circuit. The powered electrode is configured to receive a wafer or substrate. There is at least one grounded electrode configured to generate an electrical connection with the powered electrode. At least one of the grounded electrodes is electrically coupled to the adjustable coupling to ground circuit. The adjustable coupling to ground circuit is configured to modify the impedance of the grounded electrode. The ion energy of the plasma is controlled by the adjustable coupling to ground circuit.
    Type: Application
    Filed: July 26, 2013
    Publication date: November 21, 2013
    Applicant: Lam Research Corporation
    Inventors: Tuqiang Ni, Wenli Collison
  • Publication number: 20130299090
    Abstract: A plasma generator 1 includes: a liquid storage section 4 that stores a liquid containing water; a gas storage section 5 that stores a gas; a partition 3 provided with a gas passage 3a to introduce the gas in the gas storage section 5 into the liquid storage section 4 and separating the liquid storage section 4 from the gas storage section 5; a first electrode 12 provided in the gas storage section 5; and a second electrode 13 separated from the first electrode 12 and provided in a manner such that at least the portion coupled with the first electrode 12 is in contact with the liquid in the liquid storage section 4. A predetermined voltage is applied between the first electrode 12 and the second electrode 13 while the second electrode 13 is grounded.
    Type: Application
    Filed: January 18, 2012
    Publication date: November 14, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Akihiko Saitoh, Wataru Sanematsu, Kenji Narita, Masaharu Machi
  • Patent number: 8578879
    Abstract: Embodiments of impedance matching networks are provided herein. In some embodiments, an impedance matching network may include a coaxial resonator having an inner and an outer conductor. A tuning capacitor may be provided for variably controlling a resonance frequency of the coaxial resonator. The tuning capacitor may be formed by a first tuning electrode and a second tuning electrode and an intervening dielectric, wherein the first tuning electrode is formed by a portion of the inner conductor. A load capacitor may be provided for variably coupling energy from the inner conductor to a load. The load capacitor may be formed by the inner conductor, an adjustable load electrode, and an intervening dielectric.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: November 12, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Kartik Ramaswamy, Hiroji Hanawa, Kenneth S. Collins, Lawrence Wong, Samer Banna, Andrew Nguyen
  • Publication number: 20130292057
    Abstract: An overhead RF coupling chamber couples RF power to a ceiling electrode of a plasma reactor chamber, the RF coupling chamber having a resonant annular volume defined by coaxial cylindrical conductors, one of which is coupled to an RF power source, the chamber ceiling having an annular gap around the electrode, and the resonant annular volume being aligned with the annular gap so that the resonant annular volume opens into the interior of the main chamber, thereby enhancing the electrical length of the RF coupling chamber.
    Type: Application
    Filed: October 1, 2012
    Publication date: November 7, 2013
    Inventors: Kartik Ramaswamy, Steven Lane
  • Patent number: 8573152
    Abstract: A showerhead electrode, a gasket set and an assembly thereof in plasma reaction chamber for etching semiconductor substrates are provided with improved a gas injection hole pattern, positioning accuracy and reduced warping, which leads to enhanced uniformity of plasma processing rate. A method of assembling the inner electrode and gasket set to a supporting member includes simultaneous engagement of cam locks.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: November 5, 2013
    Assignee: Lam Research Corporation
    Inventors: Anthony de la Llera, Pratik Mankidy, Michael C. Kellogg, Rajinder Dhindsa
  • Patent number: 8568554
    Abstract: In a gas introduction structure that is reciprocatingly movable in a predetermined direction, a processing gas introduction system is configured to introduce a processing gas into a processing chamber in which a substrate is subjected to a predetermined processing under a clean atmosphere; and a processing gas supply line is configured to be connected to the processing gas introduction system and an external processing gas supply source to supply the processing gas from the processing gas supply source to the processing gas introduction system, mutual relative positions of the processing gas supply source and the processing gas introduction system being changed. The processing gas supply line includes: a first bendable portion connected to the processing gas supply source; a second bendable portion connected to the processing gas introduction system; and a non-bendable pipe interposed between the first bendable portion and the second bendable portion.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: October 29, 2013
