Plural Cells Patents (Class 204/253)
  • Patent number: 10400341
    Abstract: A membrane module and method of making are provided, including a mold therefor. Exemplarily, the module, which comprises a membrane around which is formed a frame, is adapted for use with an electrochemical apparatus. The membrane comprises a fabric made from a synthetic fiber such as nylon, where the nylon is woven into ripstop nylon fabric. The frame, which comprises, exemplarily, high-density polyethylene (HDPE) or polypropylene, includes a wedge-shaped portion to facilitate collection of evolved gases and which provides support to the membrane as well as support to internal electrodes. The mold is adapted to suspend and secure the membrane during formation of the module and to provide a module which secures the membrane within the frame after formation of the module.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: September 3, 2019
    Inventor: Christopher M. McWhinney
  • Patent number: 10249897
    Abstract: The present invention is directed to a redox flow battery comprising at least one electrochemical cell in fluid communication with a balancing cell, said balancing cell comprising: a first and second half-cell chamber, wherein the first half-cell chamber comprises a first electrode in contact with a first aqueous electrolyte of the redox flow battery; and wherein the second half-cell chamber comprises a second electrode in contact with a second aqueous electrolyte, said second electrode comprising a catalyst for the generation of O2.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: April 2, 2019
    Assignee: Lockheed Martin Energy, LLC
    Inventors: Steven Y. Reece, Paravastu Badrinarayanan, Nitin Tyagi, Timothy B. Grejtak
  • Patent number: 10227706
    Abstract: Electroplating apparatus agitates electrolyte to provide high velocity fluid flows at the surface of a wafer. The apparatus includes a paddle which provides uniform high mass transfer over the entire wafer, even with a relatively large gap between the paddle and the wafer. Consequently, the processor may have an electric field shield positioned between the paddle and the wafer for effective shielding at the edges of the wafer. The influence of the paddle on the electric field across the wafer is reduced as the paddle is spaced relatively farther from the wafer.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: March 12, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Gregory J. Wilson, Paul R. McHugh
  • Patent number: 9828682
    Abstract: A differential pressure water electrolysis apparatus includes high-pressure water electrolysis cells and a pressing mechanism. The high-pressure water electrolysis cells are stacked in a stacking direction. Each of the high-pressure water electrolysis cells includes an electrolyte membrane, a member, an anode current collector, a cathode current collector, an anode separator, and a cathode separator. The electrolyte membrane has a first side and a second side opposite to the first side in the stacking direction. The member has a surface which has an opening and which is in contact with the electrolyte membrane. The anode current collector is disposed on the first side of the electrolyte membrane. The cathode current collector is disposed on the second side of the electrolyte membrane. The anode separator has an anode chamber in which the anode current collector is accommodated. The pressing mechanism is to press the high-pressure water electrolysis cells in the stacking direction.
    Type: Grant
    Filed: September 7, 2015
    Date of Patent: November 28, 2017
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Nobuyuki Kawasaki, Eiji Haryu, Hiroyuki Ishikawa
  • Patent number: 9647435
    Abstract: A busbar system for the transport of energy especially for long vertical paths is disclosed, wherein the busbar system includes multiple sections, the sections each include multiple busbars and a holding piece, and the busbars of the sections are held by the respective holding pieces and electrically connected to one another via a connection.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: May 9, 2017
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Frank Alefelder, Rainer Haar
  • Patent number: 9182686
    Abstract: Spacers arranged on opposite sides of an article to be processed into an EUV pellicle support the article. Plates on opposite ends of the spacer-article combination include respective electrodes. The plates, article, and spacers can be held together with a vacuum retention system. A center hole of each spacer forms a chamber with surfaces engaged by the spacer. A fluid entry extending from an outer surface of each spacer to its center hole allows delivery of fluid to each chamber. Additional spacers can be used to support additional articles. Additional plates and electrodes can also be used.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: November 10, 2015
    Assignee: GLOBALFOUNDRIES U.S. 2 LLC
    Inventor: Dario L. Goldfarb
  • Patent number: 9096847
    Abstract: Bioreactors comprising an electrical stimulation system supply a pulsed and/or modulated electrical input to microbes that use the electrical stimulation and available CO2 to produce valuable organic compounds. Electrical power, such as from renewable sources remotely located with respect to the power grid, can be converted to chemical energy in the form of the organic compounds, which can be stored and/or transported readily.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: August 4, 2015
    Assignee: Oakbio, Inc.
