Specified Mask, Shield Or Shutter Patents (Class 204/298.11)
  • Patent number: 7520969
    Abstract: A process kit for a semiconductor processing chamber is provided. In one embodiment, a process kit includes a notched deposition ring. In another embodiment, a process kit includes a cover ring configured to engage the notched deposition ring. In another embodiment, a process kit includes an annular deposition ring body having inner, outer, upper and bottom walls. A trough is recessed into an upper surface of the body between the upper and inner walls. A recessed surface is formed on a lower surface of the body between the bottom and inner walls. A notch extends inward from the body to catch deposition material passing through a notch of the substrate being processed.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: April 21, 2009
    Assignee: Applied Materials, Inc.
    Inventor: Keith A. Miller
  • Patent number: 7517438
    Abstract: This invention presents a magnetic recording disk where an anisotropy-allowing layer to allow magnetic anisotropy to a magnetic recording layer is provided between a substrate and the magnetic recording layer. This invention also presents a magnetic-recording-disk manufacturing method comprising a step to prepare an anisotropy-allowing layer to allow magnetic anisotropy to a magnetic recording layer, prior to a step to prepare the magnetic recording layer. This invention also presents a magnetic-recording-disk manufacturing system comprising an anisotropy-allowing-layer preparation chamber, in which an anisotropy-allowing layer to allow magnetic anisotropy to a magnetic recording layer is prepared on a substrate, prior to preparation of the magnetic recording layer. In this invention, the anisotropy-allowing layer is made of; nitride of niobium, tantalum, niobium alloy or tantalum alloy, or nitride-including niobium, tantalum, niobium alloy or tantalum alloy.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: April 14, 2009
    Assignee: Canon Anelva Corporation
    Inventors: Masahiro Shibamoto, Sinji Furukawa, Tetsuya Endoh, Miho Sakai, Naoki Watanabe
  • Patent number: 7517437
    Abstract: A method and apparatus for sputter depositing a film on a substrate is disclosed. By providing a superimposed RF bias over a DC bias, plasma ionization is increased. In order to increase the resistive load across the substrate, an impedance circuit is provided between the substrate and the susceptor. The impedance circuit allows an insulating substrate to effectively function as an anode and connect to ground.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: April 14, 2009
    Assignee: Applied Materials, Inc.
    Inventor: Bassam Shamoun
  • Publication number: 20090090617
    Abstract: An enhanced sputtered film processing system and associated method comprises one or more sputter deposition sources each having a sputtering target surface and one or more side shields extending therefrom, to increase the relative collimation of the sputter deposited material, such as about the periphery of the sputtering target surface, toward workpiece substrates. One or more substrates are provided, wherein the substrates have a front surface and an opposing back surface, and may have one or more previously applied layers, such as an adhesion or release layer. The substrates and the deposition targets are controllably moved with respect to each other. The relatively collimated portion of the material sputtered from the sputtering target surface travels beyond the side shields and is deposited on the front surface of the substrates.
    Type: Application
    Filed: July 14, 2006
    Publication date: April 9, 2009
    Inventors: Pierre H. Giauque, Fu Chiung Chong, Frank Swiatowiec, Donald Smith
  • Patent number: 7498587
    Abstract: An apparatus for generating plasma includes a cathode having an evaporable surface configured to emit a material comprising plasma and macroparticles; oppositely directed output apertures configured to direct the plasma; a filter configured to transmit at least some of the plasma to the output apertures while preventing transmission of at least some of the macroparticles, the filter comprising at least one deflection electrode disposed generally parallel to and facing at least a portion of the evaporable surface; a first element for generating a first magnetic field component having a first polarity between the cathode and the at least one deflection electrode; and a second element for generating a second magnetic field component having a second polarity at the evaporable surface of the cathode that is opposite that of the first polarity such that a low-field region is created between the evaporable surface and the at least one deflection electrode.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: March 3, 2009
    Assignee: Vapor Technologies, Inc.
