Specified Power Supply Or Matching Network Patents (Class 204/298.08)
  • Publication number: 20130118406
    Abstract: The present invention relates to a method for treating plastic bottles comprising an operation for cold plasma sterilization with non-germicidal gasses and/or an operation for the cold plasma deposition of a diffusion barrier layer, said method being characterized in that said cold plasma delivers adjustable nonthermal energy to the entire inside surface of the bottle, said cold plasma being generated either through a distributed propagation of microwaves having a maximum intensity in the vicinity of said surface or by a hollow cathode system adapted to the bottle and supplied with pulsed DC and/or RF voltage. The invention also relates to the devices for implementing the method.
    Type: Application
    Filed: January 4, 2013
    Publication date: May 16, 2013
    Applicant: Air Liquide, Societe Anonyme pour Etude et Exploitation des Procedes Georges Claude
    Inventor: Air Liquide, Societe Anonyme pour Etude et Exploitation des Procedes Georges Claude
  • Patent number: 8440061
    Abstract: A device for use with an RF generating source, a first electrode, a second electrode and an element. The RF generating source is operable to provide an RF signal to the first electrode and thereby create a potential between the first electrode and the second electrode. The device comprises a connecting portion and a current sink. The connecting portion is operable to electrically connect to one of the first electrode, the second electrode and an element. The current sink is in electrical connection with the connection portion and a path to ground. The current sink comprises a voltage threshold. The current sink is operable to conduct current from the connecting portion to ground when a voltage on the electrically connected one of the first electrode, the second electrode and the element is greater than the voltage threshold.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: May 14, 2013
    Assignee: Lam Research Corporation
    Inventors: John C. Valcore, Jr., Ed Santos
  • Patent number: 8435389
    Abstract: An apparatus for generating sputtering of a target to produce a coating on a substrate with a current density on a cathode of a magnetron between 0.1 and 10 A/cm2 is provided. The apparatus comprises a power supply that is operably connected to the magnetron and at least one capacitor is operably connected to the power supply. A first switch is also provided. The first switch operably connects the power supply to the magnetron to charge the magnetron and the first switch is configured to charge the magnetron according to a first pulse. An electrical bias device is operably connected to the substrate and configured to apply a substrate bias.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: May 7, 2013
    Assignee: OC Oerlikon Balzers AG
    Inventors: Stanislav Kadlec, Jürgen Weichart
  • Patent number: 8436543
    Abstract: A plasma supply device generates an output power greater than 500 W at an essentially constant basic frequency greater than 3 MHz and powers a plasma process to which is supplied the generated output power, and from which reflected power is returned to the plasma supply device. The plasma supply device includes at least one inverter connected to a DC power supply, which inverter has at least one switching element, and an output network, wherein the at least one output network includes at least one inductance that has at least one magnetic field strengthening element that is a Perminvar ferrite.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: May 7, 2013
    Assignee: Huettinger Elektronik GmbH + Co. KG
    Inventors: Thomas Kirchmeier, Michael Glueck
  • Publication number: 20130105310
    Abstract: A film formation apparatus of the present invention has two sputtering evaporation sources each of which includes an unbalanced magnetic field formation means formed by an inner pole magnet arranged on the inner side and an outer pole magnet arranged on the outer side of this inner pole magnet, the outer pole magnet having larger magnetic line density than the inner pole magnet, and a target arranged on a front surface of the unbalanced magnetic field formation means, and further has an AC power source for applying alternating current whose polarity is switched with a frequency of 10 kHz or more between the targets of the two sputtering evaporation sources so as to generate discharge between both the targets and perform film formation.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 2, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho ( Kobe Steel, Ltd.)
    Inventor: Kabushiki Kaisha Kobe Seiko Sho ( Kobe Steel, Ltd.)