    Inventor: Brian Sefton
  • Patent number: 9051657
    Abstract: This disclosure relates to the field of electrolysis devices. A modular electrolysis unit is specifically disclosed comprising a plurality of interconnecting frames which may have an ion-permeable membrane, or a passive electrode attached and sealed thereto. A frame composing a manifold is also disclosed, in one form with the same attachment system as adjacent membrane frames, passive electrode frames, and endplates to as to allow modular assembly of the overall device.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: June 9, 2015
    Assignee: Wood Stone Corporation
    Inventor: Tadeusz Karabin
  • Publication number: 20150122637
    Abstract: A differential pressure water electrolysis apparatus includes a cell unit, a first end plate, a second end plate, and a pressing mechanism. The pressing mechanism is provided between the first end plate and a first end of the cell unit to press the cell unit in a stacking direction and includes a first corrosion-resistant member, a second corrosion-resistant member, a third corrosion-resistant member, and a pressure-resistant member. The first corrosion-resistant member is connected to the first end plate. The second corrosion-resistant member is engaged with the first end of the cell unit and is movable in the stacking direction. The third corrosion-resistant member is connected to the first corrosion-resistant member or the second corrosion-resistant member and covers an outer peripheral part of the first corrosion-resistant member and an outer peripheral part of the second corrosion-resistant member to provide a fluid introduction chamber communicating with a cathode side.
    Type: Application
    Filed: October 29, 2014
    Publication date: May 7, 2015
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Eiji HARYU, Koji NAKAZAWA
  • Patent number: 9023184
    Abstract: The present invention provides an electric device for producing deionized water comprising: desalting chamber (4) defined by at least two ion-exchange membranes (1, 2) and filled with an ion exchanger; first concentration chamber (5a) positioned adjacent to one side of the desalting chamber with one of the ion-exchange membranes therebetween; second concentration chamber (5b) positioned adjacent to the other side of the desalting chamber with another of the ion-exchange membranes therebetween; and a pair of electrode chambers (6a, 6b) with one electrode chamber being disposed at the outer side of first concentration chamber (5a) and the other electrode chamber being disposed at the outer side of second concentration chamber (5b), wherein the electric device for producing deionized water is provided with: main body part (20) formed to include desalting chamber (4), concentration chambers (5a, 5b), and electrode chambers (6a, 6b); a pair of fixing plates (9a, 9b) disposed in such a way that main body part (20)
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: May 5, 2015
    Assignee: Organo Corporation
    Inventors: Kyosuke Yamada, Chika Kemmochi, Shinichi Ohashi
  • Publication number: 20150041311
    Abstract: An electrolysis cell, in particular for producing an electrochemically activated sodium chloride solution, includes an anode chamber provided with an anode and a cathode chamber separated therefrom by a membrane and provided with a cathode. The membrane is designed as a hollow ceramic cylinder surrounded by an outer housing and is intended to make it possible to produce a particularly high-quality, electrochemically activated sodium chloride solution. The ends of the hollow ceramic cylinder and the outer housing surrounding the cylinder are each mounted in a closure cap, which has a central hole forming an entry channel to the interior of the hollow ceramic cylinder and an annular chamber that extends around the central hole and, on the media side, is connected to the intermediate chamber between the membrane and the outer housing.
    Type: Application
    Filed: February 25, 2013
    Publication date: February 12, 2015
    Inventor: Hans-Georg Mathé
  • Patent number: 8894829
    Abstract: A water electrolysis apparatus is formed by stacking a plurality of unit cells. Each unit cell includes a membrane electrode assembly, and an anode separator and a cathode separator which sandwich the membrane electrode assembly therebetween. The anode separator has a plurality of inlet joint channels in fluid communication with a water supply passage, and a plurality of outlet joint channels in fluid communication with a discharge passage. The water supply passage has an inner wall surface at which the inlet joint channels are open, and an outer wall surface which faces the inner wall surface, the inner wall surface and the outer wall surface jointly forming an opening of an oblong cross-sectional shape.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: November 25, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Eiji Haryu, Masanori Okabe, Koji Nakazawa, Kenji Taruya
  • Publication number: 20140339099
    Abstract: A method of producing an apparatus to remove ions from water is disclosed, wherein the apparatus includes a first electrode having a first current collector, a second electrode having a second current collector, and a spacer between the first and second electrodes to allow water to flow in between the electrodes. The method includes flushing water through the spacer and subsequently exerting a force on the stack so as to compress the first and second electrodes and the spacer. Exerting a force on the stack may result in a pressure of less than 5 bar, less than 2 bar, or between 1 bar and 0.5 bar, between the electrodes and the spacer.
