Feed Other Than Coal, Oil Shale Or Wood Patents (Class 201/25)
-
Patent number: 5977421Abstract: The amount of limonene produced during pyrolysis of scrap tire carcass or polyisoprene rubber can be increased by decreasing residence time of the isoprene gas produced during the thermal degradation of polyisoprene rubber in the high temperature reactor region of an oven. This is achieved by using a novel oven design which permits rapid expansion of the isoprene gas away from the high temperature reactor region of the oven to a cooler region where the gas forms limonene and condenses. This pyrolysis method also decreases the amount of soot produced while increasing the amount of limonene produced. Furthermore, this system readily enables separation of the solid, liquid and gas phases produced during pyrolysis.Type: GrantFiled: September 3, 1997Date of Patent: November 2, 1999Inventors: Curtiss D. Hanson, Timothy Burrell, James E. Haworth, James A. Olson
-
Patent number: 5973217Abstract: According to the process described, old or waste plastics are depolymerized into a pumpable phase and a volatile phase to allow recovery of chemical raw materials and liquid fuel components. The volatile phase is separated into a gaseous phase and a condensate. In order to simplify the process in comparison with the state of the art, the depolymerised product remaining after the volatile phase is separated is also heated together with the condensate or condensate fractions in the presence of hydrogen under pressure and is subjected to hydrotreating, after non-boiling components are removed, to produce syncrude.Type: GrantFiled: January 9, 1998Date of Patent: October 26, 1999Assignee: Veba Oel AGInventors: Horst Hastrich, Christian Hecka, Rolf Holighaus, Klaus Niemann, Claus Strecker
-
Patent number: 5969201Abstract: A process for the conversion of plastic to produce a synthetic crude oil by means of contacting the plastic with a hydrocarbonaceous recycle stream in a liquefying zone operated at liquefying conditions to produce a liquefied stream of plastic containing non-distillable particulate matter and at least a portion thereof is filtered. The filtered stream having a reduced concentration of finely divided particulate matter and the balance, if any, of the original liquefied stream together with hydrogen is contacted with a hydro-demetallization catalyst in a hydro-demetallization zone at hydro-demetallization conditions to produce gaseous, water-soluble inorganic compounds. The effluent from the hydro-demetallization zone is contacted with a hydrocracking catalyst in a hydrocracking zone to produce lower boiling hydrocarbons suitable for use as a synthetic crude oil. A recovered hydrogen-rich gaseous stream is preferably recycled to the hydro-demetallization zone.Type: GrantFiled: May 28, 1998Date of Patent: October 19, 1999Assignee: UOP LLCInventors: Tom N. Kalnes, Robert B. James, Jr.
-
Patent number: 5964985Abstract: A method of forming liquid hydrocarbons from solid coal. The coal is pulverized to provide a particulate coal feed, which is then extruded to provide a hollow tube of compressed coal supported inside of a support tube. A clay feed is extruded to provide a hollow tube of compressed clay supported inside of the coal tube and a combustible fuel is burned inside of the clay tube. The temperature of combustion is sufficient to fire the extruded clay and pyrolyze the extruded coal to produce hydrocarbon gases and coal char. The support tube has holes for releasing the hydrocarbon gases, which contain suspended particles formed during combustion. The suspended particles are removed from the hydrocarbon gases to provide clean gases, which are passed through an ionizing chamber to ionize at least a portion thereof. The ionized gases are then passed through a magnetic field to separate them from each other according to their molecular weight.Type: GrantFiled: May 23, 1997Date of Patent: October 12, 1999Inventor: William A. Wootten
-
Patent number: 5917102Abstract: The invention relates to a device for depolymerizing used and waste plastics, comprising a closed reactor and a circulation system the mildly heating of the reactor contents connected to the reactor, as well as to a process for depolymerizing used and waste plastics. To protect the circulation system from erosion by solid particles contained in the reactor contents, the reactor is designed so that the reactor contents drawn off into the circulation system traverse a riser section integrated into the reactor for removing fairly coarse solid particles having correspondingly high settling rate before entry into the take-off line.Type: GrantFiled: March 21, 1997Date of Patent: June 29, 1999Assignee: VEBA OEL AGInventors: Rolf Holighaus, Klaus Niemann, Klaus Strecker, Dieter Ullrich, Christian Hecka
-
Patent number: 5902915Abstract: A process for producing liquid hydrocarbons from hydrocarbon materials is disclosed. The hydrocarbon materials are heated to a temperature above 400.degree. C. thereby producing a gas stream. A gaseous plasma is generated. The gas stream is passed through the gaseous plasma thereby producing a heated gas stream. The heated gas stream is saturated with a hydroxide ion to produce a saturated gas stream. The saturated gas stream is cooled to standard temperature and pressure and is condensed to produce liquid hydrocarbons and waste gases.Type: GrantFiled: March 20, 1997Date of Patent: May 11, 1999Assignee: Lawrence Plasma Research Laboratory Inc.Inventors: Larry Jack Melnichuk, Karen Venita Kelly