  • Publication number: 20130105309
    Abstract: A magnetron sputtering apparatus where a target is disposed to face a substrate installed in a vacuum chamber and magnets are disposed on a rear surface of the target, including a power supply unit configured to apply a voltage to the target; and a magnet array body including a magnet group arranged on a base body provided at the rear surface of the target. In the magnet array body, rod-shaped magnets each having different polarities at opposite ends thereof are disposed in a mesh shape on a surface of the base body facing the target; the mesh has a 2n polygonal shape (n being an integer greater than or equal to 2); permeable core members are disposed at intersection points of the mesh surrounded by the ends of the rod-shaped magnets; and end portions of the rod-shaped magnets which surround each of the core members have a same polarity.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 2, 2013
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: TOKYO ELECTRON LIMITED
  • Patent number: 8415885
    Abstract: A plasma processing apparatus includes a vacuum evacuable processing chamber, at least a portion of which is formed of a dielectric window; a substrate supporting unit for supporting a target substrate in the processing chamber; and a processing gas supply unit for supplying a desired processing gas into the processing chamber. Further, the plasma processing apparatus includes an RF antenna provided outside the dielectric window; a high frequency power supply unit for supplying to the RF antenna a high frequency power; and a switching network switched among a parallel mode, a multiplication series mode, and a minimization series mode.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: April 9, 2013
    Assignee: Tokyo Electron Limited
    Inventor: Yohei Yamazawa
  • Patent number: 8409407
    Abstract: Methods are generally provided for sputtering thin films on individual substrates. Individual substrates can be conveyed into a vacuum chamber to draw a sputtering pressure that is less than about 50 mTorr. Then, the individual substrates can be conveyed into a sputtering chamber and past a planar magnetron continuously sputtering a target by an ionized gas at the sputtering pressure such that a thin film is formed on a surface of the individual substrate. The target is subjected to a high frequency power having a frequency from about 400 kHz to about 4 MHz at power levels of greater than about 1 kW. In one particular embodiment, the method can be generally directed to sputtering thin films on individual substrates defining a surface having a surface area of about 1000 cm2 to about 2500 cm2.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: April 2, 2013
    Assignee: Primestar Solar, Inc.
    Inventors: Sean Timothy Halloran, Robert Dwayne Gossman, Russell Weldon Black
  • Patent number: 8404089
    Abstract: When sputtering method is performed by disposing a plurality of targets in parallel with each other, and by charging power to the targets through a plurality of bipolar pulsed power supplies, power can be charged with higher accuracy to the targets while being subject to less effect by the switching noises by a simple control. In a sputtering method in which, for each of targets making a pair, power is supplied in a bipolar pulsed mode by switching ON or OFF of each of the switching elements SW1 through SW4 in a bridge circuit that is connected to positive and negative DC output ends from the DC power supply source, and in which each of the targets is sputtered, switching ON or OFF of the switching elements is performed in a short-circuited state of an output-short-circuiting switching element SW0 which is disposed between positive and negative DC outputs from the DC power supply source.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: March 26, 2013
    Assignee: ULVAC, Inc.
    Inventors: Yoshikuni Horishita, Shinobu Matsubara
  • Patent number: 8395078
    Abstract: A system and method for managing power delivered to a processing chamber is described. In one embodiment current is drawn away from the plasma processing chamber while initiating an application of power to the plasma processing chamber during an initial period of time, the amount of current being drawn away decreasing during the initial period of time so as to increase the amount of power applied to the plasma processing chamber during the initial period of time.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: March 12, 2013
    Assignee: Advanced Energy Industries, Inc
    Inventor: Milan Ilic
  • Publication number: 20130049064
    Abstract: The present invention provides: an epitaxial film forming method capable of fabricating a +c-polarity epitaxial film made of a Group III nitride semiconductor by sputtering; and a vacuum processing apparatus suitable for this epitaxial film forming method. In one embodiment of the present invention, a Group III nitride semiconductor thin film is epitaxially grown by sputtering on an ?-Al2O3 substrate heated to a desired temperature by using a heater. First, the ?-Al2O3 substrate is disposed on a substrate holder including the heater in such a way that the ?-Al2O3 substrate is disposed away from the heater by a predetermined distance. Then, an epitaxial film of a Group III nitride semiconductor thin film is formed on the ?-Al2O3 substrate in the state where the ?-Al2O3 substrate is disposed away from the heater by the predetermined distance.
    Type: Application
    Filed: October 26, 2012
    Publication date: February 28, 2013
    Applicant: CANON ANELVA CORPORATION
    Inventor: Canon Anelva Corporation
  • Patent number: 8377269
    Abstract: There is provided an inexpensive sputtering apparatus in which self-sputtering can be stably performed by accelerating the ionization of the atoms scattered from a target. The sputtering apparatus has: a target which is disposed inside a vacuum chamber so as to lie opposite to the substrate W to be processed; a magnet assembly which forms a magnetic field in front of the sputtering surface of the target; and a DC power supply which charges the target with a negative DC potential. A first coil is disposed in a central portion of a rear surface of the sputtering surface of the target. The first coil is electrically connected between the first power supply and the output to the target. When a negative potential is charged to the target by the sputtering power supply, the electric power is charged to the first coil, whereby a magnetic field is generated in front of the sputtering surface.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: February 19, 2013
    Assignee: Ulvac, Inc.
