Ion Beam Etching (e.g., Ion Milling, Etc.) Patents (Class 204/192.34)
  • Patent number: 8790498
    Abstract: A method and device for ion beam processing of surfaces of a substrate positions the substrate to face an ion beam, and a new technologically-defined pattern of properties is established. According to the method, the current geometrical effect pattern of the ion beam on the surface of the substrate is adjusted depending on the known pattern of properties and the new technologically-defined pattern of properties, and depending upon the progress of the processing, by modifying the beam characteristic and/or by pulsing the ion beam. A device for carrying out the method includes a substrate support for holding at least one substrate, which can be moved along an Y-axis and an X-axis, and an ion beam source for generating an ion beam, which is perpendicular to the surface to be processed of the substrate in the Z-axis or which may be arranged in an axis, inclined in relation to the Z-axis. The distance between the ion beam source and the surface to be processed of the substrate may be fixed or variable.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: July 29, 2014
    Assignee: Roth & Rau AG
    Inventors: Joachim Mai, Dietmar Roth, Bernd Rau, Karl-Heinz Dittrich
  • Patent number: 8776334
    Abstract: A method of manufacturing a piezoelectric thin film resonator which can reduce variations in resonant frequency and resonant resistance by uniformly planarizing a structural film. The method of manufacturing the piezoelectric thin film resonator includes the steps of forming sacrifice layer patterns on an upper surface of a mother substrate; forming a dielectric film on the sacrifice layer patterns; processing a surface of the dielectric film by a plasma treatment; forming vibration portions on the dielectric film, the vibration portions each being composed of two excitation electrodes and a piezoelectric thin film provided therebetween; etching the sacrifice layer patterns; and cutting the mother substrate into separate piezoelectric thin film resonators.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: July 15, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Hidetoshi Fujii, Ryuichi Kubo
  • Patent number: 8764952
    Abstract: In a method of irradiating a gas cluster ion beam on a solid surface and smoothing the solid surface, the angle formed between the solid surface and the gas cluster ion beam is chosen to be between 1° and an angle less than 30°. In case the solid surface is relatively rough, the processing efficiency is raised by first irradiating a beam at an irradiation angle ? chosen to be something like 90° as a first step, and subsequently at an irradiation angle ? chosen to be 1° to less than 30° as a second step. Alternatively, the set of the aforementioned first step and second step is repeated several times.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: July 1, 2014
    Assignee: Japan Aviation Electronics Industry Limited
    Inventors: Akinobu Sato, Akiko Suzuki, Emmanuel Bourelle, Jiro Matsuo, Toshio Seki, Takaaki Aoki
  • Patent number: 8741161
    Abstract: According to one embodiment, a method of manufacturing a semiconductor device, the method includes forming a pillar on a base layer, forming a insulating layer on the base layer to cover the pillar by using GCIB method, where a lowermost portion of an upper surface of the insulating layer is lower than an upper surface of the pillar, and polishing the insulating layer and the pillar to expose a head of the pillar by using CMP method, where an end point of the polishing is the lowermost portion of the upper surface of the insulating layer.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: June 3, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasuyuki Sonoda, Kyoichi Suguro, Masatoshi Yoshikawa, Koji Yamakawa, Katsuaki Natori, Daisuke Ikeno
  • Patent number: 8728333
    Abstract: A three step ion beam etch (IBE) sequence involving low energy (<300 eV) is disclosed for trimming a sensor critical dimension (free layer width=FLW) to less than 50 nm. A first IBE step has a steep incident angle with respect to the sensor sidewall and accounts for 60% to 90% of the FLW reduction. The second IBE step has a shallow incident angle and a sweeping motion to remove residue from the first IBE step and further trim the sidewall. The third IBE step has a steep incident angle to remove damaged sidewall portions from the second step and accounts for 10% to 40% of the FLW reduction. As a result, FLW approaching 30 nm is realized while maintaining high MR ratio of over 60% and low RA of 1.2 ohm-?m2. Sidewall angle is manipulated by changing one or more ion beam incident angles.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: May 20, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Hui-Chuan Wang, Tong Zhao, Min Zheng, Minghui Yu, Min Li, Cherng Chyi Han
  • Patent number: 8728286
    Abstract: A method of manufacturing a sample for an atom probe analysis of the invention is made one going through a step of manufacturing a concave/convex structure in both of a base needle and a transplantation sample piece by an etching working of an FIB, a step of jointing mutual members, and a step of bonding such that the concave/convex structure becomes a mesh form by a deposition working of the FIB.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: May 20, 2014
    Assignee: SII Nano Technology Inc.
