Evacuated Or Fluid Pressure Chamber Patents (Class 156/382)
  • Patent number: 9259903
    Abstract: A method of applying graphics to a set of articles with a graphic transfer assembly is disclosed. The method includes a step of selecting an article from a set of articles comprising different types of articles. After selecting a last that may be associated with the article, the last may be attached to a last assembly of the graphic transfer assembly. With the article attached to the graphic transfer assembly, a deformable membrane may apply graphics to curved portions of the article. A protective member can be used to protect a portion of the article during the graphic transfer process.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: February 16, 2016
    Assignee: NIKE, Inc.
    Inventors: N. Scot Hull, Elizabeth Langvin
  • Patent number: 9108362
    Abstract: A welding device includes a compressor configured to compress a welding part and its adjoining surfaces of thermoplastic resin articles (2a, 2b) in directions perpendicular to the axis of a core (1), and a heater, and is configured such that: the surface of the welding part of the thermoplastic resin articles is compressed with a predetermined pressure by the compressor, the compression of the thermoplastic resin articles is then continued to extend a compressed region along the axis of the core without changing a relative position between the compressor in the compressed region and the surface of the welding part of the thermoplastic resin articles, the welding part of the thermoplastic resin articles is heated and welded by the heater, and after the welding, the pressure applied by the compressor is lowered to stop the compression of the thermoplastic resin articles such that the thermoplastic resin articles fitted on the core can be taken out of the welding device.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: August 18, 2015
    Assignee: SEIDENSHA ELECTRONICS CO., LTD.
    Inventor: Tadahiro Konita
  • Patent number: 9091618
    Abstract: A method and apparatus comprising a sample collection structure having a chamber and an interface for the sample collection structure. The interface is configured to be connected to a curing system and a vacuum source. The curing system is configured to cure a composite part. The vacuum source is configured to create a vacuum in the curing system. The interface is further configured to collect a sample of a gas from the curing system in the chamber. The interface is further configured to send the sample of the gas collected in the chamber to an analyzer.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: July 28, 2015
    Assignee: THE BOEING COMPANY
    Inventors: Joseph Michael Baratto, Cheryl Bick, James D. Edgerton
  • Patent number: 9073270
    Abstract: The present invention relates to a method of manufacturing a wind turbine blade or a part of a wind turbine blade. The method comprises arranging at least one layer of uncured resin pre-impregnated fibers, called prepregs, and at least one layer of cured fiber reinforced resin in an at least partly overlaying relationship, and curing the resin of the at least one layer comprising uncured resin. The at least one layer of cured fiber reinforced resin is assembled with at least one layer of uncured resin-preimpregnated fibers prior to being placed on a molding surface. The method may e.g. be used to manufacture a wind turbine blade shell member or a wind turbine blade spar member. The invention further relates to a wind turbine blade shell member or a wind turbine blade spar member manufactured by such a method.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: July 7, 2015
    Assignee: Vestas Wind Systems A/S
    Inventor: Anton Bech
  • Patent number: 9050758
    Abstract: A process for the production of a part made of composite material including at least one radius of curvature, includes a stage for deposition of pre-impregnated fiber layers (24) on a device (22) of convex shape on one another and for compacting the layers, characterized in that localized and repeated forces are applied in such a way as to cover the zone of the radius of curvature, at a given instant the forces being applied on a zone that is less than half of the zone of the radius of curvature, so as to compact the fiber layers (24) locally during the deposition stage.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: June 9, 2015
    Assignee: AIRBUS OPERATIONS (S.A.S.)
    Inventors: Denis De Mattia, Aurelien Boyeldieu
  • Patent number: 9034137
    Abstract: A method for fabricating a repair laminate for a composite part having an exposed surface includes applying a bonding material to the exposed surface and forming an uncured ply stack assembly on the bonding material. The uncured ply stack assembly is formed by forming and compacting a series of uncured ply stacks. The ply stack assembly and bonding material are then cured.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: May 19, 2015
    Assignee: Textron Innovations Inc.
    Inventors: Denver R. Whitworth, Vance N. Cribb, Dumitru R. Jitariu
  • Publication number: 20150129136
    Abstract: A tool for curing a composite layup comprises a tool body having a surface adapted to support a composite layup thereon. The tool includes an integrated breather for allowing removal of air from the layup during curing.
