With Feeding And/or Withdrawal Means Patents (Class 204/263)
  • Publication number: 20090266706
    Abstract: A High Electric Field Electrolysis (HEFE) cell is provided for electrolyzing water to transform it into Free Radical Solution (FRS) water for cleaning, deodorizing, and sterilizing. The HEFE cell is comprised of a pair of flat electrodes attached (or coated) onto a flat proton ion exchange membrane enclosed in a corresponding structure that accommodates the electrodes and the proton ion exchange membrane. The structure is comprised of at least one inlet channel for receiving purified water and two outlet channels for output of electrolyzed FRS water and hydrogen rich water. The HEFE cell further provides a mechanism for recycling of hydrogen rich water for re-use or electric power generation. The quantity and the quality of FRS water production is controlled with an external control circuit that automatically monitors and maintains appropriate parameter values for the production of FRS water.
    Type: Application
    Filed: May 11, 2009
    Publication date: October 29, 2009
    Inventors: Kenjl Fukui, Kazunarl Naya
  • Patent number: 7601247
    Abstract: A cell (100) for metal electrowinning from metal ion solutions is described, wherein the cathode (1) consists of a falling bed of growing beads; the beads, withdrawn from the lower part of the bed, are recycled to the top section of the cathodic compartment by means of an external vertical duct (3).
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: October 13, 2009
    Assignee: De Nora Elettrodi S.p.A.
    Inventors: Douglas J. Robinson, Stacey A. MacDonald, Davide Scotti, Francesco Todaro
  • Patent number: 7585338
    Abstract: Hydrogen is generated in a reactor, of a hydrogen generating apparatus, in which a catalyst is installed and the catalyst and a borohydride fuel are reacted. The hydrogen generating apparatus comprises a rotating disk to which the catalyst is fixed, a motor for rotating the rotating disk, and a fuel injector for flowing out the borohydride fuel against the catalyst. A compound generated from the borohydride is prevented from adhering to the catalyst.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: September 8, 2009
    Inventor: Atuhiro Yoshizaki
  • Publication number: 20090220845
    Abstract: An electrochemical device and methods of using the same. In one embodiment, the electrochemical device may be used as a fuel cell and/or as an electrolyzer and includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, chemically-inert, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, as well as a fluid chamber and a non-porous an electrically-conductive plate.
    Type: Application
    Filed: December 17, 2008
    Publication date: September 3, 2009
    Inventors: Cortney K. Mittelsteadt, William A. Braff
  • Patent number: 7566387
    Abstract: The present invention discloses an apparatus for producing ozone by electrolysis of water. The apparatus comprises a pair of frames facing each other, and an anode and a cathode oppositely arranged between the two pieces of frames. Between the anode and the cathode is provided a solid polymer electrolyte membrane for transferring hydrogen ions formed during electrolysis. In addition, an auxiliary electrode is provided between the cathode and the solid polymer electrolyte membrane such that a scale can be formed on the surface of the auxiliary electrode. A spacer 60 is inserted between the anode and the cathode. Tap water as well as pure water and cation-exchanged water can be used as a raw material water to produce high-concentration ozone water. A uniformity of pressure between the electrodes and the solid polymer electrolyte membrane can be achieved, thereby providing for a stable operation.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: July 28, 2009
    Assignee: R to R, Inc.
    Inventors: Sang Seon Nam, Hyeok Choi
  • Publication number: 20090165823
    Abstract: An electrolytic cell for producing hydrogen peroxide includes an anode, a cathode and an intermediate membrane. The anode is associated with a first electrolyte and the cathode is associated with a second electrolyte. The use of two electrolytes associated with the respective electrodes permits the user to select the most suitable salt solutions for each electrode and so avoid production of gases and by-products unsuitable for a domestic environment. Thus, the electrolytic cell is suitable for use in an automatic dishwasher.
    Type: Application
    Filed: April 2, 2007
    Publication date: July 2, 2009
    Applicant: DYSON TECHNOLOGY LIMITED
    Inventors: Nathan Charles Brown, Chaoying Fang
  • Publication number: 20090134017
    Abstract: A system providing selective spin modification and reaction in an electrolytic cell. An electrolytic cell is coupled to a magnet that provides a level-splitting magnetic field in a region of electrolyte adjacent to a working electrode, thus establishing a spin resonance for an unpaired electron associated with a chemical species in the region of electrolyte adjacent to the working electrode. The working electrode carries an excitation current produced by a switching source or amplifier. The excitation current produces an alternating magnetic field adjacent to the working electrode that alters the spin state population density for the unpaired electron associated with a chemical species within the electrolyte, thereby enhancing or inhibiting the reaction of the chemical species during subsequent electrolysis.