    Inventor: Richard P. Welty
  • Patent number: 7489494
    Abstract: An apparatus which allows tightly coupling of the device wafer to the electrostatic chuck of the process chamber after the process chamber is conditioned. The apparatus includes (a) a process chamber; (b) a chuck in the process chamber; (c) a guard wafer placed on and in direct physical contact with the chuck; and (d) a particle restraining layer on essentially all surfaces that are exposed to the ambient inside the process chamber. The particle restraining layer has a thickness in a first direction of at least 500 nm. The first direction is essentially perpendicular to an interfacing surface between the particle restraining layer and the chuck. The guard wafer comprises a material selected from the group consisting of a metal and a semiconductor oxide.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: February 10, 2009
    Assignee: International Business Machines Corporation
    Inventors: Scott M. Hargash, Pavel Smetana
  • Publication number: 20090020416
    Abstract: A sputter coating device comprises a vacuum coating chamber, substrates arranged within the coating chamber, a cylindrical hollow cathode including a rotatable target rotating around a central axis A, and a magnet assembly which is arranged within the hollow cathode such that confining plasma zones are generated in an area above the surface of the target. At least one substrate is to be coated. The substrate has an OLED layer deposited on the substrate surface. An intermediate area is arranged between the surface of the target and a shield that shields particles sputtered from the surface of the target that move in a direction toward the shield. On each side of the shield, passages are provided between the intermediate area and coating area. Through the passage, only sputtered particles that have been scattered in the intermediate area may enter the coating area via the passage, and impinge the OLED layer.
    Type: Application
    Filed: June 25, 2008
    Publication date: January 22, 2009
    Applicant: Applied Materials, Inc.
    Inventors: James Scholhammer, Uwe Hoffmann, Jose Manuel Dieguez-Campo
  • Publication number: 20080314743
    Abstract: Provided is a shadow mask including a substrate; a mask that is formed to have an opening for transferring a thin film onto the substrate in a desired shape; and a delamination-preventing polymer layer formed on the mask.
    Type: Application
    Filed: April 16, 2008
    Publication date: December 25, 2008
    Inventors: Young Woo LEE, Gee Lyong KIM, Hang Kyu CHO, Jeong Min CHO
  • Patent number: 7462854
    Abstract: A collimator that formed from a plurality of metal layers that are shaped by use of lithographic techniques in specific shapes. The formed metal layers are stacked and aligned together and then connected together to form the collimator.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: December 9, 2008
    Assignee: JMP Laboratories, Inc.
    Inventor: James M. Pinchot
  • Publication number: 20080289957
    Abstract: A vacuum film forming apparatus is provided that is intended to use a portion of its cylindrical member as a target and moreover have an additional function of plasma polymerization using the cylindrical member. A vacuum film forming apparatus (100) is provided with an electrically conductive vacuum chamber (13) having an interior space, a frame member (15) having a plurality of curved members (31, 32) each curved in a sector shape and arranged in the interior space (10) so as to form a substantially cylindrical shape, and a magnetic field forming device (33) disposed in an interior surrounded by the frame member (15) and configured to form a magnetic field along the circumference of the frame member (15). At least one of the curved members (15, 16) is a target used for sputtering, and a region of the frame member (15) other than the target is used for plasma polymerization.
    Type: Application
    Filed: September 5, 2005
    Publication date: November 27, 2008
    Inventors: Shirou Takigawa, Keiji Katou, Nobuo Yoneyama
  • Patent number: 7445697
    Abstract: A method and apparatus for retaining a workpiece against a workpiece holder are described. A flexible member can be used to provide a substantially uniform force to securely retain the workpiece, which can allow the workpiece to be consistently positioned in a process module. In one detailed embodiment, a barrier to fluid entry is formed between the workpiece and a ring for retaining the workpiece against a workpiece holder. This provides a reliable seal during fluid processing to prevent fluid from reaching the underside of a workpiece. In various embodiments, the workpiece holder can be used to align a workpiece in a process module or to hold one or more workpieces in a configuration that allows for higher throughput.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: November 4, 2008
    Assignee: NEXX Systems, Inc.
    Inventors: Arthur Keigler, John Harrell, Zhenqiu Liu, Qunwei Wu
  • Publication number: 20080197015
    Abstract: A sputtering source has a magnetron and a target. Control magnets are provided about the target to modify the magnetic lines of the magnetron. A sputtering source has several magnetrons, each having a respective target. A plasma/sputtering shield is provided in front of the targets. The shield has several windows, each aligned with one of the targets. Magnets are provided on the shield to control the magnetic lines of the magnetrons.