-
Patent number: 5895827Abstract: There is provided a process to recover phthalic anhydride from a plastic material which contains a phthalate ester as a plasticizer comprising the steps of:(a) heating the plastic material so that the plastic material is gasified to produce a first product,(b) contacting the first product with alumina catalyst so that the product is catalytically cracked to produce a first catalytically cracked product comprising phthalic anhydride; and(c) recovering phthalic anhydride from the first catalytically cracked product.Type: GrantFiled: June 24, 1997Date of Patent: April 20, 1999Assignee: Mazda Motor CorporationInventors: Toshiki Takahashi, Tatsuto Fukushima, Yoshio Tanimoto, Akemi Muraoka
-
Patent number: 5865956Abstract: A process for the conversion of organic sludges, the process comprising the steps of:(a) feeding dried sludge through a first reactor (16);(b) heating the dried sludge in the first reactor (16) in the absence of oxygen for the volatilization of oil producing organic materials therein, resulting in gaseous products and sludge residue (char);(c) condensing oil from the gaseous products of the first reactor (16) in a condenser system (20);(d) reinjecting water free oil and/or non-condensable products, if any, into a second reactor (24);(e) transferring the sludge residue (char) from the first reactor (16) to the second reactor (24);(f) contacting the heated sludge residue from step (b) in the second reactor (24) with the oil and/or any non-condensable products of steps (c) and (d) in the absence of oxygen to allow the generation of clean products and a high quality oil product; and(g) removing the gaseous products from the second reactor (24).Type: GrantFiled: April 23, 1998Date of Patent: February 2, 1999Assignee: Environmental Solutions International Ltd.Inventors: Trevor Redvers Bridle, Stefan Skrypski-Mantele
-
Patent number: 5856599Abstract: A technique of preparing oil from waste plastics, especially the one to which a mechanism of an extrusion molding machine is applied, is provided wherein an effective control of a decomposition process is conducted in order to effectively prevent the generation of carbon and to efficiently obtain recovered products having a desired composition. For this purpose, reactors 1a, 1b, and 1c having built in carrying means 3a, 3b, and 3c, respectively are used as connected in stages, in which reactors waste plastics are heated and decomposed into oil as carried. One or a series of reactors are used as a unit to form a melting zone and a decomposing zone in the carrying direction.Type: GrantFiled: August 26, 1996Date of Patent: January 5, 1999Assignees: Takeshi Kuroki, Nippo Ltd.Inventor: Takeshi Kuroki
-
Patent number: 5853548Abstract: A thermolysis process for the production of volatiles for an external combustor or liquefaction of biomass solids in which specific and previously unrecognized conditions are employed. The thermolysis is carried out in a single fluidized bed of inert material operating at near atmospheric pressure, relatively low temperature, long solids and gas residence times and moderate heating rates. The distribution of the thermolysis products among, solid (char) and gases under these conditions is unique. The product effluent can be either quenched to produce a high liquid yield in addition to a low char yield or the volatile effluent can be used in either the same combustor or a second combustor to produce heat energy a particularly high efficiency system. In using a quencher, the quenched liquid is of similar composition to those obtained by so called fast pyrolysis processes of the prior art. The specified conditions are such as to allow production of liquids in high yields in an energy efficient manner.Type: GrantFiled: September 11, 1996Date of Patent: December 29, 1998Assignee: RTI Resource Transforms International Ltd.Inventors: Jan Piskorz, Piotr Majerski, Desmond Radlein
-
Patent number: 5846385Abstract: The invention provide a process for energy recovering through waste classification and calcination and an apparatus therefor, comprises crushing and sorting various types of wastes and by means of a series of classification, calcination and recovering treatments, recovering and reusing efficiently fuel oil, fuel gas and residues as well as electric power and heat required for the apparatus in the self-supplying feedback system of the invention, and additionally, lowering successfully the possibility of secondary pollution from wastes disposal.Type: GrantFiled: May 20, 1997Date of Patent: December 8, 1998Inventor: Szu Jeng Chien
-
Patent number: 5841011Abstract: Light-weight oil having a high octane number is produced from waste plastics containing phthalic polyester and/or polyvinyl chloride at a high yield without producing a phthalic sublimate or a carbonaceous residue by pyrolyzing the waste plastics in an atmosphere of steam or a steam/inert gas mixture. The resulting pyrolyzed oil and pyrolyzed gas may be catalytically cracked in an atmosphere of steam or a steam/inert gas mixture. Dechlorination may be performed before pyrolysis is carried out. Pyrolysis is preferably carried out in the presence of at least one of iron hydroxide, hydrous iron oxide and iron oxide.Type: GrantFiled: February 6, 1997Date of Patent: November 24, 1998Assignees: Kenji Hashimoto, NGK Insulators, LtdInventors: Kenji Hashimoto, Takao Masuda, Shuichi Yoshida, Yuichi Ikeda
-