    Type: Application
    Filed: October 12, 2012
    Publication date: November 20, 2014
    Applicant: VOLTEA B.V.
    Inventors: Albert Van Der Wal, Hank Robert Reinhoudt, Piotr Edward Dlugolecki, Thomas Richard Bednar, George Shoemaker Ellis, David Jeffrey Averbeck
  • Publication number: 20140339076
    Abstract: An Apparatus that generates onsite three antimicrobial solutions by electrolyzing a dilute brine solution. At least one of the generated solutions can be used to dissolve protein, emulsify oils and fats making it an effective general purpose cleaner. A second solution can be used as a non-corrosive, fast active general purpose sanitizer and a third solution can be used as a high level disinfectant, capable of killing all microorganism, including MRSA (methicillin resistant staphylococcus aureaus), C. diff (clostridium difficle), VRE (vancomycin resistant enterococci) and acinetobactor baumannii. The onsite generated antimicrobial solutions reduce the occurrence of infectious diseases in hospitals, other human or animal health care settings, cruise-ships, hotels and other facilities whereas there is a higher risk of spreading infectious diseases.
    Type: Application
    Filed: May 17, 2013
    Publication date: November 20, 2014
    Applicant: Aquaox, Inc.
    Inventors: Phillip Adams, Michel van Schaik
  • Patent number: 8784620
    Abstract: Described is a method for improving the operation of an electrolytic cell having an anolyte compartment, a catholyte compartment and a synthetic diaphragm separating the compartments, wherein liquid anolyte is introduced into the anolyte compartment and flows through the diaphragm into the catholyte compartment, which method involves introducing particulate material comprising halocarbon polymer short fiber, e.g., fluorocarbon polymer short fiber, into the anolyte compartment in amounts sufficient to lower the flow of liquid anolyte through the diaphragm into the catholyte compartment. In the case of an electrolytic cell wherein aqueous alkali metal chloride, e.g.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: July 22, 2014
    Assignee: Axiall Ohio, Inc.
    Inventors: Henry W. Schussler, David R. Bush, Craig R. Long
  • Patent number: 8753489
    Abstract: An electrolyzing system for electrolyzing a brine solution of water and an alkali salt to produce acidic electrolyzed water and alkaline electrolyzed water is provided. The system includes an internal chamber for receiving the brine solution and two electrolyzer cells immersed in a brine bath. Each electrolyzer cell includes an electrode, at least one ion permeable membrane supported relative to the electrode to define a space communicating between a fresh water supply and a chemical outlet into which brine enters only through the membrane. One of the electrodes is coupled to a positive charging electrical supply and the other to a negative charging electrical supply.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: June 17, 2014
    Assignee: Spraying Systems Co.
    Inventors: Gregory John Swartz, James B. Swartz, James Ira Moyer
  • Publication number: 20140144785
    Abstract: An energy management system includes a control unit and an electrolysis system having an alkaline electrolysis unit and a PEM electrolysis unit. The control unit controls the electrolysis units independently of one another in such a way that a performance adjustment of an overall performance of the electrolysis system is particularly dynamic.
    Type: Application
    Filed: June 25, 2012
    Publication date: May 29, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Fred Farchmin, Alexander Hahn, Roland Käppner, Manfred Waidhas, Thomas Wasser, Andreas Wiest, Erik Wolf
  • Publication number: 20140034486
    Abstract: An Alkaline Electrolyzer Cell Configuration (AECC) has a hydrogen half cell; an oxygen half cell; a GSM (Gas Separation Membrane); two inner hydrogen half cell spacer screens; an outer hydrogen half cell spacer screen; a hydrogen electrode; two inner oxygen half cell spacer screens; an outer oxygen half cell spacer screen; and an oxygen electrode. The hydrogen half cell includes the hydrogen electrode which is located between said two inner hydrogen half cell spacer screens and said outer hydrogen half cell spacer screen. The oxygen half cell includes the oxygen electrode which is located between said two inner oxygen half cell spacer screens and said outer oxygen half cell spacer screen. The the GSM is provided between said two inner hydrogen half cell spacer screens of the hydrogen half cell and said two inner oxygen half cell spacer screens of the oxygen half cell to from the electrolyzer.
    Type: Application
    Filed: October 7, 2013
    Publication date: February 6, 2014
    Inventors: William R. RICHARDS, Alan L. VOLKER
  • Publication number: 20140027273
    Abstract: An electrochemical system includes an electrochemical compressor through which a working fluid that includes a component that primarily acts as an electrochemically-active component flows; a sealed vessel in which the electrochemical compressor is housed; an inlet conduit for passing working fluid into the vessel; and an outlet conduit for passing fluid out of the vessel. The working fluid that leaks from the electrochemical compressor is contained within the vessel.