    Assignee: Tokyo Electron Limited
    Inventor: Daisuke Hayashi
  • Publication number: 20130260567
    Abstract: Circuits, methods, chambers, systems, and computer programs are presented for processing wafers. A wafer processing apparatus includes top and bottom electrodes inside a processing chamber; a first, second, third, and fourth radio frequency (RF) power sources; and one or more resonant circuits. The first, second, and third RF power sources are coupled to the bottom electrode. The top electrode may be coupled to the fourth RF power source, to electrical ground, or to the one or more resonant circuits. Each of the one or more resonant circuits, which are coupled between the top electrode and electrical ground, include a tune-in element operable to vary a frequency-dependent impedance presented by the resonant circuit. The wafer processing apparatus is configurable to select the RF power sources for wafer processing operations, as well as the connections to the top electrode in order to provide plasma and etching uniformity for the wafer.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 3, 2013
    Applicant: Lam Research Corporation
    Inventors: Alexei Marakhtanov, Rajinder Dhindsa
  • Patent number: 8547021
    Abstract: A plasma processing device includes a first electrode plate (3), a second electrode plate (4), a matching device (8), a power distribution device (9) and a power supply device (1). The first electrode plate (3) includes at least two sub-electrode plates (31, 32) insulated from each other; the power supply device (1) is connected to the power distribution device (9) via the matching device (8); the power distribution device (9) is connected to the first electrode plate (3) for inputting and distributing the power of the power supply device (1) to each of the sub-electrode plates (31, 32); the power distribution device (9) at least includes capacitors (C1, C2) and/or inductances (L1, L2).
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: October 1, 2013
    Assignee: Beijing NMC Co. Ltd.
    Inventor: Gang Wei
  • Patent number: 8547085
    Abstract: An arrangement for measuring process parameters within a processing chamber is provided. The arrangement includes a probe arrangement disposed in an opening of an upper electrode. Probe arrangement includes a probe head, which includes a head portion and a flange portion. The arrangement also includes an o-ring disposed between the upper electrode and the flange portion. The arrangement further includes a spacer made of an electrically insulative material positioned between the head portion and the opening of the upper electrode to prevent the probe arrangement from touching the upper electrode. The spacer includes a disk portion configured for supporting an underside of the flange portion. The spacer also includes a hollow cylindrical portion configured to encircle the head portion. The spacer forms a right-angled path between the o-ring and an opening to the processing chamber to prevent direct line-of-sight path between the o-ring and the opening to the processing chamber.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: October 1, 2013
    Assignee: Lam Research Corporation
    Inventors: Jean-Paul Booth, Douglas Keil
  • Patent number: 8545670
    Abstract: A plasma processing apparatus for processing a substrate using plasma includes a first electrode configured to mount the substrate, a second electrode disposed to face the first electrode with a predetermined space, a chamber containing the first electrode and the second electrode, the chamber being capable of adjusting an inside atmosphere, a first electric power source device configured to apply a first RF voltage for controlling a self-bias voltage generated on the substrate to the first electrode, the first electric power source device applying a substantially constant width and a substantially constant value in a peak-to-peak voltage of an RF voltage of a first frequency at intervals, and a second electric power source device configured to apply a second RF voltage of a second frequency for generating plasma between the first and second electrodes to one of the first electrode and the second electrode.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: October 1, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akihiro Kojima, Hisataka Hayashi, Akio Ui
  • Patent number: 8545671