Patent number: 5824193Abstract: A method of thermally treating plastics material includes the steps of heating a treatment chamber at least to the melting point of at least a fraction of the plastic material, maintaining an oxygen level in the treatment chamber below combustion level of liquid or gaseous products from the plastic material, feeding the plastic material into the treatment chamber at a rate ensuring a built-up of a film of liquified plastic material on at least a part of the interior of the surface of the treatment chamber, with the liquified plastic material undergoing a transition into the gaseous phase as a result of the heating of the treatment chamber, and exiting of the gaseous phase out of the treatment chamber caused by vaporization pressure of the gaseous phase within the treatment chamber.Type: GrantFiled: March 27, 1997Date of Patent: October 20, 1998Inventor: Raymond S. Edwards
-
Patent number: 5821395Abstract: This invention relates to a process for thermally cracking waste polymer(s) comprising chlorinated polymers in a reactor in the presence of a fluidizing gas and a fluidized bed of solid, particulate fluidizable material at a temperature from 350.degree.-600.degree. C. to cracked products comprising a mixed vapor of lower hydrocarbons which have a chlorine content of less than 50 ppm. In the process, the cracked products emerging from the fluidized bed are passed through one or more guard beds comprising calcium oxide or a compound capable of giving rise to calcium oxide under the reaction conditions maintained at a temperature in the range from 400.degree.-600.degree. C. in such a way that the chlorine content of the product is less than 50 ppm.Type: GrantFiled: June 5, 1995Date of Patent: October 13, 1998Assignee: BP Chemicals LimitedInventors: Alan George Price, David Charles Wilson
-
Patent number: 5821396Abstract: A pyrolysis batch process is disclosed for recycling hydrocarbon containing used material such as plastics including ABS, polystyrene styrene and other non-chlorinated hydrocarbons, car fluff such as solid plastics, foam plastics, fabrics and the like, and more particularly scrap tires so as to obtain useful light oil and fuel gases. Used tire cuttings are loaded into a rotatable reactor which is closed, evacuated, rotated and heated until exothermic reaction is initiated. The reactor internal pressure is then allowed to increase to and is regulated within the range of atmospheric pressure and above. Upon continuing reactor rotation and heating, condensable hydrocarbon vapors and gaseous hydrocarbons are produced. The vapors are condensed into oil while the gaseous hydrocarbons are used as a fuel for reactor heating.Type: GrantFiled: January 28, 1997Date of Patent: October 13, 1998Inventor: Richard Bouziane
-
Patent number: 5789636Abstract: The invention concerns a process for recovering synthetic raw materials and fluid fuel components from used or waste plastics in accordance with patent application P 43 11 034,7. At least a partial flow of the depolymer produced according to this process is subjected, together with coal, to a coking process, fed to a thermal utilization system or introduced as a reducing agent into a blast furnace process. The depolymer can be used as an additive for bitumen and bituminous products.Type: GrantFiled: August 15, 1997Date of Patent: August 4, 1998Assignee: Veba Oel AGInventors: Rolf Holighaus, Klaus Niemann, Claus Strecker
-
Patent number: 5783046Abstract: An improved process and apparatus for the destructive distillation or pyrolysis of rubber, such as used rubber tires, to produce liquid and gaseous hydrocarbons and a solid carbonaceous char. A heat transfer gas circulating in a circulation loop is used to cool the hot char produced in the distillation chamber of a distillation oven, the circulation loop having some means for removing the heat transferred to the heat transfer gas from the hot char. In one embodiment, two distillation ovens are operated in off-set, batchwise distillation cycles. The distillation cycles in the two ovens are coordinated so that a fresh charge of rubber feed is introduced into the distillation chamber of one of the ovens as the distillation of rubber in the other oven is concluded.Type: GrantFiled: November 28, 1994Date of Patent: July 21, 1998Assignee: Gentech, Inc.Inventor: Virgil J. Flanigan
-
Patent number: 5780696Abstract: The invention relates to a process for recycling waste which consists essentially of one or more plastics comprising polyvinyl chloride (PVC), in which:the waste is mixed with a heavy oil, in a reactor under an inert atmosphere, at an internal temperature of at least 300.degree. C., and the hydrogen chloride (HCl) which is evolved is collected;the contents of the reactor are then cracked at a temperature of at least 400.degree. C., and at least part of the gases which are evolved are extracted from the reactor;the contents of the reactor are then cooled and the residual solid product is collected.HCl, coke, hydrocarbon gases and various oils are thus mainly obtained.Type: GrantFiled: February 24, 1997Date of Patent: July 14, 1998Assignee: Solvay (Societe Anonyme)Inventor: Siegfried Bauer
-