    Type: Application
    Filed: December 17, 2007
    Publication date: August 21, 2008
    Inventors: TERRY BLUCK, Patrick R. Ward
  • Patent number: 7407565
    Abstract: A system for performing PVD of metallic nitride(s) is disclosed. The improved performance is provided by a method of increasing the partial pressures of nitrogen or other active gases near the wafer surface through initial introduction of the argon or other neutral gases alone into an ionized metal plasma PVD chamber through an upper gas inlet at or near the target, initiating the plasma in the presence of argon or other neutral gases alone, after which nitrogen or other active gases are introduced into the chamber through a lower gas inlet at or near the wafer surface to increase deposition rates and lower electrical resistivity of the deposited metallic layer. An apparatus for carrying out the invention includes a source of argon near the target surface and a source of nitrogen integral to the substrate support thereby delivering nitrogen near the substrate surface.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: August 5, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Wei Wang, James Van Gogh
  • Patent number: 7404879
    Abstract: Provided is an ionized physical vapor deposition (IPVD) apparatus having a helical self-resonant coil. The IPVD apparatus comprises a process chamber having a substrate holder that supports a substrate to be processed, a deposition material source that supplies a material to be deposited on the substrate into the process chamber, facing the substrate holder, a gas injection unit to inject a process gas into the process chamber, a bias power source that applies a bias potential to the substrate holder, a helical self-resonant coil that produces plasma for ionization of the deposition material in the process chamber, one end of the helical self-resonant coil being grounded and the other end being electrically open, and an RF generator to supply an RF power to the helical self-resonant coil. The use of a helical self-resonant coil enables the IPVD apparatus to ignite and operate at very low chamber pressure such as approximately 0.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: July 29, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yuri Nikolaevich Tolmachev, Dong-joon Ma, Sergiy Yakovlevich Navala, Dae-il Kim
  • Publication number: 20080118779
    Abstract: A thin-film forming method and a thin-film forming apparatus can suppress the oxidization of a magnetic layer composed of a non-oxide material when a film of oxide is formed on the magnetic layer by sputtering that is suited to mass production. A multilayer film with a low RA value can be produced by such method and apparatus. A thin-film forming method that forms a thin film of oxide on the surface of a substrate by dispersing the oxide inside a chamber includes an enclosing step of enclosing the substrate in the chamber and an adsorbing step of adsorbing excess oxygen present inside the chamber by providing an adsorption unit, which adsorbs oxygen, inside the chamber.
    Type: Application
    Filed: August 28, 2007
    Publication date: May 22, 2008
    Applicant: Fujitsu Limited
    Inventor: Kenji Noma
  • Patent number: 7374648
    Abstract: The invention includes a coil support assembly having an insulator interfacing a surface of a shield disposed within a processing chamber. The insulator has an extension which extends through the shield. A second insulator is disposed between the shield and a coil and contacts a protrusion extending from the coil. A fastener is disposed through the first insulator and extends through the second insulator and into the protrusion. The fastener is electrically isolated from the shield by the first insulator. The invention includes coil assemblies containing the described coil support configuration. The invention further includes a method of supporting a coil within a processing chamber having a shield disposed therein. Insulators are inserted to extend from an outer side of the shield through a thickness of the shield. A coil is mounted within the chamber by inserting fasteners through each insulator into bosses which-protrude outwardly from the coil body.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: May 20, 2008
    Assignee: Honeywell International Inc.