    Abstract: A plasma processing apparatus for generating a plasma in a plasma processing space in a processing chamber and plasma-processing a target object includes a plasma-exciting high frequency power supply for applying a plasma-exciting high frequency power. Further, the plasma processing apparatus includes at least one of a potential-controlling high frequency power supply for applying a potential-controlling high frequency power having a frequency lower than that of the plasma-exciting high frequency power and a DC power supply for applying a DC voltage; and a mounting table for mounting thereon a target object. Furthermore, the plasma processing apparatus includes an auxiliary electrode, provided at a position outer side of the target object mounted on the mounting table while facing the mounting table, connected to at least one of the potential-controlling high frequency power supply and the DC power supply.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: October 1, 2013
    Assignee: Tokyo Electron Limited
    Inventor: Masanobu Honda
  • Patent number: 8536071
    Abstract: An electrode assembly for a plasma reaction chamber used in semiconductor substrate processing. The assembly includes an upper showerhead electrode which is mechanically attached to a backing plate by a series of spaced apart cam locks. A thermally and electrically conductive gasket with projections thereon is compressed between the showerhead electrode and the backing plate at a location three to four inches from the center of the showerhead electrode. A guard ring surrounds the backing plate and is movable to positions at which openings in the guard ring align with openings in the backing plate so that the cam locks can be rotated with a tool to release locking pins extending from the upper face of the electrode.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: September 17, 2013
    Assignee: Lam Research Corporation
    Inventors: Gregory R. Bettencourt, Gautam Bhattacharyya, Simon Gosselin, Sandy Chao
  • Patent number: 8528498
    Abstract: An integrated steerability array arrangement for managing plasma uniformity within a plasma processing environment to facilitate processing of a substrate is provided. The arrangement includes an array of electrical elements. The arrangement also includes an array of gas injectors, wherein the array of electrical elements and the array of gas injectors are arranged to create a plurality of plasma regions, each plasma region of the plurality of plasma regions being substantially similar. The arrangement further includes an array of pumps, wherein individual one of the array of pumps being interspersed among the array of electrical elements and the array of gas injectors. The array of pumps is configured to facilitate local removal of gas exhaust to maintain a uniform plasma region within the plasma processing environment.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: September 10, 2013
    Assignee: Lam Research Corporation
    Inventor: Neil Benjamin
  • Patent number: 8529730
    Abstract: In a plasma processing apparatus including a vacuum-evacuable processing chamber, a first lower electrode for supporting a substrate to be processed thereon is disposed in the processing chamber and an upper electrode is disposed above the first lower electrode to face the first lower electrode. Further, a second lower electrode is disposed under the first lower electrode while being electrically isolated from the first lower electrode. A processing gas supply unit supplies a processing gas into a space between the upper electrode and the first lower electrode. A first high frequency power supply unit applies a first high frequency power of a first frequency to the first lower electrode, and a second high frequency power supply unit applies a second high frequency power of a second frequency higher than the first frequency to the second lower electrode.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: September 10, 2013
    Assignee: Tokyo Electron Limited
    Inventor: Yohei Yamazawa
  • Patent number: 8525417
    Abstract: A discharge electrode array for a silicon-based thin film solar cell deposition chamber is provided, relating to solar cell technologies. The discharge electrode array includes a signal feed component having a rectangular-shaped end, a flat waist corresponding to a feed-in port located in a hallowed rectangular area on a center region of a cathode plate having a shielding cover, connecting a feed-in power supply signal by surface contact. The electrode array includes at least a set of cathode plates and an anode plate, with two cathode plates sharing or surrounding one anode plate. Uniform large area and stable discharge driven by the RF/VHF power supply signal can be achieved, and the standing wave and the skin effect can be effectively removed. The production efficiency can be improved and the cost can be reduced.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: September 3, 2013
    Assignee: Shenzhen TRONY Science & Technology Development Co., Ltd.