    Type: Application
    Filed: August 18, 2008
    Publication date: May 28, 2009
    Inventor: MEHLIN DEAN MATTHEWS
  • Patent number: 7517440
    Abstract: A method of pumping fluid including the steps of providing an electrokinetic pump comprising a pair of double-layer capacitive electrodes having a capacitance of at least 10?2 Farads/cm2 and being connectable to a power source, a porous dielectric material disposed between the electrodes and a reservoir containing pump fluid; connecting the electrodes to a power source; and moving pump fluid out of the reservoir substantially without the occurrence of Faradaic processes in the pump. The invention also includes an electrokinetic pump system having a pair of double-layer capacitive electrodes having a capacitance of at least 10?2 Farads/cm2; a porous dielectric material disposed between the electrodes; a reservoir containing pump fluid; and a power source connected to the electrodes; the electrodes, dielectric material and power source being adapted to move the pump fluid out of the reservoir substantially without the occurrence of Faradaic processes in the pump.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: April 14, 2009
    Assignee: Eksigent Technologies LLC
    Inventors: Deon S. Anex, Phillip H. Paul, David W. Neyer, Edwin J. Hlavka
  • Patent number: 7513980
    Abstract: An electrolytic cell 1 comprises electrolysis chambers 5 and 6 arranged opposite to each other through a diaphragm 11, raw water feed means 8 and 7, electrodes 12a and 12b arranged in the electrolysis chambers 5 and 6 in a manner sandwiching the diaphragm 11, and electrolyzed water take-out means 9 and 10 for taking out electrolyzed water obtained by electrolyzing raw water. The electrolytic cell 1 comprises a membrane-electrode assembly 2 formed so as to cause the electrodes 12a and 12b to respectively adhere to both surfaces of the diaphragm 11, mesh current collectors 13 and 14 respectively arranged opposite to the electrodes 12a and 12b, and a plurality of protrusions 15 and 16.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: April 7, 2009
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kohichi Miyashita, Go Muto
  • Publication number: 20090078582
    Abstract: An apparatus for electrolyzing sulfuric acid, the apparatus comprising an electrolytic cell comprising a cathode chamber having a cathode and an anode chamber having an anode, the cathode chamber and the anode chamber being separated by a diaphragm, a sulfuric acid tank configured to store the sulfuric acid, a supply pipe connecting the sulfuric acid tank to an inlet port of the anode chamber, a connection pipe connecting an outlet port of the cathode chamber to the inlet port of the anode chamber, a first supply pump provided on the supply pipe and configured to supply the sulfuric acid from the sulfuric acid tank to the cathode chamber through the supply pipe, and a drain pipe connected to an outlet port of the anode chamber and configured to supply to a solution tank a solution containing an oxidizing agent generated by electrolysis in the anode chamber.
    Type: Application
    Filed: November 20, 2008
    Publication date: March 26, 2009
    Applicants: Shibaura Mechatronics Corporation, Kabushiki Kaisha Toshiba, Chlorine Engineers Corp., Ltd
    Inventors: Nobuo Kobayashi, Yukihiro Shibata, Naoya Hayamizu, Masaaki Kato
  • Patent number: 7507493
    Abstract: An electrochemical cell having a membrane electrode assembly (MEA), and a gas diffusion layer (GDL) disposed proximate a side of the MEA with an edge of the GDL disposed inboard of an edge of the MEA is disclosed. A sealing member is disposed proximate the edge of the GDL and extends outward toward the edge of the MEA, thereby defining a discontinuity between the GDL and the sealing member. A protector member is disposed between the MEA and the GDL such that the protector member traverses the discontinuity.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: March 24, 2009
    Assignee: Froton Energy Systems, Inc.