    Inventors: Len Hom, John D. Mize, Robert M. Prater, David K. Chan, Gilbert Amador, Peter J. Kang
  • Patent number: 7372689
    Abstract: An apparatus (and method for operating the same) which allows tightly coupling the device wafer to the electrostatic chuck of the process chamber after the process chamber is conditioned. The method comprises (a) providing (i) a process chamber and (ii) an electrostatic chuck in the process chamber; (b) placing a guard wafer on the electrostatic chuck via a top surface of the electrostatic chuck; and (c) forming a particle restraining layer on essentially all surfaces that are exposed to the ambient inside the process chamber, wherein the particle restraining layer has a thickness in a first direction of at least 500 ?, wherein the first direction is essentially perpendicular to an interfacing surface between the particle restraining layer and an inner surface of the process chamber, and wherein the guard wafer comprises a material selected from the group consisting of a metal and a semiconductor oxide.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: May 13, 2008
    Assignee: International Business Machines Corporation
    Inventors: Scott M. Hargash, Pavel Smetana
  • Patent number: 7338581
    Abstract: A sputtering apparatus includes paired targets 31 disposed in a vacuum chamber 30, substrate holder 33 disposed at a position nearly perpendicular to the paired target 31 and apart from a space formed by the paired targets 31, a plasma source 37 for generating reaction plasma by after-glow plasma in the vicinity of the substrate holder 33, and a lead-in pipe 38 which connects the plasma source 37 to the vacuum chamber 30. Since reaction plasma of after-glow plasma can be produced in the vicinity of the substrate holder 33, it is possible to form a thin film of compound close to bulk characteristics at a low substrate temperature without the film being damaged by plasma.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: March 4, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Toshinari Noda
  • Publication number: 20080011602
    Abstract: A shield for controlling film thickness is arranged between a substrate and a target. The shield includes an aperture being narrow at a target side and wide at a side opposite to the target. Since the density of sputtered particles decreases away from the target, a portion of the substrate that is far from the target is exposed to low-density sputtered particles for a long time, and a portion of the substrate that is near the target is exposed to high-density sputtered particles for a short time, whereby a film of even thickness distribution is formed on a deposition face of the substrate.
    Type: Application
    Filed: July 11, 2007
    Publication date: January 17, 2008
    Inventors: Hidenobu Ota, Toshihiro Terasawa, Saburo Shimizu, Naruyasu Sasaki, Koichi Hanzawa, Takafumi Matsumoto
  • Publication number: 20070295602
    Abstract: The invention generally provides a ground shield for use in a physical vapor deposition (PVD) chamber. In one embodiment, a ground shield includes a generally cylindrical body comprising an outer wall, an inner upper wall, an inner lower wall having a diameter less than a diameter of the inner upper wall and a reentrant feature coupling the upper and inner lower walls. The reentrant feature advantageously prevents arching between the shield and target, which promotes greater process uniformity and repeatability along with longer chamber component service life.
    Type: Application
    Filed: June 27, 2006
    Publication date: December 27, 2007
    Inventors: Jennifer W. Tiller, Anantha Subramani, Michael S. Cox, Keith A. Miller
  • Patent number: 7309842
    Abstract: A monolithic microplasma source includes a dielectric substrate having an outer surface that is exposed to a time varying electric field. A gap layer is positioned on an inner surface of the dielectric substrate. A shield including a slit is positioned on the gap layer. A relief structure is formed in at least one of the gap layer and the dielectric substrate. The dimensions of the gap layer, the slit in the shield, and the relief structure are chosen so as to prevent a formation of a continuous film across the relief structure. A chamber containing a gas is positioned adjacent to the shield so that the gas is ionized to form a microplasma when an electric field is induced in the chamber by the incident time varying electric field.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: December 18, 2007
    Assignee: Verionix Incorporated
    Inventor: Frank C. Doughty
  • Patent number: 7306707
    Abstract: The present invention presents an adaptable processing element for use in a processing system having multiple configurations. The processing element comprises a primary component and at least one detachable component, wherein the at least one detachable component can be retained for one configuration and removed for another configuration. For example, the detachable component may include a punch-out or knock-out located on a right-hand side and a left-hand side of a processing element in order to permit access of a gas supply line to a processing chamber for either a right-hand orientation or a left-hand orientation, respectively. Additionally, for example, the detachable component, whether retained or removed, can permit flexible use with different size processing chambers.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: December 11, 2007
    Assignee: Tokyo Electron Limited
    Inventors: John Lawson, Rodger Eckerson, Michael Landis
  • Patent number: 7294245
    Abstract: A magnetic dipole ring assembly positioned inside a vacuum chamber and around a wafer being sputter deposited with a ferromagnetic material such as NiFe or other magnetic materials so that the material is deposited with a predetermined magnetization direction in the plane of the wafer. The magnetic dipole ring may include 8 or more arc-shaped magnet segments arranged in a circle with the respective magnetization directions precessing by 720° around the ring. The dipole ring is preferably encapsulated in a vacuum-tight stainless steel carrier and placed inside the vacuum chamber. The carrier may be detachably mounted on a cover ring, on the shield, or on the interior of the chamber sidewall. In another embodiment, the magnet is a magnetic disk placed under the wafer. Such auxiliary magnets allow the magnetron sputter deposition of aligned magnetic layers.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: November 13, 2007
    Assignee: Applied Materials, Inc.