    Type: Application
    Filed: December 21, 2012
    Publication date: January 30, 2014
    Applicant: XERGY INCORPORATED
    Inventors: Steven Naugler, Bamdad Bahar
  • Publication number: 20140027304
    Abstract: An electrochemical compressor includes one or more electrochemical cells through which a working fluid flows, and an external electrical energy source electrically connected to the electrochemical cell. Each electrochemical cell includes an anode connected to the electrical energy source; a cathode connected to the electrical energy source; an ion exchange membrane disposed between and in electrical contact with the cathode and the anode to pass an electrochemically motive material of the working fluid from the anode to the cathode, the ion exchange membrane comprising polar ionic groups attached to nonpolar chains; and a non-aqueous solvent comprising polar molecules, the polar molecules of the non-aqueous solvent being associated with and electrostatically attracted to the polar ionic groups of the ion exchange membrane.
    Type: Application
    Filed: January 11, 2013
    Publication date: January 30, 2014
    Applicant: XERGY INCORPORATED
    Inventors: Bamdad Bahar, Walther Grot, William Parmelee
  • Publication number: 20140014502
    Abstract: This disclosure relates to the field of electrolysis devices. A modular electrolysis unit is specifically disclosed comprising a plurality of interconnecting frames which may have an ion-permeable membrane, or a passive electrode attached and sealed thereto. A frame composing a manifold is also disclosed, in one form with the same attachment system as adjacent membrane frames, passive electrode frames, and endplates to as to allow modular assembly of the overall device.
    Type: Application
    Filed: July 16, 2012
    Publication date: January 16, 2014
    Applicant: WOOD STONE CORPORATION
    Inventor: Tadeusz Karabin
  • Publication number: 20130341200
    Abstract: A membrane-based electrochemical cell produces a first anolyte solution and a membrane-less electrochemical cell processes the first anolyte solution to produce a modified anolyte solution.
    Type: Application
    Filed: August 7, 2012
    Publication date: December 26, 2013
    Applicant: PROTEUS SOLUTIONS, LLC
    Inventors: Scott D. McCormick, Christopher Wilker, Jacob Abitboul, Chen Boker, David Sheffer
  • Publication number: 20130341201
    Abstract: A membrane-based electrochemical cell produces a first anolyte solution and a membrane-less electrochemical cell produces a bleach solution such as from a brine solution. The first anolyte solution and bleach solution are combined to form a modified anolyte solution. A dual electrochemical cell device includes two segments, one having a membrane-based electrochemical cell and the other having a membrane-less electrochemical cell, separated by a partition, and secured together into a single, unitary structure.
    Type: Application
    Filed: August 7, 2012
    Publication date: December 26, 2013
    Applicant: PROTEUS SOLUTIONS, LLC
    Inventors: Scott D. McCormick, Christopher Wilker, Jacob Abitboul, Chen Boker, David Sheffer
  • Publication number: 20130334035
    Abstract: The electrochemical ozonizer comprising at least one cell, each consisting of an anode, a cathode and an interposed full-area, cation-conducting membrane which is chemically stable to ozone as a solid electrolyte, is characterized in that the membrane conductively connects the anode and the cathode while forming flow channels for water that are separated from one another as anode and cathode chambers.
    Type: Application
    Filed: June 6, 2013
    Publication date: December 19, 2013
    Inventor: Manfred VOLKER
  • Publication number: 20130284606
    Abstract: Methods for the conversion of a biofuel such as biodiesel into an alkane composition such as an aviation fuel, kerosine, or liquified petroleum gas product involve a series of electrochemical reactions. The reactions include oxidation of methanol to carbon dioxide, reduction of fatty acid esters, and cleavage of fatty acid chains at C?C double bonds. The methods are carried out by systems of two or more electrochemical reactors.
    Type: Application
    Filed: July 25, 2011
    Publication date: October 31, 2013
    Applicant: NORTHEASTERN UNIVERSITY
    Inventors: Sanjeev Mukerjee, Qinggang He
  • Patent number: 8568573
    Abstract: The present disclosure is generally directed to devices and methods of treating aqueous solutions to help remove or otherwise reduce levels, concentrations or amounts of one or more contaminants. The present disclosure relates to an apparatus comprising spaced-apart electrode structural support members extending from a first sidewall to a second sidewall, the spaced-apart electrode structural support members each having at least one photoelectrode and counterelectrode coupled to respective terminals adapted to be electrically coupled to a power supply, and at least one ultraviolet light source between the spaced-apart electrode support members.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: October 29, 2013
    Assignee: AquaMost, Inc.