    Inventors: Naoki Morimoto, Tomoyasu Kondo, Hideto Nagashima, Daisuke Mori, Akifumi Sano
  • Patent number: 8357266
    Abstract: A method and system for conditioning a vapor deposition target is described. In one illustrative embodiment, a vapor deposition system is operated in which a vapor deposition target is used, the occurrence of electrical arcs in the vapor deposition system is detected, and the vapor deposition target is conditioned by adjusting an output current of a power supply that powers the vapor deposition system and adjusting an interval during which energy is delivered to each arc to deliver substantially the same energy to each arc. In some embodiments, the energy delivered to each arc is approximately equal to the maximum energy that the vapor deposition target can withstand without being damaged. The described method and system significantly reduces the time required to remove impurities from a target and does not require the venting of the vacuum chamber or the removal of the target from the chamber.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: January 22, 2013
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Milan Ilic, Robert B. Huff, George W. McDonough
  • Publication number: 20130008777
    Abstract: A rotating magnetron sputtering cathode apparatus comprising a radio frequency power supply, a power delivery assembly, a cylindrical rotating cathode, a shaft and a drive motor, wherein the power delivery assembly comprises a magnetic field source positioned within the cathode and an electrode extending within said cathode to transmit radio frequency energy to target material on the outer surface of the cathode. The electrode is electrically isolated from the shaft, and is formed from non-ferrous materials, and the shaft is mechanically connected to the cathode such that they remain electrically isolated while the cathode rotates about the magnetic field source and a portion of the electrode. The power supply is adapted to supply radio frequency energy at frequencies of 1 MHz or higher and is electrically connected to the electrode.
    Type: Application
    Filed: March 31, 2011
    Publication date: January 10, 2013
    Applicant: Mustang Vacuum Systems, Inc.
    Inventors: Robert Choquette, Richard Greenwell, Aaron Dickey, Lawrence Egle
  • Publication number: 20130008778
    Abstract: In a plasma enhanced physical vapor deposition of a material onto workpiece, a metal target faces the workpiece across a target-to-workpiece gap less than a diameter of the workpiece. A carrier gas is introduced into the chamber and gas pressure in the chamber is maintained above a threshold pressure at which mean free path is less than 5% of the gap. RF plasma source power from a VHF generator is applied to the target to generate a capacitively coupled plasma at the target, the VHF generator having a frequency exceeding 30 MHz. The plasma is extended across the gap to the workpiece by providing through the workpiece a first VHF ground return path at the frequency of the VHF generator.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 10, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventors: DANIEL J. HOFFMAN, KARL M. BROWN, YING RUI, JOHN PIPITONE
  • Patent number: 8349156
    Abstract: Disclosed invention uses a coaxial microwave antenna to enhance ionization in PVD or IPVD. The coaxial microwave antenna increases plasma density homogeneously adjacent to a sputtering cathode or target that is subjected to a power supply. The coaxial microwave source generates electromagnetic waves in a transverse electromagnetic (TEM) mode. The invention also uses a magnetron proximate the sputtering cathode or target to further enhance the sputtering. Furthermore, for high utilization of expensive target materials, a target can rotate to improve the utilization efficiency. The target comprises dielectric materials, metals, or semiconductors. The target also has a cross section being substantially symmetric about a central axis that the target rotates around. The target may have a substantially circular or annular a cross section.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: January 8, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Michael W. Stowell, Richard Newcomb
  • Publication number: 20130001076
    Abstract: A mounting table structure includes a mounting table body, made of a conductive material, for mounting thereon the processing target object and serving as an electrode; a base table, made of a conductive material, disposed below the mounting table body with a gap therebetween in a state insulated from the mounting table body; a support column, connected to the ground side, for supporting the base table; a high frequency power supply line, connected to the mounting table body, for supplying a high frequency bias power to the mounting table body; and a power stabilization capacitor provided between the ground side and a hot side to which the high frequency bias power is applied. Here, an electrostatic capacitance of the power stabilization capacitor is set to be larger than an electrostatic capacitance of a stray capacitance between the mounting table body and the protective cover member.
    Type: Application
    Filed: September 21, 2010
    Publication date: January 3, 2013
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Toshiaki Fujisato, Shiro Hayashi, Hiroyuki Yokohara
  • Publication number: 20120325404
    Abstract: An inductively-coupled-plasma (ICP) type plasma processing apparatus is provided. The plasma processing includes an antenna which is substantially straight in a plan view of the antenna. A plasma is generated for performing a plasma treatment to a substrate when a high frequency current is applied to the antenna to form an electric field in a vacuum container. The antenna includes two go-and-return conductors closely disposed to each other in an up-down direction, wherein the up-down direction is perpendicular to a surface of the substrate, and the high frequency current is applied to flow in opposite directions between the two go-and-return conductors. An interval is defined by a distance between the two go-and-return conductors in the up-down direction, varies in a longitudinal direction of the antenna.
    Type: Application
    Filed: April 17, 2012
    Publication date: December 27, 2012
    Applicant: NISSIN ELECTRIC CO., LTD.