    Inventors: Zhijian Li, Yi Li, Zhubing He, Shengming Hu, Chunzhu Wang, Jianhua Zhou
  • Patent number: 8518211
    Abstract: A system and method for controlling plasma. The system includes a semiconductor chamber comprising a powered electrode, another electrode, and an adjustable coupling to ground circuit. The powered electrode is configured to receive a wafer or substrate. There is at least one grounded electrode configured to generate an electrical connection with the powered electrode. At least one of the grounded electrodes is electrically coupled to the adjustable coupling to ground circuit. The adjustable coupling to ground circuit is configured to modify the impedance of the grounded electrode. The ion energy of the plasma is controlled by the adjustable coupling to ground circuit.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: August 27, 2013
    Assignee: Lam Research Corporation
    Inventors: Tuqiang Ni, Wenli Collison
  • Publication number: 20130213576
    Abstract: The invention relates to an apparatus for the treatment of surfaces of a substrate by means of plasma. Said apparatus comprises a plasma source designed to generate plasma and to eject it into a plasma space with a longitudinal plasma extent, said extent extending along a main motion component of the plasma, an at least partially conductive first holding apparatus designed to hold a first workpiece, and a voltage source connected to the first holding apparatus, said voltage source being designed to generate a first acceleration voltage and to apply it to the first holding apparatus. The first holding apparatus is arranged and designed relative to the plasma source in such a manner that it places the first workpiece in such a manner that the plasma reaches the first workpiece when the first acceleration voltage is applied.
    Type: Application
    Filed: August 16, 2011
    Publication date: August 22, 2013
    Applicant: Forschungsverbund Berlin E.V.
    Inventors: Roland Gesche, Horia-Eugen Porteanu, Silvio Kühn
  • Publication number: 20130213575
    Abstract: One embodiment of the present disclosure provides an atmospheric pressure plasma generating apparatus. The apparatus includes an upper electrode having an air permeable inner structure, a lower electrode separated from the upper electrode, and a power source applying voltage to the upper electrode or the lower electrode. The apparatus further includes a plasma generating region placed in a space between the upper electrode and the lower electrode. The upper electrode serves as a passageway using the air permeable inner structure, through which reaction gas is supplied to the plasma generating region from outside.
    Type: Application
    Filed: November 19, 2012
    Publication date: August 22, 2013
    Inventors: Il Wook Kim, Chang Duek Choi
  • Publication number: 20130213573
    Abstract: Systems and methods for state-based adjustment of power and frequency are described. A primary generator of a system includes a primary power supply for supplying a primary radio frequency (RF) signal to an electrode. The primary generator further includes an automatic frequency control (AFC) to provide a first frequency input to the primary power supply when a pulsed signal is in a first state. A secondary generator of the system includes a secondary power supply for supplying a secondary RF signal to the electrode. The secondary generator also includes an AFC to provide a second frequency input to the secondary power supply when the pulsed signal is in the first state. The secondary generator includes an AFC to provide a third frequency input to the secondary power supply when the pulsed signal is in a second state. The system includes a digital pulsing source for generating the pulsed signal.
    Type: Application
    Filed: September 14, 2012
    Publication date: August 22, 2013
    Applicant: LAM RESEARCH CORPORATION
    Inventors: John C. Valcore, JR., Bradford J. Lyndaker
  • Patent number: 8513563
    Abstract: In a plasma processing apparatus, a first electrode is attached to a grounded evacuable processing chamber via an insulating material or a space and a second electrode disposed in parallel with the first electrode spaced apart therefrom in the processing chamber, the second electrode supporting a target substrate to face the first electrode. A first radio frequency power supply unit applies a first radio frequency power of a first frequency to the second electrode, and a second radio frequency power supply unit applies a second radio frequency power of a second frequency lower than the first frequency to the second electrode. Further, a processing gas supply unit supplies a processing gas to a processing space formed by the first and the second electrode and a sidewall of the processing chamber. Moreover, an inductor electrically is connected between the first electrode and a ground potential.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: August 20, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Naoki Matsumoto, Chishio Koshimizu, Yoshinobu Hayakawa, Hidetoshi Hanaoka, Manabu Iwata, Satoshi Tanaka
  • Publication number: 20130203258
    Abstract: A replaceable chamber element for use in a plasma processing system, such as a plasma etching system, is described. The replaceable chamber element includes a chamber component configured to be exposed to plasma in a plasma processing system, wherein the chamber component is fabricated of a ferroelectric material.