    Type: Application
    Filed: January 21, 2015
    Publication date: May 14, 2015
    Inventors: Kenneth M. Dull, Michael K. Louie, Gordon M. Cox
  • Publication number: 20150122414
    Abstract: A wafer bonding system and method using a combination of heat and a pneumatic force to bond two wafers held together in alignment. The wafers are heated via a non-contact, gaseous interface, thermal path between heating elements and the wafers. The pneumatic force is created by a pressure differential between a first pressure surrounding the two wafers and a second pressure, which is less than the first pressure, maintained between the two wafers.
    Type: Application
    Filed: October 21, 2014
    Publication date: May 7, 2015
    Inventor: Alton H. PHILLIPS
  • Publication number: 20150122412
    Abstract: A system and method for clamping wafers together in alignment using pressure. The system and method involves holding a first wafer and a second wafer together in alignment using a wafer clamp within an ambient environment maintained at a first pressure and creating a second pressure at least partially around and between the first wafer and the second wafer held together by the wafer clamp, wherein the first pressure is greater than the second pressure. The first wafer and the second wafer are clamped together in alignment using a pneumatic force created by a pressure differential between the first pressure and the second pressure.
    Type: Application
    Filed: October 21, 2014
    Publication date: May 7, 2015
    Inventors: Alton H. PHILLIPS, Fardad A. HASHEMI
  • Patent number: 9023163
    Abstract: A method for laminating essentially plate-shaped work pieces with a thermally activated adhesive layer, particularly photovoltaic modules. Work pieces are inserted into a vacuum chamber having a compression element dividing the vacuum chamber in a gas tight fashion that can be raised and lowered by pressure differences. The compression element presses against the work piece which in turn presses against a heating plate which forms a lower side of the vacuum chamber, with processing heat being transferred into the work piece to soften the adhesive. The work piece is first impinged by the compression element with a slight load from approx. 2% to 10% of the defined processing load, and is simultaneously kept below the adhesive activation temperature. Thereafter, the slight load is lifted off the work piece and the work piece is heated to the activation temperature and impinged via the compression element with the processing load.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: May 5, 2015
    Assignee: Robert Bürkle GmbH
    Inventor: Norbert Damm
  • Patent number: 9016342
    Abstract: The bonding apparatus is capable of effectively increasing temperature of a substrate and reducing occurrence of position gaps and poor connection in a process of flip-chip-bonding semiconductor devices to the substrate. The bonding apparatus comprises: a supporting unit for supporting the substrate, on which the semiconductor devices have been adhered by a non-conductive; and a heating/pressing unit for heating and pressing the substrate, the heating/pressing unit having a built-in heat source and a clamping face, onto which the substrate supported by the supporting unit is pressed. The substrate supported by the supporting unit is moved toward the clamping face of the heating/pressing unit so as to preheat the substrate and the semiconductor devices by radiation heat. Then, the semiconductor devices are pressed onto the clamping face of the heating/pressing unit so as to cure the non-conductive adhesive and bond bumps of the semiconductor devices to terminal sections of the substrate.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: April 28, 2015
    Assignee: Apic Yamada Corporation
    Inventor: Kazuhiko Kobayashi
  • Patent number: 9017510
    Abstract: An airfoil is fabricated by assembling cured skins with spars having cured spar webs and uncured spar chords. The skins are bonded to the spars by curing the spar chords.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: April 28, 2015
    Assignee: The Boeing Company
    Inventor: Martin Wayne Hansen
  • Publication number: 20150107750
    Abstract: An apparatus for laminating a scintillator panel and an imaging device panel includes a chamber, a membrane, a first vacuum pump, a second vacuum pump, a heater plate, and a heater power supply. The chamber includes a chamber cover, defining a sealed space. The membrane defines the sealed space in the bottom of the chamber cover by being coupled to the bottom surface of the chamber cover and is made of a contractable and expandable material. The first vacuum pump is coupled to the chamber cover and vents vacuum in the sealed space between the bottom surface of the chamber cover and the membrane. The second vacuum pump vents vacuum in the chamber by being coupled to one side of the chamber. The heater plate is coupled into the chamber to support and heat the panel assembly with an adhesive interposed between the scintillator panel and the imaging device panel.