    Inventors: TAKANORI TSUNODA, YOSHIO MATSUBARA, YASUNORI ANDO, MASAYUKI TSUJI
  • Publication number: 20120313504
    Abstract: A film-forming device includes: a shield part placed so as to surround the sides of the target; a rod-shaped magnetic field generation unit for generating a magnetic field, the magnetic field generation unit being placed toward the back surface of the target; and a drive unit for reciprocatingly driving the magnetic field generation unit in a linear manner along a drive direction, which is a direction perpendicular to the length direction of the magnetic field generation unit, in a horizontal plane, which is a plane perpendicular to the front/back direction of the target. When the magnetic field generation unit is located at the end of the range within which it is driven by the drive unit, the distance in the drive direction between the magnetic field generation unit and the projection when the shield part is projected perpendicularly to the horizontal plane is 10 mm or more.
    Type: Application
    Filed: March 14, 2012
    Publication date: December 13, 2012
    Applicant: Sharp Kabushiki Kaisha
    Inventors: Hiroshi SASAKI, Takanori Sonoda
  • Patent number: 8298385
    Abstract: A method and an apparatus are provided in which non-directional and directional metal (e.g. Ni) deposition steps are performed in the same process chamber. A first plasma is formed for removing material from a target; a secondary plasma for increasing ion density in the material is formed in the interior of an annular electrode (e.g. a Ni ring) connected to an RF generator. Material is deposited non-directionally on the substrate in the absence of the secondary plasma and electrical biasing of the substrate, and deposited directionally when the secondary plasma is present and the substrate is electrically biased. Nickel silicide formed from the deposited metal has a lower gate polysilicon sheet resistance and may have a lower density of pipe defects than NiSi formed from metal deposited in a solely directional process, and has a lower source/drain contact resistance than NiSi formed from metal deposited in a solely non-directional process.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Keith Kwong Hon Wong, Robert J. Purtell
  • Publication number: 20120267237
    Abstract: We have found that a pulsed DC supply is surprisingly beneficial in the use of sputter deposition for creating nanoparticles. The deposition rate is increased, and the particle size can be tuned so that it clusters around a specific value. A method of sputter deposition is therefore disclosed, comprising the steps of providing a magnetron, a sputter target, and an AC power supply or a pulsed DC power supply for the magnetron, sputtering particles from the sputter target into a chamber containing an inert gas, allowing the particles to coalesce into nanoparticles, and controlling the frequency of said AC power supply or said pulsed DC power supply to take one of a plurality of frequency values, each frequency value corresponding to a respective size distribution of said nanoparticles. The power supply frequency is preferably between 75 kHz and 150 kHz as this appears to yield optimal results. A corresponding apparatus for generating nanoparticles is also disclosed.
    Type: Application
    Filed: September 17, 2010
    Publication date: October 25, 2012
    Applicant: Mantis Deposition Limited
    Inventor: Alistair Kean
  • Patent number: 8277617
    Abstract: An apparatus and method for magnetron sputter coating of an interior surface of a hollow substrate defining at least one irregular contour. The apparatus may contain a vacuum chamber and a target containing one or more metals having an exterior surface defining at least one irregular contour. The exterior surface of the target may be configured to conform to at least a portion of an irregular contour of the interior surface of the hollow substrate to be coated. A magnet assembly may be supplied which may include a plurality of magnets where the magnets are positioned substantially within a metallic target alloy.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: October 2, 2012
    Assignee: Southwest Research Institute
    Inventors: Kuang-Tsan Kenneth Chiang, Ronghua Wei
  • Patent number: 8273222
    Abstract: The present disclosure relates to an apparatus and method for depositing coatings on the surface of a workpiece with sputtering material in an ion plasma environment. The apparatus may include a magnetron including a core cooling system surrounded by a magnet assembly and target material having a surface capable of providing a source of sputtering material. An RF plasma generation assembly is also provided in the apparatus including an RF antenna capable of providing an RF plasma and drawing ions to one or both of the workpiece surface and target material surface.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: September 25, 2012
    Assignee: Southwest Research Institute
    Inventors: Ronghua Wei, Sabrina L. Lee
  • Patent number: 8262869
    Abstract: Work piece processing is performed by pulsed discharges between an anode (2) and a magnetron sputtering cathode (1) in solid-gas plasmas using a chamber (2) containing the work piece (7). A system (12) maintains a vacuum in the chamber and another system (14) provides sputtering and reactive gases. The pulses are produced in a plasma pulser circuit including the anode and the cathode, the discharges creating gas and partially ionized solid plasma blobs (3) moving or spreading from a region at a surface of the cathode towards the work piece and the anode. A potential is applied to the work piece so that a pulsed current comprising biasing pulses arises between the second electrodes. In particular biasing discharges are produced between the anode and the work piece when said plasma blobs have spread to regions at the anode and at the work piece so that the pulsed current is the current of these biasing discharges.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: September 11, 2012
    Assignee: Chemfilt Ionsputtering Aktiebolag
    Inventor: Vladimir Kouznetsov
  • Publication number: 20120211354
    Abstract: Embodiments of the invention generally relate to a grounding kit for a semiconductor processing chamber, and a semiconductor processing chamber having a grounding kit. More specifically, embodiments described herein relate to a grounding kit which creates an asymmetric grounding path selected to significantly reduce the asymmetries caused by an off center RF power delivery.