Patent number: 5770017Abstract: A method and apparatus for rapid heat transfer using surface-to-surface heat transfer of a solid or semi-solid feedstock against an inner surface of a containment vessel. The vessel is torus or helically shaped so that a feedstock (and products) can be conveyed through the vessel at a velocity which sustains the feedstock against the outer periphery of the internal surface of the vessel as it transits the vessel. The reaction vessel can be used for pyrolysis of materials such as waste rubber, municipal solid waste, plastics or papers so as to recover valuable petrochemical-based liquid reaction products as well as solid reaction products. The reaction vessel may also be used for gasification and combustion reactions.Type: GrantFiled: June 7, 1995Date of Patent: June 23, 1998Assignee: Ireton International, Inc.Inventors: Douglas B. Brown, John Black
-
Patent number: 5728271Abstract: A thermolysis process for liquefaction of biomass solids in which specific and previously unrecognized conditions are employed. The thermolysis is carried out in a single fluidized bed of inert material operating at near atmospheric pressure, relatively low temperature, long solids and gas residence times and moderate heating rates. The distribution of the thermolysis products among liquid (bio-oil), solid (char) and gases under these conditions is unique. In particular, contrary to the prior art, both high liquid and low char yields are obtained. Furthermore the liquid is of similar composition to those obtained by so called fast pyrolysis processes of the prior art. The specified conditions are such as to allow production of liquids in high yields in an energy efficient manner. The low severity of the conditions in comparison with previous approaches allows simplified process design and scaleup leading to lower capital and operating costs as well as easier control.Type: GrantFiled: May 20, 1996Date of Patent: March 17, 1998Assignee: RTI Resource Transforms International Ltd.Inventors: Jan Piskorz, Piotr Majerski, Desmond Radlein
-
Patent number: 5720854Abstract: A purge chamber for purging oxygen from interlocking, solid material, such as shredded tire pieces, prior to further processing of the material in a liquefaction apparatus. The purge chamber includes a chamber for holding interlocking, solid material An entrance port is connected to the chamber for passing the interlocking, solid material into the chamber. A purge device communicates with the chamber for providing a purging gas to the chamber. An exit port of the chamber passes the interlocking, solid material from the chamber. An auger screw mounted in the chamber, when rotated, moves the interlocking, solid material from within the chamber into the exit port.Type: GrantFiled: April 25, 1996Date of Patent: February 24, 1998Assignee: Texaco Inc.Inventors: Vahan Avetisian, Constantin Bugescu, Craig Joseph Castagnoli, Suk-Bae Cha
-
Patent number: 5705035Abstract: A discharge system is used with a tire liquefaction process using a reactor. The system includes a receiver receiving unreacted components, including oil coated metal from the reactor. The unreacted components are moved through a pyrolysis reactor where they are heated to a temperature sufficient to convert the unreacted hydrocarbon components to a liquid and to a gas by way of pyrolysis. The liquid and the majority of gas are drawn off from the pyrolysis reactor. Discharge apparatus connected to the pyrolysis reactor converts the remaining gas to a condensate and discharges the metal. The condensate is also removed for further use.Type: GrantFiled: May 28, 1996Date of Patent: January 6, 1998Assignee: Texaco, Inc.Inventors: Vahan Avetisian, Craig Joseph Castagnoli, Suk-Bae Cha
-
Patent number: 5693188Abstract: Apparatus for the thermal conversion of solids containing hydrocarbons. In one embodiment for solids which can be converted entirely to vapour, pieces of the solids are continually fed into a molten lead bath in an oxygen free atmosphere in an elongated conversion chamber. An auger partially immersed in the lead bath carries the floating pieces along in the molten lead bath until they are gradually converted to hydrocarbon vapour which rises upwardly to a condenser. In another embodiment for solids which can be converted to a vapour, particulate matter and residual solids, the lead bath extends further into a separation chamber with an inclined retaining skirt extending between the conversion chamber and the separation chamber, The auger forces the particulate matter and residual solids remaining after vaporization down under the inclined skirt, but the hydrocarbon vapour is prevented from escaping into the separation chamber.Type: GrantFiled: November 8, 1996Date of Patent: December 2, 1997Assignee: Unique Tire Recycling (Canada) Inc.Inventors: James R. Donnohue, John Edgar Coltman
-
Patent number: 5670024Abstract: For thermally treating waste and/or residual materials, in particular fiber glass, glass silk, glass wool and glass mat coated with organic materials, a drum (1) with embedded elements is used to make the materials circulate. In this drum the materials are heated up to a temperature at least equal to the carbonization and/or evaporation temperature of the coatings but lower than the softening temperature of the materials. The waste or residual materials are preferably increasingly disaggregated in the drum and are heated by a stream of hot gas which flows in the drum from the discharge side (11) to the inlet side (4) and has its highest temperature at the discharge side.Type: GrantFiled: February 6, 1995Date of Patent: September 23, 1997Assignee: WTU Warmetechnik und Umweltschutz GmbHInventors: Franz Baltzer, Horst Juptner
-