    Inventors: Jacob Friedman, Greg Hanlon
  • Patent number: 7504015
    Abstract: The invention relates to a method and a device for producing elementary oxygen or for increasing the concentration thereof in the inhaled air of a user. According to the invention, water is split into hydrogen and elementary oxygen by means of electrical energy (electrolysis), the elementary oxygen is mixed with the inhaled air, and the hydrogen is mixed with the surrounding air in order to be converted back into water (fuel reaction). The splitting of the water into hydrogen and elementary oxygen and the conversion of the hydrogen and surrounding air into water take place simultaneously and continuously, forming a reaction circuit, and are coupled to each other, the electrical energy produced during the conversion being used to reduce the energy demand for the splitting.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: March 17, 2009
    Inventors: Karl-Heinz Hecker, Stefan Fiedler, Rudolf Schinagl
  • Patent number: 7491309
    Abstract: Disclosed herein are a system and a method for the production of hydrogen. The system advantageously combines an independent high temperature heat source with a solid oxide electrolyzer cell and a heat exchanger. The heat exchanger is used to extract heat from the molecular components such as hydrogen derived from the electrolysis. A portion of the hydrogen generated in the solid oxide electrolyzer cell is recombined with steam and recycled to the solid oxide electrolyzer cell. The oxygen generated on the anode side is swept with compressed air and used to drive a gas turbine that is in operative communication with a generator. Electricity generated by the generator is used to drive the electrolysis in the solid oxide electrolyzer cell.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: February 17, 2009
    Assignee: General Electric Company
    Inventors: Andrew Maxwell Peter, Chellappa Balan, James Anthony Ruud, Stephane Renou, Kenneth Walter Browall
  • Patent number: 7491453
    Abstract: Systems and processes for producing hydrogen using bacteria are described. One detailed process for producing hydrogen uses a system for producing hydrogen as described herein, the system including a reactor. Anodophilic bacteria are disposed within the interior of the reactor and an organic material oxidizable by an oxidizing activity of the anodophilic bacteria is introduced and incubated under oxidizing reactions conditions such that electrons are produced and transferred to the anode. A power source is activated to increase a potential between the anode and the cathode, such that electrons and protons combine to produce hydrogen gas. One system for producing hydrogen includes a reaction chamber having a wall defining an interior of the reactor and an exterior of the reaction chamber. An anode is provided which is at least partially contained within the interior of the reaction chamber and a cathode is also provided which is at least partially contained within the interior of the reaction chamber.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: February 17, 2009
    Assignees: The Penn State Research Foundation, Ion Power, Inc.
    Inventors: Bruce Logan, Stephen Grot, Thomas E. Mallouk, Hong Liu
  • Patent number: 7491302
    Abstract: Pure water 3 is made to pass through a carbon dioxide contact mechanism, to become carbonated water, and is supplied to an ozone gas and hydrogen gas generation section, so that the concentration of generated ozone gas becomes stable. As a result, the concentration of the generated ozone gas is high and stable, and a high concentration can be maintained.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: February 17, 2009
    Assignees: Nomura Micro Science Co., Ltd., COA Technology Co., Ltd.
    Inventors: Isao Sawamoto, Takazou Hirose, Takayuki Jizaimaru
  • Patent number: 7488409
    Abstract: Animal waste is contacted with an electrolyte containing the oxidized form of one or more reversible redox couples, produced electrochemically by anodic oxidation at the anode of an electrochemical cell. The oxidized forms of any other redox couples present are produced either by similar anodic oxidation or reaction with the oxidized form of other redox couples present and capable of affecting the required redox reaction. The oxidized species of the redox couples oxidize the organic waste molecules and are themselves converted to their reduced form, whereupon they are reoxidized by either of the aforementioned mechanisms. The redox cycle continues until all oxidizable waste species, including intermediate reaction products, have undergone the desired degree of oxidation. The entire process takes place between zero degrees centigrade and slightly below the boiling point of the electrolyte, avoiding formation of either dioxins or furans.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: February 10, 2009
    Assignee: Scimist, Inc.
    Inventors: Roger W. Carson, Bruce W. Bremer
  • Publication number: 20090014337
    Abstract: Devices and methods are presented for removal and destruction of nitrate from water using an ion exchange medium from which the nitrate is eluted using brine, and in which the so generated eluent is sequentially reduced and oxidized in distinct compartments to form nitrogen from nitrate and ammonia, respectively. In especially preferred devices and methods, the reduced and oxidized eluent is re-reduced to electrochemically destroy hypohalites formed during oxidation. Among other advantages, contemplated devices and methods allow nitrate destruction with minimal concomitant production of nitrite and hypohalites.
    Type: Application
    Filed: December 20, 2004
    Publication date: January 15, 2009
    Applicant: APPLIED INTELLECTUAL CAPITAL
    Inventors: Robert Lewis Clarke, Stephen Harrison, Salil Jain
  • Patent number: 7476307
    Abstract: Processes for generating chlorine dioxide generally include acidifying an alkali metal chlorite solution; and contacting the acidified alkali metal chlorite solution with a solid phase chlorine-containing material to produce chlorine dioxide. An exemplary system for generating chlorine dioxide generally includes a water source in fluid communication with a conduit that is fluidly connected to a vessel, wherein the vessel comprises a housing, an inlet in fluid communication with the housing and the conduit, an outlet, and a solid phase chlorine-containing material disposed within the housing; an acid source downstream from the water source in fluid communication with the conduit; and a chlorite ion source in fluid communication with the conduit downstream from the acid source. Various means are provided for the acid source.