    Inventor: Takashi Kaito
  • Publication number: 20140131195
    Abstract: The present invention discloses an electron microscope and FIB system for processing and imaging of a variety of materials using two separate laser beams of different characteristics. The first laser beam is used for large bulk material removal and deep trench etching of a workpiece. The second laser beam is used for finer precision work, such as micromachining of the workpiece, small spot processing, or the production of small heat affected zones. The first laser beam and the second laser beam can come from the same laser source or come from separate laser sources. Having one laser source has the additional benefits of making the system cheaper and being able to create separate external and internal station such that the debris generated from bulk material removal from the first laser beam will not interfere with vacuum or components inside the particle beam chamber.
    Type: Application
    Filed: November 15, 2012
    Publication date: May 15, 2014
    Applicant: FEI Company
    Inventor: Kelly Bruland
  • Patent number: 8715472
    Abstract: A substrate processing method may include forming a plasma; extracting ions from the plasma and accelerating the ions to have uniform or substantially uniform directivity using a grid system; irradiating the ions at a reflector, wherein the reflector includes a plurality of reflecting plates each having a metal plate and an insulating layer on the metal plate, wherein the reflecting plates are parallel or substantially parallel such that the insulating layers are exposed to the ions; reflecting the ions incident on the reflecting plates away from the insulating layers of the reflecting plates; colliding the ions reflected away from the insulating layers with the metal plates to convert the ions into neutral beams; and irradiating the neutral beams onto a substrate to process the substrate.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: May 6, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Wook Hwang, Chul-Ho Shin
  • Publication number: 20140110244
    Abstract: Provided is a supersonic beam apparatus including a nozzle for injecting a gas at a supersonic velocity into a vacuum; a skimmer arranged at a downstream of the nozzle; and an ionization part for ionizing a particle in a supersonic beam formed by the skimmer from the gas injected from the nozzle to form a cluster ion beam, wherein a set position of the skimmer is one of a maximum position where an amount of cluster generation in a relationship of the amount of cluster generation with respect to a distance between the nozzle and the skimmer is maximized and a position closer to the nozzle than the maximum position.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 24, 2014
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Kota Iwasaki
  • Publication number: 20140102881
    Abstract: Method of and apparatus for repairing an optical element disposed in a vacuum chamber while the optical element is in the vacuum chamber. An exposed surface of the optical element is exposed to an ion flux generated by an ion source to remove at least some areas of the surface that have been damaged by exposure to the environment within the vacuum chamber. The method and apparatus are especially applicable to repair multilayer mirrors serving as collectors in systems for generating EUV light for use in semiconductor photolithography.
    Type: Application
    Filed: October 12, 2012
    Publication date: April 17, 2014
    Applicant: Cymer Inc.
    Inventor: Alexander I. ERSHOV
  • Patent number: 8679357
    Abstract: Droplets of resist material are coated using the ink jet method under conditions that: the viscosity of the resist material is within a range from 8 cP to 20 cP, the surface energy of the resist material is within a range from 25 mN/m to 35 mN/m, the amount of resist material in each of the droplets is within a range from 1 pl to 10 pl, and the placement intervals among the droplets are within a range from 10 ?m to 1000 ?m. A mold is pressed against the surface of the substrate in a He and/or a depressurized atmosphere such that: an intersection angle formed between a main scanning direction of the ink jet method and the direction of the lines of the linear pattern of protrusions and recesses, which is an intersection angle when pressing the mold against the surface of the substrate, is within a range from 30° to 90°.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: March 25, 2014
    Assignee: Fujifilm Corporation
    Inventors: Satoshi Wakamatsu, Tadashi Omatsu
  • Publication number: 20140079936
    Abstract: In a method of forming a nanopore in a nanometric material, a nanopore nucleation site is formed at a location that is interior to lateral edges of the nanometric material by directing a first energetic beam, selected from the group of ion beam and neutral atom beam, at the interior location for a first time duration that imposes a first beam dose which causes removal of no more than five interior atoms from the interior location to produce at the interior location a nanopore nucleation site having a plurality of edge atoms. A nanopore is then formed at the nanopore nucleation site by directing a second energetic beam, selected from the group consisting of electron beam, ion beam, and neutral atom beam, at the nanopore nucleation site with a beam energy that removes edge atoms at the nanopore nucleation site but does not remove bulk atoms from the nanometric material.