    Type: Application
    Filed: February 5, 2012
    Publication date: August 8, 2013
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Zhiying CHEN, Jianping ZHAO, Lee CHEN, Merritt FUNK, Radha SUNDARARAJAN
  • Publication number: 20130199727
    Abstract: Provided is a capacitively coupled plasma processing apparatus which improves a controllability of the RF bias function and reliably prevents unwanted resonance from being generated on a RF transmission line between a counter electrode and ground potential to enhance reliability of the plasma process. In the capacitive coupled type plasma processing apparatus, three kinds of RF powers from a first, second and third RF power supplies (35, 36, 38) are superimposed and applied to susceptor (lower electrode) (16). In such a three-frequency superimposing and applying application scheme, the frequency-impedance characteristic around upper electrode (48) is considered to prevent a serial resonance from occurring on an RF transmission line around upper electrode (48) in consideration of all the low order frequencies of the IMD relevant to and affecting the plasma process.
    Type: Application
    Filed: January 9, 2013
    Publication date: August 8, 2013
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: TOKYO ELECTRON LIMITED
  • Patent number: 8496781
    Abstract: The invention provides a plasma processing apparatus which is based upon a dry etching apparatus and which can inhibit the contamination of a work piece caused by sputtering onto a wall of a vacuum chamber, the occurrence of a foreign matter, the increase of a running cost for replacing the walls of the vacuum chamber and the deterioration of a rate of operation.
    Type: Grant
    Filed: July 18, 2005
    Date of Patent: July 30, 2013
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Kenetsu Yokogawa, Kenji Maeda, Masaru Izawa
  • Patent number: 8491750
    Abstract: A plasma confinement assembly for a semiconductor processing chamber is provided. The assembly includes a plurality of confinement rings disposed over each other, and each of the plurality of confinement rings is separated by a space. A plunger moveable in a plane substantially orthogonal to the confinement rings. A proportional adjustment support is provided and coupled to the plunger. The proportional adjustment support is configured to move the confinement rings to one or more positions, such that the plunger is settable in positions along the plane. The positions define the space separating confinement rings, and the space is proportionally set between the confinement rings. The proportional adjustment support is defined by a plurality of support legs, and each of the support legs is pivotably interconnected with at least one other support leg.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: July 23, 2013
    Assignee: Lam Research Corporation
    Inventor: Peter Cirigliano
  • Patent number: 8480850
    Abstract: A plasma treatment system for treating a workpiece with a downstream-type plasma. The processing chamber of the plasma treatment system includes a chamber lid having a plasma cavity disposed generally between a powered electrode and a grounded plate, a processing space separated from the plasma cavity by the grounded plate, and a substrate support in the processing space for holding the workpiece. A direct plasma is generated in the plasma cavity. The grounded plate is adapted with openings that remove electrons and ions from the plasma admitted from the plasma cavity into the processing space to provide a downstream-type plasma of free radicals. The openings may also eliminate line-of-sight paths for light between the plasma cavity and processing space. In another aspect, the volume of the processing chamber may be adjusted by removing or inserting at least one removable sidewall section from the chamber lid.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: July 9, 2013
    Assignee: Nordson Corporation
    Inventors: James Scott Tyler, James D. Getty, Thomas V. Bolden, II, Robert Sergei Condrashoff
  • Patent number: 8480849
    Abstract: A substrate processing apparatus capable of preventing the abnormal discharge from being generated on a substrate. A housing chamber houses the substrate. A mounting stage arranged in the housing chamber, is configured to enable the substrate to be mounted thereon. A disc-like electrode structure is connected to a high-frequency power supply, and connected to a gas supply apparatus via at least one gas supply system. The electrode structure has therein at least one buffer chamber and a plurality of connecting sections connected to the gas supply system. The buffer chamber is communicated with the inside of the housing chamber via a number of gas holes, and is communicated with the gas supply system via the plurality of connecting sections. The plurality of connecting sections for the buffer chamber are arranged on the circumference of a circle centering around the center of the electrode structure at equal intervals.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: July 9, 2013
    Assignee: Tokyo Electron Limited
    Inventor: Tatsuya Handa
  • Publication number: 20130160795
    Abstract: In some embodiments, the present disclosure relates to a plasma etching system having direct and localized plasma sources in communication with a processing chamber. The direct plasma is operated to provide a direct plasma to the processing chamber for etching a semiconductor workpiece. The direct plasma has a high potential, formed by applying a large bias voltage to the workpiece. After etching is completed the bias voltage and direct plasma source are turned off. The localized plasma source is then operated to provide a low potential, localized plasma to a position within the processing chamber that is spatially separated from the workpiece. The spatial separation results in formation of a diffused plasma having a zero/low potential that is in contact with the workpiece. The zero/low potential of the diffused plasma allows for reactive ashing to be performed, while mitigating workpiece damage resulting from ion bombardment caused by positive plasma potentials.