    Type: Application
    Filed: October 22, 2013
    Publication date: April 23, 2015
    Inventors: Yun Sung Huh, Tae Kwon Hong, Gi Youl Han
  • Publication number: 20150107775
    Abstract: A vacuum bag sealing system may include a composite bagging sheet, and at least one interlocking strip connected to a surface of the composite bagging sheet, wherein the interlocking strip is configured to join a first section of the composite bagging sheet to a second section of the composite bagging sheet to form a sealed vacuum bag.
    Type: Application
    Filed: January 13, 2014
    Publication date: April 23, 2015
    Applicant: The Boeing Company
    Inventors: Michael Louie, Kenneth M. Dull, Timothy D. Aquino
  • Patent number: 9005381
    Abstract: A method of molding a wind turbine blade in a mold is provided. The method includes applying a film to an inside surface of a mold, assembling component layers for the wind turbine blade on the film, performing curing to harden the component layers, and subsequently removing the cured wind turbine blade from the mold. Also provided is a film suitable for use in a wind turbine blade molding process and a mold suitable for molding a wind turbine blade.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: April 14, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventor: Karsten Schibsbye
  • Patent number: 9005385
    Abstract: A bonding apparatus according to an exemplary embodiment of the present disclosure includes a first holding unit, a second holding unit, a first cooling mechanism, a second cooling mechanism, a third heating mechanism and a fourth heating mechanism. The first holding unit has a first heating mechanism and holds a first substrate. The second holding unit has a second heating mechanism and holds a second substrate. The pressing mechanism contacts and presses the first substrate and the second substrate. The first cooling mechanism cools the first substrate through the first holding unit. The second cooling mechanism cools the second substrate through the second holding unit. The third heating mechanism heats the first cooling mechanism. The fourth heating mechanism heats the second cooling mechanism.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: April 14, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Norio Wada, Goro Furutani, Satoshi Ookawa
  • Patent number: 9004135
    Abstract: The invention provides a method of bonding a first wafer onto a second wafer by molecular adhesion, the method comprising applying a point of initiation of a bonding wave between the first and second wafers, the method further comprising projecting a gas stream between the first wafer and the second wafer generally toward the point of initiation of the bonding wave while the bonding wave is propagating between the wafers. The invention also provides a bonding apparatus for carrying out the bonding method.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: April 14, 2015
    Assignee: Soitec
    Inventors: Arnaud Castex, Marcel Broekaart
  • Patent number: 9005390
    Abstract: A room temperature bonding apparatus includes angle adjustment means supporting a first sample stage holding a first substrate so as to be able to change a direction of the first sample stage; a first driving device driving the first stage in a first direction; a second driving device driving a second sample stage holding a second substrate in a second direction not parallel to the first direction; and a carriage support table supporting the second sample stage in the first direction when the second substrate and the first substrate are brought into contact. The apparatus can impose a load exceeding a withstand load of the second driving device on the first and second substrates. Further, the apparatus uses angle adjustment means to change direction of the first substrate to be parallel with the second substrate and uniformly impose the larger load on a bonding surface.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: April 14, 2015
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Takeshi Tsuno, Takayuki Goto, Masato Kinouchi, Satoshi Tawara, Jun Utsumi, Yoichiro Tsumura, Kensuke Ide, Takenori Suzuki
  • Publication number: 20150099105
    Abstract: A device for compacting and consolidating a stack of fibrous plies pre-impregnated with a thermoplastic polymer, configured to be placed in an oven. The device comprises containment blocks, a flexible compacting plate and a vacuum pump. The containment blocks are supported by a board and demarcate the perimeter of the stack. The containment blocks comprise open grooves that open into the perimeter of the stack. The flexible compacting plate has an area equal to that of the stack but is capable of being inserted inside the perimeter demarcated by the containment blocks. The vacuum pump applies a vacuum to the wrapped volume of the stack comprising a plurality of holes in the board that open outside the perimeter of the stack. A method for implementing the device for manufacturing a thick composite panel having a thermoplastic matrix.