    Type: Application
    Filed: March 14, 2012
    Publication date: March 20, 2014
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Christopher John Russo, Jene Golovchenko, Daniel Branton
  • Publication number: 20140061032
    Abstract: A method, system, and computer-readable medium for forming transmission electron microscopy sample lamellae using a focused ion beam including directing a high energy focused ion beam toward a bulk volume of material; milling away the unwanted volume of material to produce an unfinished sample lamella with one or more exposed faces having a damage layer; characterizing the removal rate of the focused ion beam; subsequent to characterizing the removal rate, directing a low energy focused ion beam toward the unfinished sample lamella for a predetermined milling time to deliver a specified dose of ions per area from the low energy focused ion beam; and milling the unfinished sample lamella with the low energy focused ion beam to remove at least a portion of the damage layer to produce the finished sample lamella including at least a portion of the feature of interest.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Applicant: FEI Company
    Inventors: Thomas G. Miller, Jason Arjavac, Michael Moriarty
  • Patent number: 8663486
    Abstract: A method of manufacturing a magnetic recording medium, includes, in the order recited, the steps of forming a mask protective film composed of carbon on a magnetic layer; forming a resist with a predetermined pattern on the mask protective film; forming a protective mask by etching the mask protective film using the resist as a mask; forming protrusions and recesses on a magnetic layer by etching the magnetic layer using the resist and the protective mask as masks; removing the protective mask, including removing the mask protective film comprised of carbon, using ultraviolet light with a principal wavelength not longer than 340 nm; and forming a protective layer on the magnetic layer having the protrusions and recesses formed thereon.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: March 4, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Noboru Kurata
  • Patent number: 8658004
    Abstract: A system includes a collimated beam source within a vacuum chamber, a condensable barrier gas, cooling material, a pump, and isolation chambers cooled by the cooling material to condense the barrier gas. Pressure levels of each isolation chamber are substantially greater than in the vacuum chamber. Coaxially-aligned orifices connect a working chamber, the isolation chambers, and the vacuum chamber. The pump evacuates uncondensed barrier gas. The barrier gas blocks entry of atmospheric vapor from the working chamber into the isolation chambers, and undergoes supersonic flow expansion upon entering each isolation chamber. A method includes connecting the isolation chambers to the vacuum chamber, directing vapor to a boundary with the working chamber, and supersonically expanding the vapor as it enters the isolation chambers via the orifices. The vapor condenses in each isolation chamber using the cooling material, and uncondensed vapor is pumped out of the isolation chambers via the pump.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: February 25, 2014
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Leonard M. Weinstein, Karen M. Taminger
  • Publication number: 20140022839
    Abstract: A method and apparatus provide a magnetic memory including magnetic junctions on a substrate. The apparatus include an RIE chamber and an ion milling chamber. The chambers are coupled such that the magnetic memory is movable between the chambers without exposing the magnetic memory to ambient. The method provides magnetic junction layers and a hard mask layer on the magnetic junction layers. A hard mask is formed from the hard mask layer using an RIE. The magnetic junction layers are ion milled after the RIE and without exposing the magnetic memory to an ambient after the RIE. The ion milling defines at least part of each magnetic junction. A magnetic junction may be provided. The magnetic junction includes pinned, nonmagnetic spacer, and free layers. The free layer has a width of not more than twenty nanometers and is switchable when a write current is passed through the magnetic junction.
    Type: Application
    Filed: July 20, 2012
    Publication date: January 23, 2014
    Inventors: Chang-Man Park, Dustin William Erickson, Mohamad Towfik Krounbi
  • Patent number: 8634146
    Abstract: A method of making a nanostructure is provided that includes applying a thin, random discontinuous masking layer (105) to a major surface (103) of a substrate (101) by plasma chemical vapor deposition. The substrate (101) can be a polymer, an inorganic material, an alloy, or a solid solution. The masking layer (105) can include the reaction product of plasma chemical vapor deposition using a reactant gas comprising a compound selected from the group consisting of organosilicon compounds, metal alkyls, metal isopropoxides, metal acetylacetonates, and metal halides. Portions (107) of the substrate (101) not protected by the masking layer (105) are then etched away by reactive ion etching to make the nanostructures.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: January 21, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Moses M. David, Ta-Hua Yu, Andrew K. Hartzell
  • Patent number: 8623230
    Abstract: The present method relates to processes for the removal of a material from a sample by a gas chemical reaction activated by a charged particle beam. The method is a multiple step process wherein in a first step a gas is supplied which, when a chemical reaction between the gas and the material is activated, forms a non-volatile material component such as a metal salt or a metaloxide. In a second consecutive step the reaction product of the first chemical reaction is removed from the sample.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: January 7, 2014
    Assignee: Carl Zeiss SMS GmbH