    Type: Application
    Filed: February 3, 2012
    Publication date: August 23, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Muhammad M. Rasheed, Rongjun Wang, Thanh X. Nguyen, Alan A. Ritchie
  • Publication number: 20120211351
    Abstract: Silicon dots are formed at a relatively low temperature, while suppressing occurrence of defects and clustering of silicon dots and damages caused by plasma, with high controllability of particle diameter and high reproducibility between substrates. Moreover, silicon dots and insulating film are formed at a relatively low temperature, with high controllability of the particle diameter of the silicon dots, high controllability of the thickness of the insulating film and high reproducibility between substrates.
    Type: Application
    Filed: October 29, 2007
    Publication date: August 23, 2012
    Inventors: Atsushi Tomyo, Hirokazu Kaki, Eiji Takahashi
  • Publication number: 20120193225
    Abstract: When a film containing constituent elements of a target is formed on a substrate through a vapor deposition process using plasma with placing the substrate and the target to face each other, a potential in a spatial range of at least 10 mm extending laterally from the outer circumference of the substrate is controlled to be equal to a potential on the substrate, and/or the substrate is surrounded with a wall surface having a potential controlled to be equal to the potential on the substrate.
    Type: Application
    Filed: April 10, 2012
    Publication date: August 2, 2012
    Inventors: Takamichi FUJII, Takayuki Naono, Takami Arakawa
  • Patent number: 8182660
    Abstract: A power supply apparatus includes a power supply mechanism which supplies, from an external power supply, electric power to be supplied to an electrostatic chuck. The power supply mechanism includes a first conductive annular member fixed to the end portion of a strut, and capable of rotating together with the strut, a second conductive annular member fixed to a housing, and brought into surface contact with the first conductive annular member, and a first power supply member which supplies a supplied first voltage to an electrode of the electrostatic chuck via the second conductive annular member and the first conductive annular member.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: May 22, 2012
    Assignee: Canon Anelva Corporation
    Inventors: Yasushi Miura, Kazunari Sekiya
  • Publication number: 20120118732
    Abstract: A film formation apparatus includes: a chamber having a side wall and an inner space in which both a body to be processed and a target are disposed a first magnetic field generation section generating a magnetic field in the inner space a second magnetic field generation section disposed at a position close to the target, the second magnetic field generation section generating a magnetic field so as to allow perpendicular magnetic lines of force thereof to pass through a position adjacent to the target; and a third magnetic field generation section disposed at a position close to the body to be processed, the third magnetic field generation section generating a magnetic field so as to induce the magnetic lines of force to the side wall of the chamber.
    Type: Application
    Filed: July 15, 2010
    Publication date: May 17, 2012
    Applicant: ULVAC, INC.
    Inventors: Shuji Kodaira, Tomoyuki Yoshihama, Koukichi Kamada, Kazumasa Horita, Junichi Hamaguchi, Shigeo Nakanishi, Satoru Toyoda
  • Publication number: 20120111722
    Abstract: There is provided a film forming apparatus for forming a coating film on a surface of an object to be processed by using a sputtering method, the film forming apparatus including: a chamber for accommodating the object and a target serving as a base material for the coating film that are placed so as to face each other; an exhaust unit for reducing the pressure inside the chamber; a magnetic field generating unit for generating a magnetic field in front of the sputtering surface of the target; a direct current power supply for applying a negative direct current voltage to the target; a gas introducing unit for introducing a sputtering gas into the chamber; and a unit for preventing the entering of sputtered particles onto the object until the plasma generated between the target and the object reaches a stable state.
    Type: Application
    Filed: July 15, 2010
    Publication date: May 10, 2012
    Applicant: ULVAC, INC.
    Inventors: Shuji Kodaira, Tomoyuki Yoshihama, Koukichi Kamada, Kazumasa Horita, Junichi Hamaguchi, Shigeo Nakanishi, Satoru Toyoda
  • Publication number: 20120103801
    Abstract: A film formation apparatus includes: a chamber having an inner space in which both a body to be processed and a target are disposed so that the body to be processed and the target are opposed to each other, a first magnetic field generation section generating a magnetic field in the inner space to which the target is exposed; a second magnetic field generation section generating a perpendicular magnetic field so as to allow perpendicular magnetic lines of force thereof to pass between the target the body to be processed; and a third magnetic field generation section disposed at upstream side of the target as seen from the second magnetic field generation section.
    Type: Application
    Filed: July 15, 2010
    Publication date: May 3, 2012
    Applicant: ULVAC, INC.