    Type: Application
    Filed: February 28, 2013
    Publication date: April 9, 2015
    Inventors: Didler Kurtz, Julie Vaudour
  • Patent number: 8999099
    Abstract: A substrate attachment system, including a portable chamber for receiving a pair of substrates which are aligned; a conveyor transportation device which continuously moves the portable chamber and to which a vacuum generator that is connected to a vacuum port of the portable chamber to evacuate the inside of the portable chamber is provided; and a heating device for performing a heating process in which the aligned substrates are attached to each other in the portable chamber, wherein the conveyor transportation device is arranged to pass through the heating device. The substrate attachment system may contribute to high attachment accuracy, and also, since the size of a chamber is reduced, a spatial utilization rate may be high, and also, since an attachment process is continuously performed by using a conveyor transportation device, a process time may be reduced.
    Type: Grant
    Filed: November 26, 2010
    Date of Patent: April 7, 2015
    Assignee: Ltrin. Co., Ltd.
    Inventors: Yong-Won Cha, Sang Wook Yoo, Gun-Woo Park, Seung-Hee Jung
  • Patent number: 8986479
    Abstract: An in-situ double vacuum debulk (DVD) composite repair system designed to produce partially or fully cured autoclave-quality hot-bond composite repairs on contoured structures. The system provides vacuum pressure for hot bond repairs to be performed on flat and contoured structures using one set-up capable of debulking (partially curing) and then fully curing composite repairs on composite and metallic aircraft structures. The use of in-situ DVD also eliminates handling of the patch/adhesive when transferring from an off-aircraft DVD chamber to the repair site on the aircraft. This can increase the probability of successful repairs because the possibility of contaminating and misaligning the adhesive and repair patch are eliminated.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: March 24, 2015
    Assignee: The Boeing Company
    Inventors: Michael W. Evens, Karl Edward Nelson, John F. Spalding, Jr., James D. Chanes, Joel P. Baldwin, Paul S. Rutherford
  • Patent number: 8986490
    Abstract: A method of manufacturing a component having first and second layers, the first and/or second layers including one or more depressions provided on a surface of the respective layer. The method including: arranging the first and second layers so that they face one another and with the depressions on inner facing surfaces of the layers; diffusion bonding the first and second layers together about their edges; applying a first differential pressure across each of the first and second layers to evacuate an inner space defined by the layers, thereby forming one or more depressions on an outer facing surface of the first or second layer; and applying a second differential pressure across each of the first and second layers to expand the inner space defined by the layers.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: March 24, 2015
    Assignee: Rolls-Royce PLC
    Inventor: Oliver M. Strother
  • Publication number: 20150075720
    Abstract: The stack manufacturing apparatus includes a first supporting body supply unit which is configured to intermittently unroll a roll sheet-shaped first supporting body and includes one of a pair of tension applying devices capable of applying tension to the unrolled first supporting body; a first adhesive layer formation unit configured to form a first adhesive layer over the first supporting body while the first supporting body supply unit suspends unrolling of the first supporting body; a first bonding unit configured to bond the first supporting body and a sheet-shaped member using the first adhesive layer; and a control unit which is configured to hold an end portion of the first supporting body and includes the other of the pair of tension applying devices.
    Type: Application
    Filed: September 12, 2014
    Publication date: March 19, 2015
    Inventors: Yoshiharu Hirakata, Satoshi Seo
  • Patent number: 8980025
    Abstract: An apparatus is provided for laminating a first and a second sheet (1, 2) comprising—a chamber (10) having a first, a second and a third compartment (11, 12, 13 resp.) subsequently arranged along a first axis (Z), each compartment having a port (21, 22, 23 resp.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: March 17, 2015
    Assignee: Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno
    Inventors: Jeroen Van Den Brand, Sander Christiaan Broers, Milan Saalmink, Andreas Heinrich Dietzel, Andreas Tanda
  • Patent number: 8974624
    Abstract: A label applicator that includes an applicator housing having a flow chamber and a suction side. The suction side has one or more openings that allow air to pass therethrough. The label applicator also includes first and second air flow generators that are fluidly coupled with the flow chamber. The first and second air flow generators are configured to generate first and second air flows, respectively, through the flow chamber. The label applicator also includes a valve mechanism that is positioned in the flow chamber to direct the first and second air flows through the flow chamber of the applicator housing. The valve mechanism includes a diverter valve and an electric actuator. The actuator is configured to move the diverter valve within the flow chamber to different positions during a label application operation.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: March 10, 2015
    Assignee: Illinois Tool Works Inc.