    Type: Grant
    Filed: February 5, 2004
    Date of Patent: January 13, 2009
    Assignee: Halox Technologies, Inc.
    Inventor: Felice DiMascio
  • Publication number: 20090008261
    Abstract: An oxygen generator for an oxygen-generation apparatus has a proton-conducting membrane (60), a cathode (50) contacting a first side, or cathodic side, of the membrane, an anode (70) contacting a second side, or anodic side, of the membrane, and a source of water for supply to the membrane. In use, an electrolysis voltage applied between the cathode and the anode causes electrolysis of the water to generate oxygen gas at the anode. Atmospheric oxygen, i.e. oxygen in the air, is substantially prevented from coming into contact with the cathode. For an acidic proton-conducting membrane this substantially prevents the formation of hydrogen peroxide at the cathode.
    Type: Application
    Filed: March 3, 2006
    Publication date: January 8, 2009
    Applicant: Cambridge Enterprise Limited
    Inventors: Vega Petrova Kotzeva, Derek John Fray
  • Patent number: 7462334
    Abstract: The present invention provides a method for producing negatively charged oxygen atoms comprising: placing a negative electrode (3) on a surface of a member (2) made of calcium-aluminum composite oxide, proximately placing a positive electrode (10) on a side of the member opposite to the surface on which the negative electrode is placed, supplying oxygen to the negative electrode side, and applying voltage between the negative electrode and the positive electrode so as to extract negatively charged oxygen atoms (A) from the side where the positive electrode (10) is placed. The present invention also provides an apparatus for producing negatively charged oxygen atoms which is used for the above method.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: December 9, 2008
    Assignees: Japan Science and Technology Agency, Oxy Japan Company Limited
    Inventors: Hideo Hosono, Katsuro Hayashi, Masahiro Hirano, Masayoshi Sadakata
  • Patent number: 7431818
    Abstract: A fuel system for an energy conversion device includes a deoxygenator system with an electrochemical conversion system to remove oxygen from fuel through conversion of the oxygen to water. The electrochemical conversion system is located within a fuel flow. On the fuel side ½O2+2H++2e?=>H2O while on the reverse side the opposite reaction occurs. From the electrochemical conversion system the water is then collected and/or expelled from the system.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: October 7, 2008
    Assignee: United Technologies Corporation
    Inventor: Ned Emidio Cipollini
  • Patent number: 7427345
    Abstract: A method and device for regenerating an ion exchanger can regenerate an ion exchanger easily and quickly, and can minimize a load upon cleaning of the regenerated ion exchanger and disposal of waste liquid. A method for regenerating a contaminated ion exchanger includes: providing a pair of a regeneration electrode and a counter electrode, a partition disposed between the electrodes, and an ion exchanger to be regenerated disposed between the counter electrode and the partition; and applying a voltage between the regeneration electrode and the counter electrode while supplying a liquid between the partition and the regeneration electrode and also supplying a liquid between the partition and the counter electrode.
    Type: Grant
    Filed: November 29, 2002
    Date of Patent: September 23, 2008
    Assignee: Ebara Corporation
    Inventors: Takayuki Saito, Tsukuru Suzuki, Yuji Makita, Kaoru Yamada, Masayuki Kumekawa, Hozumi Yasuda, Osamu Nabeya, Kazuto Hirokawa, Mitsuhiko Shirakashi, Yasushi Toma, Itsuki Kobata
  • Patent number: 7422668
    Abstract: An electrochemical cell having an inner electrode mounted coaxially within an outer, electrode, with a tube mounted coaxially between them to define annular passageways for liquid flow in separate streams of the cell between respective pairs of inlet/outlet ports. A cup-shaped fitting having a stepped-down internal diameter is fastened to the inner electrode at the end of the cell with the outer electrode at the mouth of the fitting.
    Type: Grant
    Filed: July 21, 2003
    Date of Patent: September 9, 2008
    Assignee: PuriCore International Limited
    Inventor: David Edward Cross
  • Publication number: 20080210572
    Abstract: A hand-held spray apparatus is provided, which includes a tank for holding a supply of liquid to be treated and a functional generator carried by the hand-held spray apparatus. The functional generator receives the liquid from the tank and has an anode chamber and a cathode chamber separated by an ion exchange membrane and electrochemically activates the liquid that is passed through the functional generator. A spray output is coupled to an output of the functional generator and dispenses the electrochemically activated liquid as an output spray.