    Inventors: Shuji Kodaira, Tomoyuki Yoshihama, Koukichi Kamada, Kazumasa Horita, Junichi Hamaguchi, Shigeo Nakanishi, Satoru Toyoda
  • Publication number: 20120097524
    Abstract: Embodiments of the disclosure may provide a matching network for physical vapor deposition. The matching network may include a first RF generator coupled to a deposition chamber target through a first impedance matching network having a first tuning circuit. The first RF generator may be configured to introduce a first AC signal to the deposition chamber target. The matching network may also include a second RF generator coupled to a deposition chamber pedestal through a second impedance matching network. The second RF generator may be configured to introduce a second AC signal to the deposition chamber pedestal. The first tuning circuit may be configured to modify an effect of the second AC signal on plasma formed between the deposition chamber target and the deposition chamber pedestal.
    Type: Application
    Filed: October 20, 2010
    Publication date: April 26, 2012
    Applicant: COMET TECHNOLOGIES USA, INC.
    Inventors: John A. Pipitone, Gerald E. Boston
  • Publication number: 20120097527
    Abstract: A film formation apparatus includes: a chamber in which both a body to be processed and a target are disposed; a first magnetic field generation section generating a magnetic field; and a second magnetic field generation section including a first generation portion to which a current defined as “Iu” is applied and a second generation portion to which a current defined as “Id” is applied, the first generation portion being disposed at a position close to the target, the second generation portion being disposed at a position close to the body to be processed, the second magnetic field generation section applying the currents to the first generation portion and the second generation portion so as to satisfy the relational expression Id<Iu, the second magnetic field generation section allowing perpendicular magnetic lines to pass between the target and the body to be processed.
    Type: Application
    Filed: July 15, 2010
    Publication date: April 26, 2012
    Applicant: ULVAC, INC.
    Inventors: Shuji Kodaira, Tomoyuki Yoshihama, Koukichi Kamada, Kazumasa Horita, Junichi Hamaguchi, Shigeo Nakanishi, Satoru Toyoda
  • Patent number: 8163140
    Abstract: The present invention provides a method for reactive sputtering in which a reactive sputtering apparatus including a sputtering vaporization source 2 provided with a metal target disposed in a vacuum chamber 1, a sputtering power source 4 to drive the sputtering vaporization source 2, and an introduction mechanism 5 to introduce an inert gas for sputtering and a reaction gas for forming a compound with sputtered metal into the vacuum chamber 1 is used, and reactive sputtering film formation is performed on a substrate 3 disposed in the above-described vacuum chamber, wherein the method includes the steps of performing constant-voltage control to control the voltage of the above-described sputtering power source 4 at a target voltage Vs and, in addition, performing target voltage control at a control speed lower than the speed of the above-described constant-voltage control, the target voltage control operating the above-described target voltage Vs in order that the spectrum of plasma emission generated forwar
    Type: Grant
    Filed: May 26, 2003
    Date of Patent: April 24, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Yoshimitsu Ikari, Hiroshi Tamagaki, Toshimitsu Kohara
  • Patent number: 8137511
    Abstract: A film forming apparatus and a film forming method includes: a vacuum chamber; a holder for a film formation object, the holder being rotatably provided in the vacuum chamber; and a sputter source capable of holding a plurality of targets, the sputter source being spinnably provided so that the opposed area of the target with respect to the film formation object can be varied. They can perform uniform and efficient film formation in accordance with the size of a film formation object using a simple configuration, with less possibility of contamination and easy maintenance.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: March 20, 2012
    Assignee: Shibaura Mechatronics Corporation
    Inventor: Yoshio Kawamata
  • Patent number: 8133359
    Abstract: An apparatus and methods for plasma-based sputtering deposition using a direct current power supply is disclosed. In one embodiment, a plasma is generated by connecting a plurality of electrodes to a supply of current, and a polarity of voltage applied to each of a plurality of electrodes in the processing chamber is periodically reversed so that at least one of the electrodes sputters material on to the substrate. And an amount of power that is applied to at least one of the plurality of electrodes is modulated so as to deposit the material on the stationary substrate with a desired characteristic. In some embodiments, the substrate is statically disposed in the chamber during processing. And many embodiments utilize feedback indicative of the state of the deposition to modulate the amount of power applied to one or more electrodes.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: March 13, 2012
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Ken Nauman, Hendrik V. Walde, David J. Christie, Bruce Fries
  • Patent number: 8133362