    Inventors: Nicole Auth, Petra Spies, Tristan Bret, Rainer Becker, Thorsten Hofmann, Klaus Edinger
  • Publication number: 20130327636
    Abstract: In one aspect, a method comprises: providing a substrate having at least one layer in which the patterned dot array is to be fabricated; depositing a nanoparticle layer, wherein the nanoparticle layer comprises one or more surfactants and nanoparticles coated with the one or more surfactants; treating the one or more surfactants that coat the nanoparticles and the portions of the one or more surfactants that fill the spaces among the nanoparticles; removing the portions of the one or more surfactants that fill the spaces among the nanoparticles to expose portions of the at least one layer in which the patterned dot array is to be fabricated; etching the exposed portions of the at least one layer in which the patterned dot array is to be fabricated; and removing at least a portion of the nanoparticles.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 12, 2013
    Applicant: Carnegie Mellon University
    Inventors: Sara Majetich, Tianlong Wen
  • Publication number: 20130319850
    Abstract: A method for making a patterned-media magnetic recording disk using nanoimprint lithography (NIL) enlarges the size of the imprint resist features after the imprint resist has been patterned by NIL. The layer of imprint resist material is deposited on a disk blank, which may have the magnetic layer already deposited on it. The imprint resist layer is patterned by NIL, resulting in a plurality of spaced-apart resist pillars with sloped sidewalls from the top to the base. An overlayer of a material like a fluorocarbon polymer is deposited over the patterned resist layer, including over the sloped resist pillar sidewalls. This enlarges the lateral dimension of the resist pillars. The overlayer is then etched to leave the overlayer on the sloped resist pillar sidewalls while exposing the disk blank in the spaces between the resist pillars.
    Type: Application
    Filed: August 8, 2013
    Publication date: December 5, 2013
    Applicant: HGST Netherlands B.V.
    Inventors: Toshiki Hirano, Dan Saylor Kercher, Jeffrey S. Lille, Kanaiyalal Chaturdas Patel
  • Publication number: 20130319849
    Abstract: A method and apparatus for producing thin lamella for TEM observation. The steps of the method are robust and can be used to produce lamella in an automated process. In some embodiments, a protective coating have a sputtering rate matched to the sputtering rate of the work piece is deposited before forming the lamella. In some embodiments, the bottom of the lamella slopes away from the feature of interest, which keeps the lamella stable and reduces movement during thinning. In some embodiments, a fiducial is used to position the beam for the final thinning, instead of using an edge of the lamella. In some embodiments, the tabs are completed after high ion energy final thinning to keep the lamella more stable. In some embodiments, a defocused low ion energy and pattern refresh delay is used for the final cut to reduce deformation of the lamella.
    Type: Application
    Filed: May 21, 2013
    Publication date: December 5, 2013
    Applicant: FEI Company
    Inventors: Scott Edward Fuller, Brian Roberts Routh, JR., Michael Moriarty
  • Publication number: 20130309522
    Abstract: Provided is a sliding member having slidability and abrasion resistance both at satisfactory levels. This sliding member has a sliding surface including a base and a filling part. The base includes a first material and bears regularly arranged concavities. The filling part includes a second material and is arranged in the sliding surface to fill the concavities. The first material includes one selected from the group consisting of a metallic material, a ceramic material, and a carbonaceous material. The second material includes at least one selected from the group consisting of a metallic material, a ceramic material, and a carbonaceous material. The first and second materials differ from each other in at least one of frictional coefficient and hardness. The base and the filling part are substantially flush with each other in the sliding surface.
    Type: Application
    Filed: February 9, 2012
    Publication date: November 21, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Hirotaka Ito, Kenji Yamamoto
  • Publication number: 20130309421
    Abstract: The present invention provides a plasma ion beam system that includes multiple gas sources and that can be used for performing multiple operations using different ion species to create or alter submicron features of a work piece. The system preferably uses an inductively coupled, magnetically enhanced ion beam source, suitable in conjunction with probe-forming optics sources to produce ion beams of a wide variety of ions without substantial kinetic energy oscillations induced by the source, thereby permitting formation of a high resolution beam.
    Type: Application
    Filed: March 26, 2013
    Publication date: November 21, 2013
    Applicant: FEI Company
    Inventor: FEI Company
  • Publication number: 20130264192
    Abstract: A method for making a strip shaped graphene layer includes the following steps. First, a graphene film located on a surface of a substrate is provided. Second, a drawn carbon nanotube film composite is disposed on the graphene film. The drawn carbon nanotube film composite includes a polymer material and a drawn carbon nanotube film structure disposed in the polymer material. The drawn carbon nanotube film structure includes a number of carbon nanotube segments and a number of strip-shaped gaps between the adjacent carbon nanotube segments. Third, the polymer material is partly removed to expose the carbon nanotube segments. Fourth, the carbon nanotube segments and the graphene film covered by the plurality of carbon nanotube segments are etched. Fifth, the remained polymer material is removed to obtain the strip shaped graphene layer.