    Type: Application
    Filed: May 16, 2008
    Publication date: September 4, 2008
    Applicant: Tennant Company
    Inventor: Bruce F. Field
  • Patent number: 7399392
    Abstract: An electrochemical reformer 1 using reactant feed structures having both hydrophilic and hydrophobic regions to provide mechanisms for the wicking of liquid reactants into reformer 1 and for the separation and removal of gaseous products from reformer 1. The electrical reformer 1 may be combined with a fuel cell, a portion of the output of which is used to power reformer 1, to create a compact, portable power source.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: July 15, 2008
    Assignee: Intelligent Energy, Inc.
    Inventors: Richard Root Woods, Rahul Hari Iyer, Brook Forest Porter
  • Patent number: 7396440
    Abstract: The invention is a device for electrical load-leveling and/or electrolysis. A housing contains pairs of electrodes made from or containing a porous material. The electrodes are filled respectively with an anolyte and a catholyte, which is an ionic couple such as Vanadium +2/+3. A non-permi-selective barrier membrane with openings may be included to substantially separate the electrode pair. The device results in reduced resistive, over-potentials and polarization losses, and may be scaled-up for integration into an electric utility.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: July 8, 2008
    Inventor: Steven Amendola
  • Patent number: 7396442
    Abstract: An ionically conductive ceramic element includes a central unit (703). The central unit (703) is composed of a plurality of integrated manifold and tube modules (IMAT) (22) joined end to end along a central axis (A). Each IMAT module (22) has a tube support portion (804) and a plurality of tubes (802) extending from the first surface (803). The tubes (802) each have a closed end (805) and an open end. The second surface (807) is at least partially open to the atmosphere. The open ends of the tubes (802) are open to the atmosphere through the second surface (807). An interior space (830) is formed in the interior of the IMAT (22) for collecting a desired product gas. A collection tube (710) is operable joined with a first end (714) of the central unit (703) for transporting the desired product gas collected in the interior space (730) of the connected IMAT modules (22).
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: July 8, 2008
    Assignee: Carleton Life Support Systems, Inc.
    Inventors: Brad M. Bagby, Scott H. Harvey
  • Patent number: 7387719
    Abstract: Mediated electrochemical oxidation to treats, oxidizes and destroys biological waste, medical, infectious, pathological, animal, sanitary, mortuary, ship, veterinary, pharmaceutical and combined waste. Electrolytes contain oxidized forms of reversible redox couples produced. Oxidized forms of redox couples are produced by anodic oxidation or reaction with oxidized forms of other redox couples. Oxidized species of the redox couples oxidize the biological waste molecules and are reduced and reoxidized. The redox cycle continues until all oxidizable waste and intermediate reaction products have undergone oxidation. Temperatures between ambient and 100° C. avoid formation of dioxins or furans.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: June 17, 2008
    Assignee: Scimist, Inc.
    Inventors: Roger W. Carson, Bruce W. Bremer
  • Publication number: 20080110766
    Abstract: A cleaning system includes: a sulfuric acid electrolytic portion configured to electrolyze a sulfuric acid solution to generate an oxidizing substance in an anode chamber, a concentrated sulfuric acid supply portion configured to supply a concentrated sulfuric acid solution to the anode chamber, and a cleaning treatment portion configured to carry out cleaning treatment of an object to be cleaned using an oxidizing solution comprising the oxidizing substance. The sulfuric acid electrolytic portion has an anode, a cathode, a diaphragm which is provided between the anode and the cathode, the anode chamber which is demarcated between the anode and the diaphragm and a cathode chamber which is demarcated between the cathode and the diaphragm.
    Type: Application
    Filed: June 14, 2007
    Publication date: May 15, 2008
    Applicants: KABUSHIKI KAISHA TOSHIBA, CHLORINE ENGINEERS CORP. LTD.
    Inventors: Naoya Hayamizu, Yukihiro Shibata, Masaaki Kato, Hiroyuki Fukui
  • Patent number: 7368043
    Abstract: A soil remediation system includes an electrochemical cell that is configured to provide increased mass transfer and a decreased diffusion layer between the electrodes to thereby allow formation of a homogenous lead deposit that is substantially free of dendrite formation and easily removed.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: May 6, 2008
    Assignee: Applied Intellectual Capital
    Inventors: Samaresh Mohanta, Brian J. Dougherty, Scott Stevenson
  • Patent number: 7351314
    Abstract: Chambers, systems, and methods for electrochemically processing microfeature workpieces are disclosed herein. In one embodiment, an electrochemical deposition chamber includes a processing unit having a first flow system configured to convey a flow of a first processing fluid to a microfeature workpiece. The chamber further includes an electrode unit having an electrode and a second flow system configured to convey a flow of a second processing fluid at least proximate to the electrode. The chamber further includes a nonporous barrier between the processing unit and the electrode unit to separate the first and second processing fluids. The nonporous barrier is configured to allow cations or anions to flow through the barrier between the first and second processing fluids.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: April 1, 2008
    Assignee: Semitool, Inc.