    Inventors: Douglas S. Winkie, Terence P. Barry
  • Patent number: 8551304
    Abstract: An Alkaline Electrolyzer Cell Configuration (AECC) has a hydrogen half cell; an oxygen half cell; a GSM (Gas Separation Membrane); two inner hydrogen half cell spacer screens; an outer hydrogen half cell spacer screen; a hydrogen electrode; two inner oxygen half cell spacer screens; an outer oxygen half cell spacer screen; and an oxygen electrode. The hydrogen half cell includes the hydrogen electrode which is located between said two inner hydrogen half cell spacer screens and said outer hydrogen half cell spacer screen. The oxygen half cell includes the oxygen electrode which is located between said two inner oxygen half cell spacer screens and said outer oxygen half cell spacer screen. The GSM is provided between said two inner hydrogen half cell spacer screens of the hydrogen half cell and said two inner oxygen half cell spacer screens of the oxygen half cell to from the electrolyzer.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: October 8, 2013
    Inventors: William R Richards, Alan L Volker
  • Publication number: 20130256149
    Abstract: A microbial electrolysis cell having a brush anode is described. A method of producing products, such as hydrogen, at the cathode of the microbial electrolysis cell is also provided. The microbial electrolysis cell is configured in a cylindrical shape having an anode, cathode and anion exchange membrane all disposed concentrically. A brush anode spirally wound around the outside of the cylindrical microbial electrolysis cell is described. The method may include sparging the anode and/or cathode with air in some cases. In addition, CO2-containing gas may be injected into a cathode chamber to reduce pH is some cases.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 3, 2013
    Applicant: Arizona Science and Technology Enterprises LLC
    Inventors: Sudeep Popat, Prathap Parameswaran, Cesar Torres, Bruce Rittmann
  • Publication number: 20130233720
    Abstract: The present invention provides a substantially inert environment within a cathode chamber that is capable of generating a metallic element M from a metal ion Mz+.
    Type: Application
    Filed: October 29, 2012
    Publication date: September 12, 2013
    Inventor: Gagik Martoyan
  • Patent number: 8506724
    Abstract: A system using electrochemically-activated water (ECAW) for manufacturing, processing, packaging, and dispensing beverages including: (a) using ECAW to neutralize incompatible residues when transitioning from the production of one beverage to another; (b) using ECAW to rehabilitate and disinfect granular activated charcoal beds used in the feed water purification system; (c) producing a carbonated ECAW product and using the carbonated ECAW for system cleaning or disinfecting; (d) using ECAW solutions in the beverage facility clean-in-place system to achieve improved microbial control while greatly reducing water usage and reducing or eliminating the use of chemical detergents and disinfectants; (e) further reducing biofilm growth in the processing system, and purifying ingredient water without the use of chlorine, by adding an ECAW anolyte to the water ingredient feed stream; and/or (f) washing the beverage product bottles or other packages with one or more ECAW solutions prior to packaging.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: August 13, 2013
    Assignee: Radical Waters International Ltd.
    Inventor: Robin Duncan Kirkpatrick
  • Patent number: 8486236
    Abstract: A electrolysis chamber. The electrolysis chamber has first initial product sub-chambers, second initial product sub-chambers, at least one positive electrode, at least one negative electrode, and electrolysis membranes. The first initial product sub-chambers and second initial product sub-chambers communicate with respective manifolds, which in turn communicates with an exterior of the electrolysis chamber through respective ports. Flow control valves set the flow into the first initial product sub-chambers. First, second and third end product manifolds communicate with an exterior of the electrolysis chamber through respective ports. The ports and manifold configuration provides for simple and easy connection and installation of the electrolysis chamber.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: July 16, 2013
    Inventor: Walter B. Warning
  • Patent number: 8465629
    Abstract: A membrane for use with an electrochemical apparatus is provided. The electrochemical apparatus may include a fuel cell or electrolyzer, for example, an electrolyzer adapted to produce hydrogen. The membrane comprises a fabric made from a synthetic fiber such as nylon where the nylon, in an exemplary embodiment, is woven into ripstop nylon fabric. The electrochemical apparatus is constructed with frames comprising high-density polyethylene (HDPE) which provide support and structure to the membranes as well as to internal electrodes. A method of making an electrochemical apparatus, such as an electrolyzer, containing a membrane comprising ripstop nylon is also disclosed, as is a method for producing hydrogen gas with an electrolyzer containing a membrane comprising ripstop nylon.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: June 18, 2013
    Inventors: Christopher M. McWhinney, David C. Erbaugh
  • Publication number: 20130105304
    Abstract: Methods and systems for electrochemical conversion of carbon dioxide to organic products including formate and formic acid are provided. A system may include an electrochemical cell including a cathode compartment containing a high surface area cathode and a bicarbonate-based catholyte saturated with carbon dioxide. The high surface area cathode may include an indium coating and having a void volume of between about 30% to 98. The system may also include an anode compartment containing an anode and an acidic anolyte. The electrochemical cell may be configured to produce a product stream upon application of an electrical potential between the anode and the cathode.