    Type: Application
    Filed: December 29, 2012
    Publication date: October 10, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: XIAO-YANG LIN, KAI-LI JIANG, SHOU-SHAN FAN
  • Publication number: 20130264193
    Abstract: A method for making a strip shaped graphene layer includes the following steps. First, a graphene film is located on a surface of a substrate is provided. Second, a carbon nanotube structure is disposed on the graphene film. The carbon nanotube structure includes a plurality of carbon nanotube segments and a plurality of strip-shaped gaps between the adjacent carbon nanotube segments. Third, the graphene film exposed by the strip-shaped gaps is removed by a reactive ion etching method.
    Type: Application
    Filed: December 29, 2012
    Publication date: October 10, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: XIAO-YANG LIN, KAI-LI JIANG, SHOU-SHAN FAN
  • Publication number: 20130264307
    Abstract: A method for making a strip shaped graphene layer includes the steps of: first, a graphene film is located on a surface of a substrate is provided. Second, a drawn carbon nanotube film composite is disposed on the graphene film. The drawn carbon nanotube film composite includes a polymer material and a drawn carbon nanotube film structure disposed in the polymer material. The drawn carbon nanotube film structure includes a plurality of carbon nanotube segments and a plurality of strip-shaped gaps between the adjacent carbon nanotube segments. Third, the polymer material is partly removed to expose the plurality of carbon nanotube segments. Forth, the plurality of carbon nanotube segments and the graphene film covered by the plurality of carbon nanotube segments is etched. Fifth, the remained polymer material is removed to obtain the strip shaped graphene layer.
    Type: Application
    Filed: December 29, 2012
    Publication date: October 10, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: XIAO-YANG LIN, KAI-LI JIANG, SHOU-SHAN FAN
  • Publication number: 20130248356
    Abstract: A carbonaceous material is removed using a low energy focused ion beam in the presence of an etch-assisting gas. Applicant has discovered that when the beam energy of the FIB is lowered, an etch-assisting gas, such as O2, greatly increases the etch rate. In one example, polyimide material etched using a Xe+ plasma FIB with a beam energy from 8 keV to 14 keV and O2 as an etch-assisting gas, the increase in etch rate can approach 30x as compared to the default mill rate.
    Type: Application
    Filed: December 17, 2012
    Publication date: September 26, 2013
    Inventor: Chad Rue
  • Publication number: 20130248355
    Abstract: According to one embodiment, a method of manufacturing a magnetoresistive element, the method includes forming a first magnetic layer, forming a tunnel barrier layer on the first magnetic layer, forming a second magnetic layer on the tunnel barrier layer, forming a hard mask layer on the second magnetic layer, and patterning the second magnetic layer, the tunnel barrier layer, and the first magnetic layer, with a cluster ion beam using the hard mask layer as a mask, wherein the cluster ion beam comprises cluster ions, cluster sizes of the cluster ions are distributed, and a peak value of the distribution of the cluster sizes is 2 pieces or more and 1000 pieces or less.
    Type: Application
    Filed: September 18, 2012
    Publication date: September 26, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yuichi Ohsawa, Junichi Ito, Shigeki Takahashi, Saori Kashiwada, Chikayoshi Kamata
  • Publication number: 20130248354
    Abstract: A method for TEM sample preparation and analysis that can be used in a FIB-SEM system without re-welds, unloads, user handling of the lamella, or a motorized flip stage. The method allows a dual beam FIB-SEM system with a typical tilt stage to be used to extract a sample to from a substrate, mount the sample onto a TEM sample holder capable of tilting, thin the sample using FIB milling, and rotate the sample so that the sample face is perpendicular to an electron column for STEM imaging.
    Type: Application
    Filed: November 30, 2012
    Publication date: September 26, 2013
    Inventors: Paul Keady, Brennan Peterson, Guus Das, Craig Henry, Larry Dworkin, Jeff Blackwood, Stacey Stone, Michael Schmidt
  • Publication number: 20130248357
    Abstract: A glow discharge milling apparatus milling a sample by using glow discharge includes a glow discharge tube in which in an atmosphere of mixed gas supplied through a pipe, a voltage is applied between an internal electrode and a sample placed opposite to the electrode so that glow discharge is generated; a reception part receiving a mixing ratio by which inert gas and oxygen gas are to be mixed with each other; a control part, in accordance with the mixing ratio received by the reception part, controlling the amounts of supply of the inert gas and the oxygen gas; and a supply unit mixing the inert gas and the oxygen gas with each other in accordance with the amounts of supply controlled by the control part and then supplying the mixed gas to said glow discharge tube through said pipe.