    Type: Application
    Filed: December 27, 2011
    Publication date: June 27, 2013
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ying Xiao, Chin-Hsiang Lin
  • Patent number: 8470126
    Abstract: An apparatus for etching features in an etch layer is provided. A plasma processing chamber is provided, comprising a chamber wall, a chuck, a pressure regulator, an electrode or coil, a gas inlet, and a gas outlet. A gas source comprises a fluorine free deposition gas source and an etch gas source. A controller comprises at least one processor and computer readable media, comprising computer readable code for providing a conditioning for a patterned pseudo-hardmask, wherein the conditioning comprises computer readable code providing a fluorine free deposition gas comprising a hydrocarbon gas, computer readable code for forming a plasma, computer readable code for providing a bias less than 500 volts, and computer readable code for forming a deposition on top of the patterned pseudo-hardmask, computer readable code for etching the etch layer, and computer readable code for cyclically repeating the conditioning and etching at least twice.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: June 25, 2013
    Assignee: Lam Research Corporation
    Inventors: Ben-Li Sheu, Rajinder Dhindsa, Vinay Pohray, Eric A. Hudson, Andrew D. Bailey, III
  • Patent number: 8470095
    Abstract: A process for surface preparation of a substrate (2), which comprises introducing or running a substrate (2) into a reaction chamber (6, 106). A dielectric barrier (14, 114) is placed between electrodes (1, 10, 110). A high-frequency electrical voltage is generated, to generate filamentary plasma (12, 112). Molecules (8, 108) are introduced into the reaction chamber (6, 106). Upon contact with the plasma, they generate active species typical of reacting with the surface of the substrate. An adjustable inductor (L) placed in parallel with the inductor of the installation is employed to reduce the phase shift between the voltage and the current generated and to increase the time during which the current flows in the plasma (12, 112).
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: June 25, 2013
    Assignee: AGC Glass Europe
    Inventors: Eric Tixhon, Joseph Leclercq, Eric Michel
  • Publication number: 20130153148
    Abstract: Substrate processing systems are described that have a capacitively coupled plasma (CCP) unit positioned inside a process chamber. The CCP unit may include a plasma excitation region formed between a first electrode and a second electrode. The first electrode may include a first plurality of openings to permit a first gas to enter the plasma excitation region, and the second electrode may include a second plurality of openings to permit an activated gas to exit the plasma excitation region. The system may further include a gas inlet for supplying the first gas to the first electrode of the CCP unit, and a pedestal that is operable to support a substrate. The pedestal is positioned below a gas reaction region into which the activated gas travels from the CCP unit.
    Type: Application
    Filed: February 21, 2013
    Publication date: June 20, 2013
    Applicant: Applied Materials, Inc.
    Inventor: Applied Materials, Inc.