Patent number: 5632863Abstract: Used batteries and other material for reclamation and recovery or environmentally safe disposal are transferred from a feed bin by an auger into a crusher and then into a pyrolysis chamber. The feed system excludes air or oxygen from passing through the auger and crusher into the pyrolysis chamber. The material from the crusher is transferred by an auger through the pyrolysis chamber which is heated to a decomposition temperature between 350.degree. and 650.degree. F. and is decomposed. The pyrolysis chamber includes a vapor recovery system for removing the vapors and maintaining a vacuum in the pyrolysis chamber. The vapors are withdrawn through a heat exchanger and into the liquid/gas separator where the condensed liquids are removed and the gas is further processed. The residue from the pyrolysis chamber is discharged into a residue recovery system which includes a closed auger for transferring the residue from the pyrolysis chamber into a bin.Type: GrantFiled: November 22, 1994Date of Patent: May 27, 1997Inventor: W. R. Meador
-
Patent number: 5616216Abstract: Process for treating industrial and/or urban waste comprising notably a drying stage, a waste thermolysis stage and a dechlorination stage by washing the solids resulting from the thermolysis.According to the invention, said thermolysis is achieved by direct contact of the waste with warm gases having a low oxygen content.The invention further relates to the plant for implementing the process.Type: GrantFiled: June 2, 1995Date of Patent: April 1, 1997Assignee: Institut Francais du PetroleInventors: Gerard Martin, Robert Gaulard
-
Patent number: 5608136Abstract: Disclosed is a method and an apparatus for pyrolytically decomposing waste plastic, e.g. PVC, to recover light fuel oil. The invention enables to prevent the product from contamination by halogen compounds. The plastic is first thermally decomposed in an atmosphere of a normal or reduced pressure to produce a primary decomposition product in the form of gas and a decomposition residue. The primary decomposition product is cooled at a first cooling temperature to separate the primary decomposition product into a relatively light fraction containing a desired light constituent and a relatively heavy fraction by condensation of the relatively heavy fraction, and the relatively heavy fraction is then thermally decomposed in an atmosphere pressurized at a predetermined pressure to produce a secondary decomposition product containing the desired light constituent in the form of gas.Type: GrantFiled: June 20, 1994Date of Patent: March 4, 1997Assignee: Kabushiki Kaisha ToshibaInventors: Yukishige Maezawa, Terunobu Hayata, Hideki Shimada, Isao Ito, Kazuo Suzuki, Masahiro Tadauchi, Fuminobu Tezuka, Jiro Kano
-
Patent number: 5605551Abstract: A high conversion of biomass, such as wood, sawdust, bark, or agricultural wastes, to liquids is obtained bypyrolysis at short reaction tines in a reactor capable of high heat transfer rates; the reactor being of the fluidized bed, circulating fluidized bed or transport type in which the conveying gas contains low and carefully controlled amounts of oxygen, allowing a reaction system with low concentrations of carbon monoxide or flammable gases with a resulting improvement in operating safety and potential improvement in thermal efficiency and capital costs. The oxidation steps may be carried out in one or two stages. The resulting liquid product may be used as an alternative liquid fuel or as a source of high-value chemicals.Type: GrantFiled: July 31, 1995Date of Patent: February 25, 1997Assignee: University of WaterlooInventors: Donald S. Scott, Jan Piskorz, Desmond Radlein, Piotr Majerski
-
Patent number: 5597451Abstract: A thermal decomposition apparatus for plastics wherein plastics are melted and thermally decomposed, and the resulting decomposition gas is cooled for condensation and recovered in the form of a thermal decomposition oil. The apparatus comprises a thermal decomposition reactor for melting and thermally decomposing the plastics therein, an extraneous matter discharge duct having one end opened in a melt of plastics within the reactor, an extraneous matter collecting container connected to the other end of the discharge duct, and an aspirator for aspirating extraneous matter within the reactor together with the melt through the discharge duct into the container.Type: GrantFiled: June 15, 1995Date of Patent: January 28, 1997Assignee: Hitachi Zosen CorporationInventors: Kenichi Nagai, Kenji Yasuda, Toshio Hama, Yoshitoshi Sekiguchi, Toshio Tachibana, Osamu Nakanishi, Tadashi Moriyama
-
Patent number: 5584969Abstract: A thermal decomposition apparatus for plastics wherein plastics are melted and thermally decomposed, and the resulting decomposition gas is cooled for condensation and recovered in the form of a thermal decomposition oil. The apparatus comprises a thermal decomposition reactor for melting and thermally decomposing the plastics therein, an extraneous matter discharge duct having one end opened in a melt of plastics within the reactor, an extraneous matter collecting container connected to the other end of the discharge duct, and an aspirator for aspirating extraneous matter within the reactor together with the melt through the discharge duct into the container.Type: GrantFiled: July 29, 1994Date of Patent: December 17, 1996Assignee: Hitachi Zosen CorporationInventors: Kenichi Nagai, Kenji Yasuda, Toshio Hama, Yoshitoshi Sekiguchi, Toshio Tachibana, Osamu Nakanishi, Tadashi Moriyama
-