    Abstract: A physical vapor deposition apparatus includes a vacuum chamber having side walls, a cathode inside the vacuum chamber, wherein the cathode is configured to include a sputtering target, a radio frequency power supply configured to apply power to the cathode, an anode inside and electrically connected to the side walls of the vacuum chamber, a chuck inside and electrically isolated from the side walls of the vacuum chamber, the chuck configured to support a substrate, a clamp configured to hold the substrate to the chuck, wherein the clamp is electrically conductive, and a plurality of conductive electrodes attached to the clamp, each electrode configured to compress when contacted by the substrate.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: March 13, 2012
    Assignee: FUJIFILM Corporation
    Inventors: Jeffrey Birkmeyer, Youming Li, Steve Deming, Mats G. Ottosson
  • Patent number: 8105466
    Abstract: A biased pulse DC reactor for sputtering of oxide films is presented. The biased pulse DC reactor couples pulsed DC at a particular frequency to the target through a filter which filters out the effects of a bias power applied to the substrate, protecting the pulsed DC power supply. Films deposited utilizing the reactor have controllable material properties such as the index of refraction. Optical components such as waveguide amplifiers and multiplexers can be fabricated using processes performed on a reactor according to the present invention.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: January 31, 2012
    Assignee: SpringWorks, LLC
    Inventors: Hongmei Zhang, Mukundan Narasimhan, Ravi B. Mullapudi, Richard E. Demaray
  • Publication number: 20120018096
    Abstract: The invention relates to a plasma chamber (10, 20, 30) having a first receiving device for a substrate (14, 24, 34) fastened to a first side and having a plasma generation unit for generating a plasma in the plasma chamber, wherein the plasma generation unit is connected or can be connected to a high frequency voltage supply (11, 21, 31). The high frequency voltage supply is designed to generate a modulated, high-frequency alternating voltage and to output said voltage to the plasma generation unit. The plasma generation unit is designed to generate the plasma using the modulated, high-frequency alternating voltage.
    Type: Application
    Filed: March 31, 2010
    Publication date: January 26, 2012
    Inventor: Roland Gesche
  • Publication number: 20120012455
    Abstract: Apparatuses for deposition of one or more layers. In one aspect, an apparatus for deposition of one or more layers includes an anode; a cathode; a vacuum chamber including the anode and the cathode; a sensor configured to detect an electric potential between a section of the at least one anode and a section of the chamber. Furthermore, methods to monitor a device for deposition of one or more layers are also described.
    Type: Application
    Filed: August 27, 2010
    Publication date: January 19, 2012
    Inventors: Guido Mahnke, Bernhard Stock, Markus Hanika, Ferdinand Füller
  • Publication number: 20120000767
    Abstract: Methods of arc prevention during sputtering of a thin film from a semiconducting target onto a substrate are provided. An alternating current (e.g., having a frequency of about 500 kHz to 15 MHz) can be applied from an electrical power supply to the semiconducting target to form a plasma between the substrate and the semiconducting target. This alternating current can be temporarily interrupted for a time sufficient to sustain the plasma between the substrate and the semiconducting target to inhibit arc formation during sputtering. Sputtering systems are also generally provided for arc prevention during sputtering of a thin film from a semiconducting target onto a substrate.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Applicant: PRIMESTAR SOLAR, INC.
    Inventor: Sean Timothy Halloran
  • Publication number: 20120000774
    Abstract: A plasma processing apparatus includes a processing chamber to be depressurized and exhausted, a sample placement electrode provided in the processing chamber and having a sample placement surface on which a substrate to be processed is placed, an electromagnetic generation device to generate plasma in the processing chamber, a supply system that supplies processing gas to the processing chamber, a vacuum exhaust system that exhausts inside the processing chamber, a heater layer and a base temperature monitor that are disposed on the sample placement electrode, a wafer temperature estimating unit that estimates a wafer temperature from the base temperature monitor and plasma forming power supply, and a controller that regulates the heater corresponding to output from the temperature estimating unit.
    Type: Application
    Filed: September 12, 2011
    Publication date: January 5, 2012
    Inventors: Ken YOSHIOKA, Yutaka OMOTO, Mamoru YAKUSHIJI, Tsunehiko TSUBONE, Kazunori NAKAMOTO
  • Publication number: 20120000765
    Abstract: Methods and systems of arc suppression during RF sputtering of a thin film from a semiconducting target onto a substrate are provided. During sputtering, an alternating current of RF frequency can be applied to a semiconducting target to form a plasma. Upon formation of an arc extending from the target, an arc signature can be detected, where the arc signature is simultaneously defined by decreasing plasma voltage from an initial sputtering plasma voltage to an arc plasma voltage and increasing reflective power from an initial sputtering reflective power to an arc reflective power. Upon identification of the arc signature, the alternating current can be temporarily interrupted to the semiconducting target to suppress the arc extending from the target. Thereafter, the alternating current from the electrical power supply can be reapplied to the semiconducting target.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Applicant: PRIMESTAR SOLAR, INC.