    Inventors: John Klocke, Kyle M Hanson
  • Patent number: 7351315
    Abstract: Chambers, systems, and methods for electrochemically processing microfeature workpieces are disclosed herein. In one embodiment, an electrochemical deposition chamber includes a processing unit having a first flow system configured to convey a flow of a first processing fluid to a microfeature workpiece. The chamber further includes an electrode unit having a plurality of electrodes and a second flow system configured to convey a flow of a second processing fluid at least proximate to the electrodes. The chamber further includes a barrier between the processing unit and the electrode unit to separate the first and second processing fluids. The barrier can be a porous, permeable barrier or a nonporous, semipermeable barrier.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: April 1, 2008
    Assignee: Semitool, Inc.
    Inventors: John Klocke, Kyle M Hanson
  • Patent number: 7351317
    Abstract: The invention relates to an electrolysis device for halogen gas production from an aqueous alkali halide solution in several plate-type electrolysis cells stacked and arranged side by side, with electrical contacts, each of the cells with a housing consisting of two half-shells made of electrically conductive material, said housing being equipped with devices for feeding electrolytic current and the electrolysis plant reactants and devices for discharging electrolytic current and discharging the electrolysis products, with anodic electrode, cathodic electrode and a membrane arranged therebetween, built-in components being fitted in at least one of the two half-shells and permitting a defined increase in the liquid level and thus minimizing the remaining gas volume accordingly.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: April 1, 2008
    Assignee: Uhdenora Technologies S.r.l.
    Inventors: Karl Heinz Dulle, Peter Woltering, Frank Funck, Martin Wollny, Randolf Kiefer, Thomas Steinmetz, Kosmas Janowitz, Roland Beckmann, Torsten Dresel, Hans-Joachim Hartz
  • Patent number: 7329331
    Abstract: An electrolysis cell, suitable for the electrochemical production of chlorine from aqueous solutions of hydrogen chloride. The cell preferably comprises an anode space formed from an anode, an anode frame, and a back wall, the anode frame supporting the anode, and the anode space having an inlet and an outlet for the electrolyte, a cathode space formed from a current collector. The cell further preferably comprises a cathode frame and a back wall, the cathode frame supporting the current collector and the cathode space having an inlet and an outlet for the gas, a gas diffusion electrode arranged between anode and current collector and an cation exchange membrane arranged between anode and gas diffusion electrode, wherein the gas diffusion electrode is fixed on the current collector.
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: February 12, 2008
    Assignee: Bayer MaterialScience AG
    Inventors: Andreas Bulan, Fritz Gestermann, Manfred Marre, Walter Hansen, Michael Groβholz
  • Patent number: 7329332
    Abstract: Describes a cathode assembly for electrolytic cells, e.g., chlor-alkali electrolytic cells, comprising a foraminous cathode substrate, a deposited erodible mat comprising synthetic (man-made) fibers, e.g., polyamide (nylon) fibers, on the foraminous surface of said cathode substrate, and a synthetic diaphragm on said erodible mat. Also described is a method for preparing the cathode assembly that comprises depositing a mat of erodible synthetic fibers on the active surface of the foraminous cathode, e.g., by drawing an aqueous slurry of the erodible synthetic fibers through the foraminous cathode, and subsequently forming, e.g., by vacuum deposition, a synthetic diaphragm on the erodible mat.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: February 12, 2008
    Assignee: PPG Industries Ohio, Inc.
    Inventor: Henry W. Schussler
  • Patent number: 7311808
    Abstract: A device and method for increasing the mass transport rate of a chemical or electrochemical process at the solid and fluid interface in a fluid cell. The device includes a membrane in close contact with surface of the work piece, to separate the process cell into two chambers, so that fluid velocity at the work piece is controlled separately from the main cell flow. Thus the diffusion boundary layer is controlled and minimized by the rate that fluid is withdrawn from the work piece chamber.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: December 25, 2007
    Assignee: Entegris, Inc.
    Inventors: Qunwei Wu, Craig L. Brodeur, John E. Pillion, Jieh Hwa Shyu
  • Publication number: 20070259236
    Abstract: Anionic fuel cells, methods of fabrication thereof, CO2 pumps, hybrid fuel cells, and methods for fabricating an anionic fuel cell, are disclosed.