    Type: Application
    Filed: December 21, 2012
    Publication date: May 2, 2013
    Applicant: LIQUID LIGHT, INC.
    Inventor: Liquid Light, Inc.
  • Patent number: 8414748
    Abstract: A cell design for systems of mediated electrochemical oxidation (MEO) of materials includes inactive surface coatings, such as polyvinylidene fluoride, polypropylene, ethylene-chlorotrifluoroethylene and polytetrafluoroethylene polymers or a glass glaze or metallic oxide, on all interior surfaces of the electrochemical cell to prevent . A further cell design for systems of mediated electrochemical oxidation (MEO) included conduits for connecting plural catholyte chambers or for connecting plural anolyte chambers which are embedded within walls of a molded unibody constructed box and slots for parallel arrangement of membranes and porous electrodes.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: April 9, 2013
    Assignee: Scimist, Inc.
    Inventors: Roger W. Carson, Bruce W. Bremer, Michael L. Mastracci, Kent E. Maggard
  • Patent number: 8398828
    Abstract: The present disclosure is generally directed to devices and methods of treating aqueous solutions to help remove or otherwise reduce levels, concentrations or amounts of one or more contaminants. The present disclosure relates to an apparatus comprising spaced-apart electrode structural support members extending from a first sidewall to a second sidewall, the spaced-apart electrode structural support members each having at least one photoelectrode and counterelectrode coupled to respective terminals adapted to be electrically coupled to a power supply, and at least one ultraviolet light source between the spaced-apart electrode support members.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: March 19, 2013
    Assignee: AquaMost, Inc.
    Inventors: Douglas S. Winkie, Terence P. Barry
  • Publication number: 20130025292
    Abstract: A reversible SOFC monolithic stack is provided which comprises: 1) a first component which comprises at least one porous metal containing layer (1) with a combined electrolyte and sealing layer on the porous metal containing layer (1); wherein the at least one porous metal containing layer (1) hosts an electrode; 2) a second component comprising at least one porous metal containing layer (1) with a combined interconnect and sealing layer on the porous metal containing layer; wherein the at least one porous metal containing layers hosts an electrode. Further provided is a method for preparing a reversible solid oxide fuel cell stack. The obtained solid oxide fuel cell stack has improved mechanical stability and high electrical performance, while the process for obtaining same is cost effective.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 31, 2013
    Applicant: TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Peter Halvor Larsen, Anders Smith, Mogens Mogensen, Soeren Linderoth, Peter Vang Hendriksen
  • Publication number: 20120305388
    Abstract: A hydrogen generator (1) comprising a plurality of electrodes (15) arranged in a sequence. The sequence comprises a first an anode (17) or a cathode (19), which is followed in the sequence by an isolated member (21). The isolated member (21) is made of similar conductive material to the anode (17) and the cathode (19). The sequence continues, where the isolated member (21) is followed by an electrode (17, 19) that is of opposite polarity to the first electrode (17, 19) in the sequence. An isolated member (21) is located between each anode (17) and cathode (19) of the sequence. The sequence ends with an electrode (17, 19) of opposite polarity to the polarity of the first electrode (17, 19) in the sequence.