    Inventor: Sean Timothy Halloran
  • Publication number: 20120000772
    Abstract: One or more embodiments of the invention are directed to deposition apparatuses comprising a grounded top wall, a processing chamber and a plasma source assembly having a conductive hollow cylinder and substantially continuous grounded shield substantially conforming to the shape of the hollow cylinder.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 5, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Alan Ritchie, Michael S. Cox
  • Patent number: 8088263
    Abstract: The present invention is a device for controlling sputter coating deposition to at least one surface of at least one substrate. The device includes a magnetic structure having a plurality of electrically isolated and magnetically coupled magnetic pole piece structures. A plurality of magnetic concentric rings is mounted behind at least one target surface. A central upright common magnetic core connects the plurality of magnetic pole piece structures. A plurality of upright pole pieces arranged parallel to each other is attached to each of the magnetic pole piece structures and arranged at midpoints of the plurality of magnetic concentric rings. The magnetic structure includes a plurality of electromagnetic coils wound over the plurality of magnetic pole piece structures arranged to form sets of coils. The sets of coils can be energized in forward or reverse mode thereby impacting the target at a greater angle resulting in higher angle particle ejection.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: January 3, 2012
    Inventor: Robert M. Smith
  • Patent number: 8083911
    Abstract: This invention relates to an apparatus (1) for treating, e.g. coating, a substrate (35, 39) in a vacuum chamber (2). In this vacuum chamber (2) there are arranged n cathodes (7-10) and n+1 anodes (28-32), each of said anodes adjacent to a cathode (7-10). Each of the n cathodes (7-10) and n of the assigned anodes (29-32) are connected to a power supply (11-14). One of the anodes (28) not being assigned to a cathode (7-10) is connected to an electrical line (63) which is connecting each of the anodes (28-32). A pull-down resistor (34) is connected to said line (63) at its one end and to ground (33) at its other end.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: December 27, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Markus Hanika, Tobias Stolley
  • Publication number: 20110303960
    Abstract: Embodiments described herein provide a semiconductor device and methods and apparatuses of forming the same. The semiconductor device includes a substrate having a source and drain region and a gate electrode stack on the substrate between the source and drain regions. The gate electrode stack includes a conductive film layer on a gate dielectric layer, a refractory metal nitride film layer on the conductive film layer, a silicon-containing film layer on the refractory metal nitride film layer, and a tungsten film layer on the silicon-containing film layer. In one embodiment, the method includes positioning a substrate within a processing chamber, wherein the substrate includes a source and drain region, a gate dielectric layer between the source and drain regions, and a conductive film layer on the gate dielectric layer.
    Type: Application
    Filed: June 9, 2011
    Publication date: December 15, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: YONG CAO, Xianmin Tang, Srinivas Gandikota, Wei D. Wang, Zhendong Liu, Kevin Moraes, Muhammad M. Rasheed, Thanh X. Nguyen, Ananthkrishna Jupudi
  • Publication number: 20110303534
    Abstract: There is provided an AC power supply for a sputtering apparatus in which the AC power supply can prevent the induction of an arc discharge by suppressing an overvoltage to be generated when the polarity of each electrode is reversed. A bridge circuit made up of a plurality of switching transistors SW1-SW4 is disposed between positive and negative DC current output lines from a DC electric power supply source. An inductor DCL which makes a DC output to have a constant-current characteristic is disposed in at least one of the positive and the negative DC output lines from the DC electric power supply source to the bridge circuit, and a snubber circuit is disposed in parallel with inputs of the bridge circuit.
    Type: Application
    Filed: February 15, 2010
    Publication date: December 15, 2011
    Inventor: Yoshio Yanagiya
  • Patent number: 8070925
    Abstract: In a PVD reactor having a sputter target at the ceiling, a conductive housing enclosing the rotating magnet assembly has a central port for the rotating magnet axle. A conductive hollow cylinder of the housing surrounds an external portion of the spindle. RF power is coupled to a radial RF connection rod extending radially from the hollow cylinder. DC power is coupled to another radial DC connection rod extending radially from the hollow cylinder.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: December 6, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Daniel J. Hoffman, Ying Rui, Karl M. Brown, John Pipitone, Lara Hawrylchak
  • Publication number: 20110290638
    Abstract: The present invention provides a sputter device and a method of manufacturing a magnetic storage medium capable of forming a buried layer with higher production efficiency in manufacturing a magnetic recording medium. In an embodiment of the present invention, cathodes in opposition to each other with a substrate (201) sandwiched in between are arranged and the phase of high-frequency power to be applied to each cathode is made the same. At this time, it is preferable to reduce the distance between each cathode and the substrate (201). Further, it is also preferable to perform deposition of a buried layer while attracting positive ions in plasma to the substrate (201) by an attracting electric field.
    Type: Application
    Filed: June 24, 2011
    Publication date: December 1, 2011
    Applicant: CANON ANELVA CORPORATION
    Inventors: Hiroshi Torii, Ge Xu