    Inventor: Robert W. Bixen
  • Patent number: 8974623
    Abstract: Disclosed is a method for placing fiber-reinforced, pre-impregnated, planar semi-finished products on a placement tool for the manufacture of a non-crimp fabric, wherein a placement film is clamped on the placement tool for purposes of holding the non-crimp fabric, and by means of evacuation and/or the application of pressure is fixed in position on the placement tool and/or can be released from the latter. Also disclosed is a placement tool for the execution of such a method.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: March 10, 2015
    Assignee: Airbus Operations GmbH
    Inventors: Thomas Lemckau, Sönke Harders, Sophie Kerchnawe
  • Patent number: 8961732
    Abstract: A bow wave in a composite laminate generated during part consolidation is reduced by transmitting atmospheric pressure loads to a region of the part having low compaction pressure due to bridging of a vacuum bag at an edge of the part.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: February 24, 2015
    Assignee: The Boeing Company
    Inventors: Thomas J. Kennedy, David A. Fucci
  • Publication number: 20150047781
    Abstract: Systems and methods for bonding include selectively heating an initial location of a sample to melt a bonding layer at an interface between a first layer and a second layer of the sample. The heating is propagated in a direction away from the initial location such that a melt front of the bonding layer is translated across the interface to provide a void free bond between the first layer and the second layer.
    Type: Application
    Filed: August 14, 2013
    Publication date: February 19, 2015
    Applicant: International Business Machines Corporation
    Inventors: Stephen W. Bedell, John A. Ott
  • Publication number: 20150034250
    Abstract: The present invention is to provide a laminating apparatus which significantly improves the laminating efficiency of a workpiece such as a photovoltaic module. In order to significantly improve the laminating efficiency of a workpiece such as a photovoltaic module, at least one sub-laminating apparatus is disposed subsequent to a main laminating apparatus, a hot plate of the main laminating apparatus is formed in such a way that a heat-supplying section thereof configured to supply heat to the workpiece on the hot plate is made of a material having a thermal conductivity of not less than 110 (Wm?1K?1) and not more than 398 (Wm?1K?1), and a hot plate of the sub-laminating apparatus is formed in such a way that a heat-supplying section thereof configured to supply heat to the workpiece on the hot plate is made of a material having a thermal conductivity of not more than 20 (Wm?1K?1).
    Type: Application
    Filed: March 28, 2013
    Publication date: February 5, 2015
    Inventors: Toshihiro Masuda, Tadashi Nakao
  • Patent number: 8945321
    Abstract: An area of a structure is reworked using resin infusion of a fiber preform. A resin flow hole is formed through the structure from a first side of the structure to a second side of the structure. The fiber preform is placed on the first side of the structure and substantially saturated with resin by flowing resin into the preform and out through the resin flow hole to the second side of the structure.
    Type: Grant
    Filed: May 30, 2011
    Date of Patent: February 3, 2015
    Assignee: The Boeing Company
    Inventors: Dennis James Hanks, Jack Allen Woods, Gregory Robert Gleason
  • Publication number: 20150027640
    Abstract: A laminating apparatus for a provisionally laminated body is provided and is configured to form an end laminated body including one of a first resin film and a second resin film conforming to protruding and recessed portions of a substrate. The laminating apparatus may include first and second laminating mechanisms. The first laminating mechanism may include a first enclosed space forming receiver, a depressurizer, a heater, and a first pressure laminator to form an intermediate laminated body from the provisionally laminated body. The second laminating mechanism may include a second enclosed space forming receiver, and a second pressure laminator to form the end laminated body from the intermediate laminated body.
    Type: Application
    Filed: August 19, 2014
    Publication date: January 29, 2015
    Inventors: Ryoichi YASUMOTO, Kazutoshi IWATA, Kinya KODAMA, Grigoriy BASIN
  • Patent number: 8936057
    Abstract: The present disclosure is directed to a substrate lamination system and method. A substrate lamination apparatus may comprise: (a) a vacuum chamber; (b) a flexible membrane; and (c) a substrate support. A system for laminating substrates may comprise: (a) a vacuum chamber; (b) a flexible membrane; (c) a substrate support; (d) a vacuum pump; (e) a compressor; and (f) a control unit, wherein the control unit is configured to carry out the steps: (i) evacuating the vacuum chamber; and (ii) applying pressure to at least one of a first substrate and a second substrate.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: January 20, 2015
    Assignee: Rockwell Collins, Inc.