    Type: Application
    Filed: August 11, 2006
    Publication date: November 8, 2007
    Inventors: Christopher M. Lang, Paul A. Kohl
  • Publication number: 20070235324
    Abstract: A membrane electrode assembly incorporating an encapsulation assembly process that separates the counter-electrode, and the electrocoat medium from contacting the electrode, which is located behind the membrane ion exchange layer. The encapsulation process provides of method of singularly encasing independent components that comprise the membrane electrode assembly, without the assistance of first structures used in enclosure, framing, enclosure sealing or bonding the components in place, individually, and or in groups thereof from the electrocoat medium, while providing an internal chamber within the membrane electrode assembly, for independent fluid circulation.
    Type: Application
    Filed: February 9, 2007
    Publication date: October 11, 2007
    Applicant: Timothy Clark Walker
    Inventor: Timothy Clark Walker
  • Patent number: 7267749
    Abstract: A processing container (610) for providing a flow of a processing fluid during immersion processing of at least one surface of a microelectronic workpiece is set forth. The processing container comprises a principal fluid flow chamber (505) providing a flow of processing fluid to at least one surface of the workpiece and a plurality of nozzles (535) disposed to provide a flow of processing fluid to the principal fluid flow chamber. The plurality of nozzles are arranged and directed to provide vertical and radial fluid flow components that combine to generate a substantially uniform normal flow component radially across the surface of the workpiece. An exemplary apparatus using such a processing container is also set forth that is particularly adapted to carry out an electroplating process.
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: September 11, 2007
    Assignee: Semitool, Inc.
    Inventors: Gregory J. Wilson, Paul R. McHugh, Kyle M. Hanson
  • Patent number: 7264698
    Abstract: An apparatus and method for electrochemical processing of microelectronic workpieces in a reaction vessel.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: September 4, 2007
    Assignee: Semitool, Inc.
    Inventors: Kyle M. Hanson, Thomas L. Ritzdorf, Gregory J. Wilson, Paul R. McHugh
  • Patent number: 7247222
    Abstract: Embodiments of the invention may generally provide a small volume electrochemical plating cell. The plating cell generally includes a fluid basin configured to contain a plating solution therein, the fluid basin having a substantially horizontal weir. The cell further includes an anode positioned in a lower portion of the fluid basin, the anode having a plurality of parallel channels formed therethrough, and a base member configured to receive the anode, the base member having a plurality of groves formed into an anode receiving surface, each of the plurality of grooves terminating into an annular drain channel. A membrane support assembly configured to position a membrane immediately above the anode in a substantially planar orientation with respect to the anode surface is provided, the membrane support assembly having a plurality of channels and bores formed therein.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: July 24, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Michael X. Yang, Dmitry Lubomirsky, Yezdi Dordi, Saravjeet Singh, Sheshraj Tulshibagwale, Nicolay Kovarsky
  • Patent number: 7238272
    Abstract: Apparatus and methods are provided for producing electrolytic water using three chambers, rigid plates and ion exchange membranes. Benefits include reduced scale production and increased long-term bactericidal effects of the water produced.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: July 3, 2007
    Inventor: Yoichi Sano
  • Patent number: 7232507
    Abstract: An electrochemical cell design is disclosed for the particular application of the electrochemical treatment of contaminants in water. The cell is designed to allow the treatment of low concentrations of contaminants in low conductivity water efficiently, and to be simple to fabricate. The design incorporates tapered inlet and outlet fluid flow manifolds so that the cell pressure drop will be almost entirely due to fluid contacting the electrodes, thus maximising the effective use of the system pump power. A short anode to cathode distance and thin working electrodes are used to minimise resistive electrical power losses. The parallel slacked arrangement of the electrodes and the smooth inlet and outlet designs leads to relatively even distributions of current density and mass transfer resulting in maximal utilisation of the entire active electrode surface area.