  • Patent number: 8460508
    Abstract: Synchronous pulse plasma etching equipment includes a first electrode and one or more second electrodes configured to generate plasma in a plasma etching chamber. A first radio frequency power output unit is configured to apply a first radio frequency power having a first frequency and a first duty ratio to the first electrode, and to output a control signal including information about a phase of the first radio frequency power. At least one second radio frequency power output unit is configured to apply a second radio frequency power having a second frequency and a second duty ratio to a corresponding second electrode among the second electrodes. The second radio frequency power output unit is configured to control the second radio frequency power to be synchronized with the first radio frequency power or to have a phase difference from the first radio frequency power in response to the control signal.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: June 11, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ken Tokashiki, Hong Cho, Jeong-Dong Choe
  • Patent number: 8453600
    Abstract: Disclosed is a substrate processing apparatus, comprising a processing chamber to accommodate one or more substrates, a gas supply section to supply processing gas into the processing chamber, a gas discharge section to discharge the processing gas from the processing chamber, at least a pair of electrodes provided inside the heating section to plasma-excite the processing gas, a protection container made of dielectric to air-tightly accommodate the electrodes, an electricity-receiving section which is electrically connected to the electrodes and which is accommodated in the protection container, and an electricity-feeding section to which high frequency electric power is applied and which is provided near the electricity-receiving section in a state in which at least a wall of the protection container is interposed between the electricity-receiving section and the electricity-feeding section, wherein electric power is supplied from the electricity-feeding section to the electricity-receiving section by elect
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: June 4, 2013
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Tomoyasu Miyashita, Nobuo Ishimaru
  • Patent number: 8449715
    Abstract: An internal member of a plasma processing vessel includes a base material and a film formed by thermal spraying of ceramic on a surface of the base material. The film is formed of ceramic which includes at least one kind of element selected from the group consisting of B, Mg, Al, Si, Ca, Cr, Y, Zr, Ta, Ce and Nd. In addition, at least a portion of the film is sealed by a resin.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: May 28, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Kouji Mitsuhashi, Hiroyuki Nakayama, Nobuyuki Nagayama, Tsuyoshi Moriya, Hiroshi Nagaike
  • Patent number: 8440050
    Abstract: A plasma processing apparatus includes a vacuum evacuable processing chamber, a first electrode divided into an outer electrode and an inner electrode, a second electrode, a first and a second high frequency power application unit for applying to the second electrode a first and a second high frequency power having a relatively high frequency and a relatively low frequency, respectively, a first and a second DC voltage application circuit apply a DC voltage to the outer and the inner electrode, respectively, and a processing gas supply unit. A space between the first electrode and the second electrode serves as a plasma generation space, and frequency-impedance characteristics of the outer electrode are set such that the impedance increases at the frequency of the second high frequency power and decreases at the frequency of the first high frequency power as the DC voltage applied to the outer electrode increases.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: May 14, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Manabu Iwata, Hiroyuki Nakayama, Kenji Masuzawa, Masanobu Honda
  • Publication number: 20130105087
    Abstract: An electrostatic chuck is disclosed, which is especially suitable for fabrication of substrates at high throughput. The disclosed chuck may be used for fabricating large substrates or several smaller substrates simultaneously. For example, disclosed embodiments can be used for fabrication of multiple solar cells simultaneously, providing high throughput. An electrostatic chuck body is constructed using aluminum body having sufficient thermal mass to control temperature rise of the chuck, and anodizing the top surface of the body. A ceramic frame is provided around the chuck's body to protect it from plasma corrosion. If needed, conductive contacts are provided to apply voltage bias to the wafer. The contacts are exposed through the anodization.
    Type: Application
    Filed: November 1, 2012
    Publication date: May 2, 2013
    Applicant: INTEVAC, INC.
    Inventor: Intevac, Inc.
  • Patent number: 8431035
    Abstract: A plasma processing apparatus for processing a substrate by using a plasma includes a processing chamber for accommodating and processing the substrate therein, a lower electrode for mounting the substrate thereon in the processing chamber, an upper electrode disposed to face the lower electrode in the processing chamber, a radio frequency power supply for supplying a radio frequency power to at least one of the lower and the upper electrode, to thereby generate the plasma between the lower and the upper electrode, and an electrical characteristic control unit for adjusting an impedance of a circuit at the side of an electrode to the plasma for a frequency of at least one radio frequency wave present in the processing chamber such that the circuit does not resonate.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: April 30, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Manabu Iwata, Chishio Koshimizu, Yohei Yamazawa