    Inventors: James D. Sampica, Paul R. Nemeth, Tracy J. Barnidge, Vincent P. Marzen
  • Publication number: 20150013876
    Abstract: By increasing a pressure in a chamber flange (10) at a predetermined rate, the number of gas molecules that carry inner thermal energy is increased, which results in a uniform temperature distribution. Thus, non-melting residues of, air bubbles in, and insufficient expansion of the sealing resin (43) are reduced. After removal of the air bubbles (45), a pressure is applied between a substrate (41) and a sealing substrate (44), thereby the substrate (41), a solar cell (42), the sealing resin (43) and the sealing substrate (44) are adhered to each other.
    Type: Application
    Filed: November 12, 2012
    Publication date: January 15, 2015
    Inventors: Tetsuyoshi Inoue, Hiromasa Tanamura, Kiyotaka Sakurai, Mitsuji Gotoh, Yuhsuke Fukuoka, Shohichi Ohyama
  • Patent number: 8926784
    Abstract: A resin laminate manufacturing method includes providing a pair of split mold blocks one of which has a cavity provided with a plurality of protrusions extending toward the other mold block, preparing two molten thermoplastic resin sheets each having an adjusted thickness, feeding the two molten thermoplastic resin sheets between the pair of split mold blocks with a predetermined gap left therebetween, forming a hermetic space between one of the sheets and the cavity of the one mold block opposed to an outer surface of the one sheet, sucking air in the hermetic space from the side of the one mold block, pressing the outer surface of the one sheet against the cavity of the one mold block to shape the one sheet, forming cup-shaped portions, and clamping the pair of mold blocks.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: January 6, 2015
    Assignee: Kyoraku Co., Ltd.
    Inventors: Takehiko Sumi, Yoshitaka Matsubara
  • Patent number: 8916018
    Abstract: An apparatus for fabricating an organic light emitting display panel is disclosed. In one embodiment, the apparatus includes i) a first roll around which a film is wound to be continuously drawn, ii) a second roll arranged to face the first roll and around which the film is continuously wound, iii) a plurality of chambers disposed between the first and second rolls and through which the film passes, and in which laser induced thermal imaging (LITI) is performed on a substrate by forming a transfer layer on the film, and iv) a gate unit installed at least one of the chambers and disposed at at least one of a film inlet and a film output of the chambers that are installed, to maintain a substantially vacuum state in the chambers during passing of the film.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: December 23, 2014
    Assignee: Samsung Display Co. Ltd.
    Inventors: Byung-Chul Lee, Jae-Seok Park, Jae-Ha Lim, Jin-Han Park, Dong-Sul Kim
  • Patent number: 8916017
    Abstract: A contoured glass sheet laminating system may include a glass-side vacuum bed, a laminate-side vacuum bed and a lamination actuator. The glass-side vacuum bed may include a vacuum backside and a mold-receiving side and may have sufficient permeability to permit a vacuum system to pull a vacuum across a thickness of the glass-side vacuum bed between the vacuum backside and the mold-receiving side of the glass-side vacuum bed. The laminate-side vacuum bed may include a vacuum backside and a thin-film loading side and may have sufficient permeability to permit a vacuum system to pull a vacuum across a thickness of the laminate-side vacuum bed between the vacuum backside and the thin-film loading side of the of the laminate-side vacuum bed.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: December 23, 2014
    Assignee: Corning Incorporated
    Inventors: Govindarajan Natarajan, Nathaniel David Wetmore
  • Publication number: 20140367039
    Abstract: Systems and methods for compacting a charge of composite material. These systems and methods may utilize a vacuum compaction device to compact the charge of composite material on a supporting surface. The vacuum compaction device may be reusable and may be configured to define an enclosed volume when positioned on the supporting surface and may include a barrier structure and a sealing structure that is configured to form a fluid seal when compressed between the supporting surface and the barrier structure. The vacuum compaction device also may include a vacuum distribution manifold that is in fluid communication with and configured to selectively apply a vacuum to the enclosed volume. Application of the vacuum to the enclosed volume may decrease a pressure within the enclosed volume and transition the vacuum compaction device from an undeformed configuration to a deformed configuration, thereby compacting the charge of composite material on the supporting surface.