    Type: Grant
    Filed: September 3, 2003
    Date of Patent: June 19, 2007
    Assignee: National Research Council of Canada
    Inventors: Michael Gattrell, Thierry Guena, Barry MacDougall
  • Patent number: 7229534
    Abstract: Electrolysis cell comprises, in one embodiment, a proton exchange membrane (PEM), an anode positioned along one face of the PEM, and a cathode positioned along the other face of the PEM. A multi-layer metal screen for defining a first fluid cavity is placed in contact with the outer face of the anode, and an electrically-conductive, compressible, spring-like, porous pad for defining a second fluid cavity is placed in contact with the outer face of the cathode. The porous pad comprises a mat of carbon fibers bound together with one or more, preferably thermoplastic, resins, the mat having a density of about 0.2–1.5 g/cm3. Cell frames are placed in peripheral contact with the metal screen and the compression pad for peripherally containing fluids present therewithin. Electrically-conductive separators are placed in contact with the metal screen and the compression pad for axially containing fluids present therewithin.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: June 12, 2007
    Assignee: Giner Electrochemical Systems, LLC
    Inventors: Anthony B. LaConti, William A. Titterington, Larry L. Swette, Ricardo Leon, Kwang S. Kim
  • Patent number: 7226529
    Abstract: An apparatus and method to produce hydrogen gas a high pressure is disclosed. An electrolyzer is located inside a pressure vessel that is pressurized with high pressure water. The high pressure water is provided to both the anode and cathode sides of the electrolyzer by a pump in the pressure vessel Oxygen produced at the high pressure on the anode side of the electrolyzer is vented directly into the pressure vessel while hydrogen produced at the high pressure on the cathode side is routed to a separator and is deadheaded. The high pressure hydrogen is periodically routed from the separator to a storage tank by a pressure regulator.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: June 5, 2007
    Assignee: General Motors Corporation
    Inventor: Mark A Meltser
  • Patent number: 7153409
    Abstract: In one embodiment, the electrochemical system comprises an electrochemical cell and hydrogen storage in fluid communication with the hydrogen electrode, the hydrogen storage comprising at least one of carbon nanotubes and carbon nanofibers. In one embodiment, the method for operating an electrochemical cell system, comprises introducing water to an oxygen electrode and electrolyzing the water to form oxygen, hydrogen ions and electrons, wherein the hydrogen ions migrate to a hydrogen electrode. The hydrogen ions can then be reacted with the electrons to form hydrogen gas that is stored in at least one of carbon nanotubes and carbon nanofibers.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: December 26, 2006
    Assignee: Proton Energy Systems, Inc.
    Inventors: Jason K. Shiepe, Frano Barbir
  • Patent number: 7090753
    Abstract: The present invention provides an electrolytic cell, which can efficiently produce, charged water having an excellent performance of improving surface cleaning or treatment of an object, e.g., semiconductor, glass, or resin and of cleaning and sterilizing medical device.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: August 15, 2006
    Assignee: Oculus Innovative Sciences, Inc.
    Inventor: Osao Sumita
  • Patent number: RE39720
    Abstract: An apparatus for treating an exhaust gas stream from cold startup through continuous operating conditions of an internal combustion engine includes an oxidizing catalyst bed disposed in an exhaust pipe and a reducing catalyst bed disposed in the exhaust pipe downstream from the oxidizing catalyst bed. The oxidizing catalyst bed as one or more oxidizing catalysts and the reducing catalyst bed has one or more reducing catalysts. A method is provided for treating an exhaust gas stream both during cold start and during continuous operating conditions of an internal combustion engine by passing the stream through an oxidizing catalyst bed having one or more oxidizing catalysts at a light off temperature; a reducing catalyst bed having one or more reducing catalysts and providing hydrogen into the reducing catalyst bed to condition the reducing catalyst; and introducing hydrogen into the internal combustion engine during cold startup.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: July 10, 2007
    Assignee: Lynntech, Inc.
    Inventors: Oliver J. Murphy, Craig C. Andrews
  • Patent number: RE40035
    Abstract: A ceramic oxygen generator is described which is capable of modular construction to permit the oxygen generation capacity to be expanded. An ionically conducted ceramic electrolyte is formed into a series of rows and columns of tubes on a tube support member and like electrolyte bodies can be connected together to form a manifold therebetween of oxygen produced in the interiors of the rubes. An electrical connection between tubes is formed such that the anodes and cathodes of tubes in a column are connected in parallel while the tubes in the row are, respectively, connected anode to cathode to form a series connection.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: January 29, 2008
    Assignee: Carleton Life Support Systems, Inc.
    Inventor: Victor P. Crome
  • Patent number: RE40218
    Abstract: The invention provides an apparatus and a method for achieving reliable, consistent metal electroplating or electrochemical deposition onto semiconductor substrates. More particularly, the invention provides uniform and void-free deposition of metal onto metal seeded semiconductor substrates having sub-micron, high aspect ratio features. The invention provides an electrochemical deposition cell comprising a substrate holder, a cathode electrically contacting a substrate plating surface, an electrolyte container having an electrolyte inlet, an electrolyte outlet and an opening adapted to receive a substrate plating surface and an anode electrically connect to an electrolyte. Preferably, a vibrator is attached to the substrate holder to vibrate the substrate in at least one direction, and an auxiliary electrode is disposed adjacent the electrolyte outlet to provide uniform deposition across the substrate surface.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: April 8, 2008
    Inventor: Uziel Landau