    Type: Application
    Filed: January 17, 2011
    Publication date: December 6, 2012
    Inventor: Robert Cowan
  • Patent number: 8282811
    Abstract: Disclosed are methods and systems for generating hydrogen gas at pressures high enough to fill a hydrogen storage cylinder for stationary and transportation applications. The hydrogen output of an electrochemical hydrogen gas generating device, a hydrogen-producing reactor, or a diluted hydrogen stream is integrated with an electrochemical hydrogen compressor operating in a high-differential-pressure mode. The compressor brings the hydrogen produced by the hydrogen generating device to the high pressure required to fill the storage cylinder.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: October 9, 2012
    Assignee: Giner Electrochemical Systems, LLC
    Inventors: John A. Kosek, José Giner, Anthony B. LaConti
  • Patent number: 8277620
    Abstract: Embodiments of the present techniques provide electrolyzers made using thermoformed electrode assemblies and diaphragm assemblies. Each electrode assembly is made from two plastic rings and an electrode plate using a twin sheet thermoforming technique. A first plastic ring is laid in a mold having the appropriate shape to form the electrode assembly. The electrode plate is laid on top of the first plastic ring and is generally centered on the ring. The second plastic ring is laid over the electrode plate, and is generally centered over the electrode plate. The plastic is heated to soften the plastic, and a vacuum is pulled on the mold to pull the softened plastic into the shape of the mold. The mold is closed over the assembly to seal the two plastic rings together. After cooling, the molded part may be removed, resulting in a hollow plastic rim surrounding an electrode plate.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: October 2, 2012
    Assignee: General Electric Company
    Inventor: Richard Scott Bourgeois
  • Publication number: 20120237848
    Abstract: An electrochemical device, such as a fuel cell or an electrolyzer. In one embodiment, the electrochemical device includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, the membrane including a solid polymer electrolyte and a non-particulate, electrically-conductive material, such as carbon nanotubes, carbon nanofibers, and/or metal nanowires.
    Type: Application
    Filed: November 16, 2011
    Publication date: September 20, 2012
    Inventors: Cortney K. Mittelsteadt, Castro S.T. Laicer, Katherine E. Harrison, Bryn M. McPheeters
  • Publication number: 20120237846
    Abstract: The invention relates to an apparatus (1) for converting chemical energy into electrical energy and/or electrical energy into chemical energy with a housing (2, 3, 3a), which is open towards at least one side (6) and in which a pressure chamber (4) is formed, and with at least one electrochemically active cell (5) for energy conversion, which extends from the open side (6) of the housing (2, 3, 3a) into the housing (2, 3, 3a), wherein the open side (6) is closed by a plate (7, 31), which holds and/or supplies power to the cell (5). A sealing element (8, 9) is arranged between the housing (2, 3, 3a) and the plate (7, 31), closes the open side (6) of the housing (2, 3, 3a) in a fluid-tight and/or gas-tight manner so as to form the pressure chamber (4) and is formed at least partially from an elastic material.
    Type: Application
    Filed: December 6, 2010
    Publication date: September 20, 2012
    Inventors: Michael Brodmann, Martin Greda, Cristian Mutascu, Jeffrey Roth
  • Publication number: 20120222955
    Abstract: A high-pressure hydrogen producing apparatus includes a first cell device and a second cell device. The first cell device includes an electrolyte membrane, an anode electrode catalyst layer and an anode current collector provided on a first surface of the electrolyte membrane, and a cathode electrode catalyst layer and a cathode current collector provided on a second surface of the electrolyte membrane. The second cell device includes an electrolyte membrane, an anode current collector provided on a first surface of the electrolyte membrane of the second cell device, and a cathode current collector provided on a second surface of the electrolyte membrane of the second cell device.
    Type: Application
    Filed: February 14, 2012
    Publication date: September 6, 2012
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Jun TAKEUCHI, Kenji Taruya
  • Publication number: 20120193242
    Abstract: A membrane electrode assembly (MEA) comprises substantially concentric and tubular-shaped layers of a cathode, an anode and an ion-exchange membrane. The MEAs of the invention can be used in an electrochemical cell, which comprises the following layers which are tubular-shaped, arranged substantially concentrically, and listed from the inner layer to the outer layer; (i) a cylindrical core; (ii) one of the electrodes; (iii) a membrane; (iv) the other of the electrodes; and (v) an outer cylindrical sleeve.