    Type: Application
    Filed: March 21, 2013
    Publication date: September 26, 2013
    Applicant: HORIBA, LTD.
    Inventors: Akira FUJIMOTO, Tatsuhito NAKAMURA
  • Patent number: 8540852
    Abstract: Disclosed are method and apparatus for manufacturing a magnetoresistive device which are suitable for manufacturing a high-quality magnetoresistive device by reducing damages caused during the processing of a multilayer magnetic film as a component of the magnetoresistive device, thereby preventing deterioration of magnetic characteristics due to such damages. Specifically disclosed is a method for manufacturing a magnetoresistive device, which includes processing a multilayer magnetic film by performing a reactive ion etching on a substrate which is provided with the multilayer magnetic film as a component of the magnetoresistive device. This method for manufacturing a magnetoresistive device includes irradiating the multilayer magnetic film with an ion beam after the reactive ion etching.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: September 24, 2013
    Assignee: Canon Anelva Corporation
    Inventors: Naoki Watanabe, Yoshimitsu Kodaira, David D. Djayaprawira, Hiroki Maehara
  • Publication number: 20130214875
    Abstract: A graphene sheet is provided. The graphene sheet includes a carbon lattice and a spatial distribution of defects in the carbon lattice. The spatial distribution of defects is configured to tailor the buckling properties of the graphene sheet.
    Type: Application
    Filed: February 16, 2012
    Publication date: August 22, 2013
    Inventors: William D. Duncan, Roderick A. Hyde, Jordin T. Kare, Thomas A. Weaver, Lowell L. Wood, JR.
  • Patent number: 8512586
    Abstract: A method and system for performing gas cluster ion beam (GCIB) etch processing of various materials is described. In particular, the GCIB etch processing includes setting one or more GCIB properties of a GCIB process condition for the GCIB to achieve one or more target etch process metrics.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: August 20, 2013
    Assignee: TEL Epion Inc.
    Inventors: Martin D. Tabat, Christopher K. Olsen, Yan Shao, Ruairidh MacCrimmon
  • Publication number: 20130180843
    Abstract: Method, device, and system, for directed multi-deflected ion beam milling of a work piece, and, determining and controlling extent thereof. Providing an ion beam; and directing and at least twice deflecting the provided ion beam, for forming a directed multi-deflected ion beam, wherein the directed multi-deflected ion beam is directed towards, incident and impinges upon, and mills, a surface of the work piece. Device includes an ion beam source assembly; and an ion beam directing and multi-deflecting assembly, for directing and at least twice deflecting the provided ion beam, for forming a directed multi-deflected ion beam, wherein the directed multi-deflected ion beam is directed towards, incident and impinges upon, and mills, a surface of the work piece.
    Type: Application
    Filed: July 17, 2012
    Publication date: July 18, 2013
    Applicant: CAMTEK LTD.
    Inventors: Dimitri BOGUSLAVSKY, Valentin CHEREPIN, Colin SMITH
  • Publication number: 20130180844
    Abstract: A method of processing one or more surfaces is provided, comprising: providing a switchable ion gun which is switchable between a cluster mode setting for producing an ion beam substantially comprising ionised gas clusters for irradiating a surface and an atomic mode setting for producing an ion beam substantially comprising ionised gas atoms for irradiating a surface; and selectively operating the ion gun in the cluster mode by mass selecting ionised gas clusters using a variable mass selector thereby irradiating a surface substantially with ionised gas clusters or the atomic mode by mass selecting ionised gas atoms using a variable mass selector thereby irradiating a surface substantially with ionised gas atoms.
    Type: Application
    Filed: October 10, 2011
    Publication date: July 18, 2013
    Inventor: Bryan Barnard
  • Publication number: 20130161185
    Abstract: The present invention generally relates to a method of forming a magnetic head while ensuring residues do not negatively impact the magnetic head. In particular, when performing a RIE process to remove DLC, oxygen gas can leave residues that will negatively impact the RIE process performed on the next substrate to enter the chamber. By utilizing CO2 rather than O2, the residues will not be created and therefore will not impact processing of the next substrate that enters the chamber.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 27, 2013
    Inventors: Guomin Mao, Satyanarayana Myneni
  • Publication number: 20130161194
    Abstract: A nanopore device including a nanopore formed by penetrating a thin layer, a nanochannel formed at an entrance of the nanopore, and a filler in the nanochannel, as well as a method of fabricating the nanopore device and an apparatus including the nanopore device.