Patent number: 5543061Abstract: This disclosure relates to a processor comprising means (10,11,12,110,111,112) for mixing a process material with a process liquid (13,113) (such as water) and forming an emulsion or slurry. Means (17,18,21,24,117,120,230,420) is provided for pressuring (16,26,116,126) and heating (61,36,173,227) the slurry, and the slurry is then fed to means (28,128,320,420) for reducing the pressure (27,127) to the slurry or emulsion and for further increasing the temperature (33,227) of the slurry or emulsion. The drop in pressure and increase in temperature causes components of the slurry or emulsion to convert to gases and separate from the remainder of the slurry or emulsion which is removed from the processor in the form of solids (32,132). The gas is fed to one or more condensers (10,63,64,65,177,178) which separate the gas into useful liquids such as various grades of oil.Type: GrantFiled: October 31, 1994Date of Patent: August 6, 1996Inventor: Paul T. Baskis
-
Patent number: 5505822Abstract: A process for treating industrial and/or urban waste includes the steps of drying the waste; effecting thermolysis of the dried waste by direct contact with warm gases, and washing solids resulting from the thermolysis with water to effect dechlorination thereof. Thermolysis is effected by direct contact of the waste with warm gases having a low oxygen content and water for washing the solids is obtained from condensation of vapors generated during drying of the waste A plant for treating industrial and/or urban waste includes a drier for drying the waste, a reactor for thermolyzing the waste, washing the solids from the reactor with water, such as from a condenser, to dechlorinate the solids, and a gas generator to generate warm gases, of which a part of the warm gases are used to heat the drier.Type: GrantFiled: July 9, 1992Date of Patent: April 9, 1996Assignee: Institut Francais du PetroleInventors: Gerard Martin, Robert Gaulard
-
Patent number: 5464876Abstract: Heating of polyvinyl chloride, in particular plasticizer-containing polyvinyl chloride, to a temperature of from 250.degree. to 500.degree. C. in the absence of oxygen gives a low-chlorine, carbon-containing residue, plasticizer and hydrogen chloride.Type: GrantFiled: October 4, 1994Date of Patent: November 7, 1995Assignee: Hoechst AktiengesellschaftInventors: Gunther Lyding, Maria Pille, Helmold von Plessen, Joachim Semel
-
Patent number: 5464503Abstract: A discharge system is used with a tire liquefaction process using a reactor. The system includes a receiver receiving unreacted components, including oil coated metal, from the reactor. The unreacted components are moved through a pyrolysis reactor where they are heated to a temperature sufficient to convert the unreacted hydrocarbon components to a liquid and to gas by way of pyrolysis. The liquid and the majority of gas are drawn off from the pyrolysis reactor. Discharge apparatus connected to the pyrolysis reactor converts the remaining gas to a condensate and discharges the metal. The condensate is also removed for further use.Type: GrantFiled: October 28, 1993Date of Patent: November 7, 1995Assignee: Texaco Inc.Inventors: Vahan Avetisian, Craig J. Castagnoli, Suk B. Cha
-
Patent number: 5460699Abstract: A process and apparatus for recovering energy values of waste tar sludge comprises dewatering the waste tar sludge, transporting the dewatered tar sludge in enclosed containers vented through activated carbon to remove volatile hydrocarbons before vapors are vented to the atmosphere, and injecting the dewatered tar sludge into the side wall of a coke oven charging hole along with a stream of coking coal introduced through the top of the charging hole.Type: GrantFiled: May 31, 1994Date of Patent: October 24, 1995Assignee: USX CorporationInventors: Stephen W. Bilan, Anthony J. Nuzzo
-
Patent number: 5453164Abstract: A pyrolytic converter utilizing a rotatable drum surrounded by an outer drum support structure and disposed in an oven chamber pyrolyzes materials including plastic waste, tires, materials from automobile shredding operations, containers and trays of plastic material, rubber, leather, garbage, sewage sludge, coal, oil shale, broken asphalt and the like. These materials are formed into cartridges by a compactor using a reciprocating ram which forms cartridges in an injection tube wherein another ram injects the cartridges into the converter drum.Type: GrantFiled: May 9, 1994Date of Patent: September 26, 1995Assignee: Wayne Technology Corp.Inventor: Fred A. Breu
-
Patent number: 5451297Abstract: Metals are recovered from automobile shredder residue by subjecting the shredder residue to vacuum pyrolysis to produce non-condensable gases, condensable hydrocarbon vapors and water vapor, and a solid residue containing non-oxidized metals and a carbonaceous material. The vacuum pyrolysis is carried out at a temperature in the range of about 450.degree. to about 650.degree. C., under a subatmospheric pressure in the range of about 50 to about 200 mm Hg so as to thermally decompose and substantially completely vaporize organic matter adhered to the metals. At least one metal is separated from the solid residue, the metal being recovered in nonoxidized and substantially carbon-free form suitable for direct recycling.Type: GrantFiled: September 14, 1993Date of Patent: September 19, 1995Assignee: Universite LavalInventor: Christian Roy
-