    Type: Application
    Filed: February 15, 2013
    Publication date: December 18, 2014
    Applicant: The Boeing Company
    Inventor: The Boeing Company
  • Patent number: 8910688
    Abstract: An autoclave may be reconfigured to accommodate differently shaped parts by relatively rotating portions of the autoclave.
    Type: Grant
    Filed: February 26, 2011
    Date of Patent: December 16, 2014
    Assignee: The Boeing Company
    Inventors: Sergey Barmichev, Kevin Matthew Retz
  • Patent number: 8905103
    Abstract: A tool defines a piston/cylinder with first and second chambers on either side of the piston. A sealable port couples the first chamber to ambient environment. One end of the tool (i) defines a volume that is open to ambient environment, and (ii) has a cartridge coupled thereto such that the volume remains open to ambient environment. The cartridge defines (i) a chamber filled with a meltable material, and (ii) a channel coupling the material-filled chamber to ambient environment. A melting device in thermal communication with the meltable material simultaneously heats an air/water mixture in the second chamber and melts the meltable material. An element releasably coupled to the tool spans a region within the cartridge that lies within the channel. The element incorporates a check valve separating the volume defined by the tool and ambient environment.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: December 9, 2014
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Robert D. Conner
  • Patent number: 8906175
    Abstract: A room temperature bonding apparatus according to the present invention is provided with a load lock chamber having an internal space which is pressure-reduced; and a cartridge arranged in the load lock chamber. The cartridge includes an island portion formed to contact a substrate when the substrate is put on the cartridge. A flow passage is formed for the island portion to connect a space between the cartridge and the substrate to outside when the substrate is put on the cartridge. Therefore, in the room temperature bonding apparatus can prevent making the substrate is moved to the cartridge due to gas when the internal space is pressure-reduced.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: December 9, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Masato Kinouchi, Takayuki Goto, Satoshi Tawara, Takeshi Tsuno, Jun Utsumi, Kensuke Ide, Takenori Suzuki
  • Patent number: 8899291
    Abstract: A laminating apparatus is provided which causes a resin film to completely conform to protruding and recessed portions of a substrate, and which makes the film thickness of the conforming resin film uniform on a stricter level. To this end, the laminating apparatus includes a laminating mechanism including: an enclosed space forming receiver capable of receiving a provisionally laminated body therein; and a pressure laminator for applying pressure to the provisionally laminated body in non-contacting relationship in an enclosed space formed by the enclosed space forming receiver to form an end laminated body from the provisionally laminated body.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: December 2, 2014
    Assignees: Nichigo-Morton Co., Ltd., Shin-Etsu Chemical Co., Ltd.
    Inventors: Ryoichi Yasumoto, Kazutoshi Iwata, Kinya Kodama, Grigoriy Basin
  • Patent number: 8894784
    Abstract: A method of processing a patch includes mounting the patch on a surface of a caul plate having at least one suction hole, and drawing a vacuum through the suction hole to maintain the patch in contact with the caul plate.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: November 25, 2014
    Assignee: The Boeing Company
    Inventors: Megan N. Watson, Mary H. Vargas, Joel P. Baldwin
  • Publication number: 20140332163
    Abstract: A laminating apparatus for an organic light emitting display includes a vacuum chamber, a stage disposed in the vacuum chamber, the stage being configured to mounted receive an organic light emitting display substrate module, a sealing unit disposed in the vacuum chamber, the sealing unit being configured to heat and pressurize a peripheral area of the organic light emitting display substrate module and to form a pressurizing line, and a moving unit that controls a location of the sealing unit. The sealing unit has a plurality of heating/pressurizing lines, at least two of imaginary extension lines of the plurality of heating/pressurizing lines meet at a corner.
    Type: Application
    Filed: March 6, 2014
    Publication date: November 13, 2014
    Applicant: Samsung Display Co., Ltd.
    Inventors: InHyun HWANG, Jungwoo HWANG
  • Publication number: 20140326404
    Abstract: Provided are a laminating apparatus and a laminating method using the same. In an aspect, the laminating apparatus includes a stage, a heating bar, and a press part. In an aspect, the laminating may be performed in a state where the donor film is closely attached to the substrate to prevent defects of the donor film from occurring during the laminating, thereby improving reliability of the laminating apparatus.
    Type: Application
    Filed: September 6, 2013
    Publication date: November 6, 2014
    Applicant: Samsung Display Co., Ltd.