    Type: Application
    Filed: August 10, 2012
    Publication date: June 27, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tae-han JEON, Jeo-young SHIM, Kun-sun EOM, Dong-ho LEE, Hee-jeong JEONG
  • Patent number: 8461051
    Abstract: A method for processing a sample using an electrically neutral reactive cluster is provided. The surface of a sample is processed by jetting out a mixed gas that is composed of a reactive gas and a gas with a boiling point lower than that of the reactive gas from a gas jetting part of a vacuum process room in which the sample is placed by a pressure in a range in which the mixed gas is not liquefied, in a predetermined direction, while adiabatically-expanding the mixed gas, thereby generating a reactive cluster and jetting the reactive cluster against the sample in the vacuum process room.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: June 11, 2013
    Assignees: Iwatani Corporation, Kyoto University
    Inventors: Kunihiko Koike, Takehiko Senoo, Yu Yoshino, Shuhei Azuma, Jiro Matsuo, Toshio Seki, Satoshi Ninomiya
  • Patent number: 8458892
    Abstract: A method for fabricating magnetic transducer is described. The method includes providing a main pole having a bottom and a top wider than the bottom. The method further includes performing a high energy ion mill at an angle from a normal to the to of the main pole and at a first energy. The high energy ion mill removes a portion of the top of the main pole and exposes a top bevel surface for the main pole. The method also includes performing a low energy ion mill at second energy and a glancing angle from the top bevel surface. The glancing angle is not more than fifteen degrees. The second energy is less than the first energy. The method and system also include depositing a nonmagnetic gap.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: June 11, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Weimin Si, Yun-Fei Li, Ying Hong
  • Publication number: 20130130063
    Abstract: A perpendicularly magnetized thin film structure and a method of manufacturing the perpendicularly magnetized thin film structure are provided. The perpendicularly magnetized thin film structure includes i) a base layer, ii) a magnetic layer located on the base layer and having an L10-crystalline structure, and iii) a metal oxide layer located on the magnetic layer.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 23, 2013
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventor: Korea Institute of Science and Technology
  • Publication number: 20130118895
    Abstract: The invention relates to an apparatus for reactive ion etching of a substrate, comprising: a plasma etch zone including an etch gas supply and arranged with a plasma generating structure for igniting a plasma and comprising an electrode structure arranged to accelerate the etch plasma toward a substrate portion to have ions impinge on the surface of the substrate; a passivation zone including a cavity provided with a passivation gas supply; said supply arranged for providing a passivation gas flow from the supply to the cavity; the cavity in use being bounded by the injector head and the substrate surface; and a gas purge structure comprising a gas exhaust arranged between said etch zone and passivation zone; the gas purge structure thus forming a spatial division of the etch and passivation zones.
    Type: Application
    Filed: February 25, 2011
    Publication date: May 16, 2013
    Applicant: Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO
    Inventors: Freddy Roozeboom, Adriaan Marinus Lankhorst, Paulus Willibrordus George Poodt, Norbertus Benedictus Koster, Gerardus Johan Jozef Winands, Adrianus Johannes Petrus Maria Vermeer
  • Publication number: 20130118896
    Abstract: There is provided a method, system and computer program product to delayer a layer of a sample, the layer comprising one or more materials, in an ion beam mill by adjusting one or more operating parameters of the ion beam mill and selectively removing each of the one or more materials at their respective predetermined rates. There is also provided a method and system for obtaining rate of removal of a material from a sample in an ion beam mill.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 16, 2013
    Applicant: SEMICONDUCTOR INSIGHTS INC.
    Inventor: Semiconductor Insights Inc.
  • Publication number: 20130108863
    Abstract: In accordance with an embodiment of the invention, there is provided a coated graphite article. The article comprises graphite; and a conductive coating overlaying at least a portion of the graphite. The conductive coating comprises a through-thickness resistance of less than about 50 ohms as measured through the thickness of the graphite and the conductive coating. In accordance with another embodiment of the invention, there is provided a method for manufacturing a graphite article comprising a conductive coating. The method comprises treating graphite of the article with a reactive ion etch process; and after treating the graphite with the reactive ion etch process, applying the conductive coating over at least a portion of the graphite. In a further embodiment according to the invention, there is provided a method for refurbishing a graphite article comprising graphite and an overlaying conductive coating.
    Type: Application
    Filed: April 15, 2011
    Publication date: May 2, 2013
    Inventors: Richard A. Cooke, Nilesh Gunda, Steven Donnell, Yan Liu
  • Publication number: 20130105303
    Abstract: Methods and process chambers for etching of low-k and other dielectric films are described. For example, a method includes modifying portions of the low-k dielectric layer with a plasma process. The modified portions of the low-k dielectric layer are etched selectively over a mask layer and unmodified portions of the low-k dielectric layer. Etch chambers having multiple chamber regions for alternately generating distinct plasmas are described. In embodiments, a first charge coupled plasma source is provided to generate an ion flux to a workpiece in one operational mode, while a secondary plasma source is provided to provide reactive species flux without significant ion flux to the workpiece in another operational mode. A controller operates to cycle the operational modes repeatedly over time to remove a desired cumulative amount of the dielectric material.