Patent number: 5449438Abstract: Apparatus and method for reprocessing crushed organic waste products, such as rubber waste from worn car tires, by pyrolysis, the method including pyrolytically decomposing the crushed waste products in a pyrolysis bath which is one of a bed or a bath, and which has a temperature ranging from 450.degree. to 550.degree. C., into a mixture including volatilized constituents, liquid constituents, and solid constituents; collecting at least a part of the volatilized constituents from a gas space above the pyrolysis bath and transporting the collected volatilized constituents away from the pyrolysis bath for further utilization; and introducing a gas intermittently or continuously into the gas space above the pyrolysis bath.Type: GrantFiled: July 30, 1993Date of Patent: September 12, 1995Assignee: FORMEX Trading GmbHInventors: Hermann H. W. Jagau, Richard Schimko
-
Patent number: 5435890Abstract: A preferred embodiment of the apparatus 10 for recycling used automobile rubber tires is described in which small pieces of rubber tires are progressively fed into a vertical reactor 14 of the counter-flow type in which the material progressively descends downward through the reactor 14 with process gases passing upward through the downwardly descending material to decompose and volatilize the rubber material. Oxygen-bearing gas is injected into the reactor to burn a portion of the rubber carbon to generate hot combustion gases that ascend upwardly to pyrolitically decompose the rubber pieces, and to volatilize such material. The amount of oxygen is controlled in an oxygen-deficient manner to maintain the temperature in the combustion zone at a temperature of less than 500.degree. F. The gases and volatilized rubber materials and oils are removed from the reactor at a temperature of approximately 350.degree. F.Type: GrantFiled: July 10, 1992Date of Patent: July 25, 1995Inventor: Joseph H. Munger
-
Patent number: 5427022Abstract: An apparatus for batch compression of tires has a support frame for supporting and aligning a plurality of tires in a generally axially aligned position. A mechanism for securing the plurality of tires is provided, as well as a ram member for axially compressing the tires which includes a protrusion for engaging a central orifice of each of the tires for guarding against misalignment of the tires. Also set forth is a method for batch pyrolysis of tires comprising the steps of first baling a plurality of tires together in a compressed cylinder having an orifice extending through the central portion. Next, the compressed cylinder is placed in a pyrolysis oven such that the heat can circulate through the central orifice and about the compressed cylinder. Thereafter, the material is batch pyrolized to produce useful by-products and retain a greater portion of the char material.Type: GrantFiled: October 27, 1992Date of Patent: June 27, 1995Assignee: American Tire Reclamation, Inc.Inventor: Donald M. Gardner
-
Patent number: 5426259Abstract: In a method for oil-extracting treatment of wastes for extracting oil by heating wastes contained in a waste containing chamber in a manner to be shut off from air, an inert gas is injected into the waste containing chamber after termination of thermal decomposition of the wastes to force out the combustible gas within said waste containing chamber and said waste containing chamber is then opened, so as to prevent an explosion due to mixing of the residual combustible gas within the waste containing chamber and air after the termination of thermal decomposition of the wastes.Type: GrantFiled: October 4, 1993Date of Patent: June 20, 1995Assignee: Hojo Co., Ltd.Inventors: Kazuharu Hojo, Toshio Koguchi
-
Patent number: 5423950Abstract: The reactor forms a chamber which contains the reaction process. There are accesses to the chamber for receiving shredded tires and oil. There are egresses from the chamber for discharging the tire oil and for discharging unreacted elements. Apparatus is located within the chamber which separates the unreacted components of the shredded tires from the tire oil. The apparatus also provides for the removal of the unreacted elements from the chamber means. The reactor also includes a heater which heats the inside of the chamber to a temperature sufficient to cause a reaction between the shredded tires and the oil.Type: GrantFiled: October 28, 1993Date of Patent: June 13, 1995Assignee: Texaco Inc.Inventors: Vahan Avetisian, Constantin Bugescu, Robert S. Burton, III, Craig J. Castagnoli, Suk-Bae Cha, Kenneth S. Lee, Allen M. Robin
-
Patent number: 5411714Abstract: A thermal conversion pyrolysis reactor system (10) is provided for use in providing a continuous flow type pyrolysis reaction for conversion of carbonizable input materials ("MW") (12). The reactor system (10) utilizes a diffusion material ("MD") (14) which is preheated and admixed with the MD (12) in order to facilitate pyrolysis and to partially catalyze reactions. Subsystems are provided to receive gaseous (30), liquid (32) and solid (32) phase outputs. The reactor system (10) includes further component subsystems for waste material MW input (22), MD input (26), reactor chamber (24), and heating (28). The MD (14) is preheated by being carried through the reactor chamber (64) prior to admixing with the MW (12) and further by exhaust gases (94) from the furnace space (88) being directed through a heat exchanger (126).Type: GrantFiled: February 3, 1993Date of Patent: May 2, 1995Inventors: Arthur C. Wu, Sabrina C. Chen
-