    Inventor: Tae Min Kang
  • Patent number: 8877116
    Abstract: A method of manufacturing a wind turbine blade shell part comprising fiber material impregnated with cured resin is described. The method comprises the steps of: a) providing a first mold part having a first forming surface with a contour that defines at least a part of an outer surface of turbine blade shell part, b) arranging fiber material in the first mold part, the fiber material comprising fibers of a magnetizable material, c) providing a resin in the first mold part simultaneous with and/or subsequent to step b), and d) curing the resin in order to form the wind turbine blade shell part or wind turbine blade. The fiber material is retained against the first forming surface by use of magnet means during step b) and/or step c).
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: November 4, 2014
    Assignee: LM Glasfiber A/S
    Inventor: Peter Grabau
  • Publication number: 20140318680
    Abstract: A bonding apparatus according to an exemplary embodiment of the present disclosure includes a first holding unit, a second holding unit, a pressing mechanism and a holding mechanism. The first holding unit is provided with a first heating mechanism and holds a first substrate. The second holding unit disposed facing the first holding unit and provided with a second heating mechanism, holds a second substrate. The pressing mechanism relatively moves the first holding unit and the second holding unit in order to contact and press the first substrate and the second substrate. The holding mechanism elastically holds an outer periphery of the first holding unit and the second holding unit.
    Type: Application
    Filed: April 10, 2014
    Publication date: October 30, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Norio Wada, Goro Furutani, Satoshi Ookawa
  • Publication number: 20140318711
    Abstract: A bonding apparatus according to an exemplary embodiment of the present disclosure includes a first holding unit, a second holding unit, a first cooling mechanism, a second cooling mechanism, a third heating mechanism and a fourth heating mechanism. The first holding unit has a first heating mechanism and holds a first substrate. The second holding unit has a second heating mechanism and holds a second substrate. The pressing mechanism contacts and presses the first substrate and the second substrate. The first cooling mechanism cools the first substrate through the first holding unit. The second cooling mechanism cools the second substrate through the second holding unit. The third heating mechanism heats the first cooling mechanism. The fourth heating mechanism heats the second cooling mechanism.
    Type: Application
    Filed: April 10, 2014
    Publication date: October 30, 2014
    Applicant: Tokyo Electron Limited
    Inventors: Norio Wada, Goro Furutani, Satoshi Ookawa
  • Patent number: 8857487
    Abstract: A room temperature bonding apparatus includes: an angle adjustment mechanism that supports a first sample stage holding a first substrate to a first stage so as to be able to change a direction of the first sample stage; a first driving device that drives the first stage in a first direction; a second driving device that drives a second sample stage holding a second substrate in a second direction not parallel to the first direction; and a carriage support table that supports the second sample stage in the first direction when the second substrate and the first substrate are brought into press contact with each other. In this case, the room temperature bonding apparatus can impose a larger load exceeding a withstand load of the second driving device on the first substrate and the second substrate.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: October 14, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Takeshi Tsuno, Takayuki Goto, Masato Kinouchi, Satoshi Tawara, Jun Utsumi, Yoichiro Tsumura, Kensuke Ide, Takenori Suzuki
  • Patent number: 8851134
    Abstract: A vacuum device includes a main body and an adjustment assembly connected to the main body. The main body includes a frame, a loading member, and an elastic film. The loading member and the elastic film are arranged at opposite end surfaces of the frame. A chamber is cooperatively formed by the frame, the loading member, and the elastic film. The adjustment assembly adjusts the inner air pressure of the chamber. The loading member includes an absorption area connecting the chamber to outside the main body. The absorption area changes the air pressure inside the chamber. Also provided is a bonding apparatus using the vacuum device.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: October 7, 2014
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Dong-Sheng Lin, Tzyy-Chyi Tsai, Jian-Jun Li
  • Patent number: 8851135
    Abstract: A method of applying graphics to a set of articles with a graphic transfer assembly is disclosed. The method includes a step of selecting an article from a set of articles comprising different types of articles. After selecting a last that may be associated with the article, the last may be attached to a last assembly of the graphic transfer assembly. With the article attached to the graphic transfer assembly, a deformable membrane may apply graphics to curved portions of the article.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: October 7, 2014
    Assignee: NIKE, Inc.
    Inventors: N. Scot Hull, Elizabeth Langvin