    Type: Application
    Filed: October 12, 2012
    Publication date: May 2, 2013
    Inventors: Dmitry LUBOMIRSKY, Srinivas NEMANI, Ellie YIEH, Sergey G. BELOSTOTSKIY
  • Patent number: 8419905
    Abstract: A method for forming a diamond-like carbon (DLC) layer on air bearing surface (ABS) of a slider, comprises steps of: providing sliders arranged in arrays, each slider having an ABS; forming a mixing layer in the ABS of the slider by depositing a first DLC layer on the ABS, the mixing layer consisting of the slider material and the first DLC layer material; removing the first DLC layer to make the mixing layer exposed; forming a second DLC layer on the mixing layer.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: April 16, 2013
    Assignee: SAE Magnetics (H.K.) Ltd.
    Inventors: Kunihiro Ueda, Hongxin Fang, Dong Wang
  • Publication number: 20130075248
    Abstract: Art etching method for anisotropically etching a Cu film on a substrate surface includes providing a substrate having a Cu film on a surface thereof in a chamber and supplying an organic compound into the chamber while setting the inside ox the chamber to a vacuum state and irradiating an oxygen gas cluster ion beam to the Cu film. The etching method further includes oxidizing Cu or the Cu film to a copper oxide by oxygen gas cluster ions in the oxygen gas cluster ion beam and anisotropically etching the Cu film by reacting the copper oxide and the organic compound.
    Type: Application
    Filed: September 21, 2012
    Publication date: March 28, 2013
    Applicants: HYOGO PREFECTURE, TOKYO ELECTRON LIMITED
    Inventors: TOKYO ELECTRON LIMITED, HYOGO PREFECTURE
  • Publication number: 20130068611
    Abstract: A charge transfer mechanism is used to locally deposit or remove material for a small structure. A local electrochemical cell is created without having to immerse the entire work piece in a bath. The charge transfer mechanism can be used together with a charged particle beam or laser system to modify small structures, such as integrated circuits or micro-electromechanical system. The charge transfer process can be performed in air or, in some embodiments, in a vacuum chamber.
    Type: Application
    Filed: September 19, 2011
    Publication date: March 21, 2013
    Applicant: FEI Company
    Inventors: Aurelien Philippe Jean Maclou Botman, Milos Toth, Steven Randolph, David H. Narum
  • Patent number: 8394244
    Abstract: A method is provided for laser patterning an integrated circuit (IC) etching mask. The method provides an IC packaged die with a first region underlying a backside surface of a bulk silicon (Si) layer. An etch-resistant film is formed overlying the backside surface. Alternately, the entire IC die package is conformally coated. A semi-transparent film is formed overlying the etch-resistant film, semi-transparent to light having a first wavelength. In response to irradiating the semi-transparent film with light having a first power density, an IC die first region is located. In response to irradiating the semi-transparent film with a laser light having a second power density, greater than the first power density, an area of etch-resistant film overlying the first region is decomposed. More explicitly, an area of semi-transparent film overlying the first region is ablated, and the etch-resistant film underlying the ablated semi-transparent film is heated.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: March 12, 2013
    Assignee: Applied Micro Circuits Corporation
    Inventor: Joseph Martin Patterson
  • Patent number: 8377460
    Abstract: The invention provides a method for preparing a biological material for implanting. The invention also provides a biological material for surgical implantation. The invention further provides a biological composition for surgical implantation.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: February 19, 2013
    Assignee: Exogenesis Corporation
    Inventors: Joseph Khoury, Laurence B. Tarrant, Sean R. Kirkpatrick, Richard C. Svrluga
  • Publication number: 20130038949
    Abstract: A method of making a nanostructure is provided that includes applying a thin, random discontinuous masking layer (105) to a major surface (103) of a substrate (101) by plasma chemical vapor deposition. The substrate (101) can be a polymer, an inorganic material, an alloy, or a solid solution. The masking layer (105) can include the reaction product of plasma chemical vapor deposition using a reactant gas comprising a compound selected from the group consisting of organosilicon compounds, metal alkyls, metal isopropoxides, metal acetylacetonates, and metal halides. Portions (107) of the substrate (101) not protected by the masking layer (105) are then etched away by reactive ion etching to make the nanostructures.
    Type: Application
    Filed: April 22, 2011
    Publication date: February 14, 2013
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Moses M. David, Ta-Hua Yu, Andrew K. Hartzell