    Type: Application
    Filed: September 15, 2010
    Publication date: August 2, 2012
    Inventor: Frederic Marchal
  • Patent number: 8182659
    Abstract: Electrochemical cell comprises, in one embodiment, a proton exchange membrane (PEM), an anode positioned along one face of the PEM, and a cathode positioned along the other face of the PEM. An electrically-conductive, compressible, spring-like, porous pad for defining a fluid cavity is placed in contact with the outer face of the cathode or the outer face of the anode. The porous pad comprises a particulate or mat of one or more doped- or reduced-valve metal oxides, which are bound together with one or more thermoplastic resins.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: May 22, 2012
    Assignee: Giner Electrochemical Systems, LLC
    Inventors: Anthony B. LaConti, Larry L. Swette
  • Patent number: 8173006
    Abstract: An electrolyzed water production apparatus and method safely and simply produce electrolyzed water having a sterilizing action, having a physiologically neutral pH value, and, in addition, simultaneously with strong acidic electrolyzed water and strong alkaline electrolyzed water depending upon the structure. The electrolyzed water production apparatus has an electrolyzer tank with an end that receives or stores raw water, and a power supply. The interior portion of the electrolyzer tank is partitioned by a plurality of diaphragms into a plurality of regions. An anode and a cathode (constituting an electrode pair) are positioned on either side of the diaphragm. In a certain region of the electrolyzer tank, an anode and a cathode are arranged so as to face each other without a diaphragm sandwiched between them. When raw water for electrolysis is electrolyzed, electrolyzed water having a desired pH of a neutral range is produced during electrolysis.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: May 8, 2012
    Assignee: Osaka Electro-Communication University
    Inventors: Koichi Umimoto, Shunji Nagata
  • Publication number: 20120103829
    Abstract: This invention relates to a device for the electrolytic production of hydrogen which can operate discontinuously or associated to strong power fluctuations and provide dry pressurized directly hydrogen, with high purity.
    Type: Application
    Filed: July 9, 2010
    Publication date: May 3, 2012
    Inventors: Alessandro Tampucci, Paolo Bert
  • Patent number: 8157980
    Abstract: A method and apparatus for achieving high output efficiency from an electrolysis system (100) using a plurality of electrolysis cells all located within a single electrolysis tank (101) is provided. Each individual electrolysis cell includes a membrane (105A) and at least one pair of low voltage electrodes of different polarity (115A/116A). The electrolysis system also includes at least one pair of high voltage electrodes (119A/120A). In at least one embodiment, the low voltage electrodes within each electrolysis cell are comprised of at least one pair of low voltage electrodes of a first type (115A/116A) and at least one pair of low voltage electrodes of a second type (117A/118A). In at least one other embodiment, the low voltage electrodes within each electrolysis cell are comprised of at least one pair of low voltage electrodes (701A/702A). The voltage applied to the electrodes is pulsed.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: April 17, 2012
    Inventor: Nehemia Davidson
  • Publication number: 20120037511
    Abstract: A super-capacitor desalination device is described and includes a pair of terminal electrodes and at least one bipolar electrode located between the terminal electrodes. The at least one bipolar electrode has an ion exchange material disposed on opposing surfaces thereof The ion exchange material is a cation exchange material or an anion exchange material. A method for super-capacitor desalination is also provided.
    Type: Application
    Filed: February 24, 2011
    Publication date: February 16, 2012
    Inventors: Rihua Xiong, Hai Yang, Wei Cai
  • Patent number: 8070922
    Abstract: An oxygen generator includes a monolithic body having first and second channels extending longitudinally therein. An electrode is operatively disposed in the first channels and a counter-electrode is operatively disposed in the second channels. The second channels are formed in the monolithic body so each second channel is electrically isolated from, yet adjacent to a first channel, resulting in an alternating configuration of first and second channels. The first channels have fluid or oxygen flowing therethrough, while the second channels have the other of oxygen or fluid flowing therethrough. An output manifold, having an oxygen collection area separated from a fluid collection area, operatively engages with the monolithic body. The oxygen collection area receives substantially pure oxygen from one of the second or first channels, and the fluid collection area receives oxygen-depleted fluid from the other of the first or second channels.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: December 6, 2011
    Assignee: Oxus America, Inc.
    Inventors: David E. Nelson, Gerald R. Stabel, Joshua J. Titus, Alfred R. Webster
  • Publication number: 20110266159
    Abstract: An electrolyzed water production apparatus and method safely and simply produce electrolyzed water having a sterilizing action, having a physiologically neutral pH value, and, in addition, simultaneously with strong acidic electrolyzed water and strong alkaline electrolyzed water depending upon the structure. The electrolyzed water production apparatus has an electrolyzer tank with an end that receives or stores raw water, and a power supply. The interior portion of the electrolyzer tank is partitioned by a plurality of diaphragms into a plurality of regions. An anode and a cathode (constituting an electrode pair) are positioned on either side of the diaphragm. In a certain region of the electrolyzer tank, an anode and a cathode are arranged so as to face each other without a diaphragm sandwiched between them. When raw water for electrolysis is electrolyzed, electrolyzed water having a desired pH of a neutral range is produced during electrolysis.
    Type: Application
    Filed: September 30, 2010
    Publication date: November 3, 2011
    Applicant: OSAKA ELECTRO-COMMUNICATION UNIVERSITY
    Inventors: Koichi UMIMOTO, Shunji NAGATA