Patent number: 5369215Abstract: Polymeric feedstocks, such as scrap or waste tires, rubber, and plastics, in a size range of -6 to +25 mesh are washed with an organic solvent to remove stabilizing additives which have migrated to the surface of the polymer particles, thus eliminating the stabilizers from participation in subsequent reactions and allowing the final production of more pure monomeric products. The polymer particles are exposed to ozone under conditions to cause stress cracking, fissuring and cleavage of the polymer feedstock particles. The ozonated polymer particles are depolymerized to produce one or more monomeric compounds, with the reaction taking place rapidly and occurring in the presence of a system of one or more catalysts which may be metallic salts. The depolymerization is accomplished under conditions of elevated temperatures and reduced pressure, the conditions being less severe than those conditions associated with thermal pyrolysis.Type: GrantFiled: August 16, 1993Date of Patent: November 29, 1994Assignee: S-P Reclamation, Inc.Inventor: Gerald A. Platz
-
Patent number: 5368723Abstract: Waste plastics are heated so as to be thermally decomposed and produce a vapor product containing oil and gas components. The vapor product is brought into contact with a solid acid catalyst containing a hydrochloric acid as a decomposing activator to be cracked so as to recover a low boiling point hydrocarbon oil.Type: GrantFiled: February 10, 1993Date of Patent: November 29, 1994Assignee: Mazda Motor CorporationInventors: Toshiki Takahashi, Yoshio Tanimoto
-
Patent number: 5366595Abstract: A loading mechanism places waste material into a porous rotatable cylinder that is mounted for relative rotation within an air-tight housing. Once loaded, the housing is sealed and oxygen is evacuated. A microwave heating device heats the waste material within the cylinder and breaks the waste material down into solid and fluid products. A drive motor simultaneously rotates the cylinder at high speed, creating centrifugal force on the waste material. The fluid products escape outwardly from the porous cylinder and are transferred to a heat exchanger chamber where they are cooled. A fractional distillation system stratifies the fluid products according to weight for purposes of recovery.Type: GrantFiled: May 11, 1993Date of Patent: November 22, 1994Inventors: Michael A. Padgett, Douglas B. Kuiper, Steven R. Rehnborg
-
Patent number: 5360553Abstract: This disclosure relates to a processor comprising means for mixing a process material with a process liquid (such as water) and forming an emulsion or slurry. Means is provided for pressuring and heating the slurry, and the slurry is then fed to means for quickly reducing the pressure to a relatively low value and further increasing the temperature. The rapid drop in pressure and increase in temperature causes components of the slurry to convert to volatile gases and separate from the remainder of the slurry which is removed from the processor in the form of solids. The gas is fed to one or more condensers which separate the gas into useful liquids such as various grades of oil.Type: GrantFiled: August 20, 1993Date of Patent: November 1, 1994Inventor: Paul T. Baskis
-
Patent number: 5360537Abstract: A continuously operable combustion-type retort apparatus includes an insulated retort. A preheater is preferably associated with the retort for preheating incoming material, and means are preferably provided for injecting acetic acid and steam into the incoming material. Heat is supplied from a combustion zone arranged near the bottom of the retort, wherein means are provided for combusting spent shale to provide the heat necessary for retorting. Means for injecting acetic acid and water are arranged above the combustion zone for preventing the combustion from spreading into the material being retorted. The invention also comprises a method of retorting to produce a very high quality oil from shale and having a 7:1 ratio of carbon to hydrogen, along with the production of valuable nitrogen related chemicals, activated lignin and cement.Type: GrantFiled: February 3, 1993Date of Patent: November 1, 1994Assignee: Georgia Oil & Gas Co., Inc.Inventor: Louis Strumskis
-
Patent number: 5330623Abstract: The organic material (such as waste tire compound) is pyrolysed by pre-heating the organic material (without pyrolysis) in a preheat zone 9 by a hot gas stream; feeding pre-heated material directly to a microwave discharge zone 10 by means of conveyor 8; pyrolysing the pre-heated material in the microwave discharge zone to produce solid fission products containing elemental carbon and gaseous by-products; and recycling at least some of the latter to the hot gas stream which is supplied to the pre-heating zone.Type: GrantFiled: January 27, 1992Date of Patent: July 19, 1994Inventor: Kenneth M. Holland
-
Patent number: 5302254Abstract: A plant for treating industrial and/or urban waste includes a stage for drying of the waste, followed by a stage for effecting thermolysis of the dried waste and a stage for effecting recovery of the solids and gases resulting from the thermolysis. Thermolysis of the waste is effected in a reactor by indirect heat exchange with combustion gases and drying gases for drying of the waste are subsequently treated to remove vapor materials and then recycled to a gas generator for generating the drying gases. Additionally the plant includes a stage for effecting dechlorination of the solids resulting from the thermolysis by washing the solids with an aqueous liquid, as well as a stage of separating the wash solids and the resulting wash liquid.Type: GrantFiled: July 9, 1992Date of Patent: April 12, 1994Assignee: Institut Francais Du PetroleInventors: Gerard Martin, Robert Gaulard