    Inventor: Jianming Fu
  • Patent number: 7294242
    Abstract: An apparatus and method for sputter depositing a magnetic film on a substrate to produce a magnetic device such as magnetic recording heads for reading digital information from a storage medium. The apparatus of the invention includes a sputtering chamber containing a target and a substrate, and a magnet array disposed within the chamber to form a substantially parallel magnetic field at a surface of the substrate. The sputtering chamber reduces interference between the magnetron and the magnet array by providing a long throw distance and/or a grounded collimator. The magnet array is preferably a circular ring.
    Type: Grant
    Filed: August 24, 1998
    Date of Patent: November 13, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Imran Hashim, Seh-Kwang Lee, Thomas Brezoczky, Sesh Ramaswami
  • Patent number: 7285196
    Abstract: In recent years, copper wiring has emerged as a promising substitute for the aluminum wiring in integrated circuits, because copper offers lower electrical resistance and better reliability at smaller dimensions than aluminum. However, use of copper typically requires forming a diffusion barrier to prevent contamination of other parts of an integrated circuit and forming a seed layer to facilitate copper plating steps. Unfortunately, conventional methods of forming the diffusion barriers and seed layers require use of separate wafer-processing chambers, giving rise to transport delays and the introduction of defect-causing particles. Accordingly, the inventors devised unique wafer-processing chambers and methods of forming barrier and seed layers.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: October 23, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7244344
    Abstract: A physical vapor deposition plasma reactor includes a vacuum chamber including a sidewall, a ceiling and a wafer support pedestal near a floor of the chamber, and a vacuum pump coupled to the chamber, a process gas inlet coupled to the chamber and a process gas source coupled to the process gas inlet, a metal sputter target at the ceiling, a high voltage D.C. source coupled to the sputter target, an RF plasma source power generator coupled to the wafer support pedestal and having a frequency in a range between about 60 MHz and 81 MHz, and an RF plasma bias power generator coupled to the wafer support pedestal and having a frequency suitable for coupling energy to plasma ions.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: July 17, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Karl M. Brown, John Pipitone, Vineet Mehta, Ralf Hofmann, Wei W. Wang, Semyon Sherstinsky
  • Patent number: 7241397
    Abstract: An optical window deposition shield including a backing plate having a through hole, and a honeycomb structure having a plurality of adjacent cells configured to allow optical viewing through the honeycomb structure. Each cell of the honeycomb structure has an aspect ratio of length to diameter sufficient to impede a processing plasma from traveling through the full length of the cell. A coupling device configured to couple the honeycomb core structure to the backing plate such that the honeycomb structure is aligned with at least a portion of the through hole in the backing plate. The optical window deposition shield shields the optical viewing window of a plasma processing apparatus from contact with the plasma.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: July 10, 2007
    Assignee: Tokyo Electron Limited
    Inventors: Steven T. Fink, Andrej S. Mitrovic, Paula A. Calabrese
  • Patent number: 7229532
    Abstract: A sputtering apparatus for forming a film by a physical gas-phase growth on a substrate having a irregular or flat shape is provided including three or more axes for independently varying a relative positional relationship between a substrate and a cathode in the course of film formation.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: June 12, 2007
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kenji Ando, Hidehiro Kanazawa
  • Patent number: 7223448
    Abstract: A method for providing uniformity in plasma-assisted material processes. A shielding plate is implemented within a plasma chamber above a substrate. The dimensions, geometry, and location of the shielding plate are optimized to generate a desired ion flux in a plasma-assisted material process conducted in a plasma chamber.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: May 29, 2007
    Assignee: Intel Corporation
    Inventors: Han-Ming Wu, He Long
  • Patent number: 7182816
    Abstract: Particle flaking is reduced in a semiconductor wafer processing apparatus by installing a chamber shield assembly in the chamber of the apparatus. The shield assembly includes a plurality of nested shields that are supported out of contact with each other and suspended such that, during thermal expansion and contraction, gaps are maintained that are sufficient to avoid arcing. Alignment structure on the shields and on the chamber walls force the shields to align concentrically and maintain the gaps. The shields are made of aluminum or another thermally conductive material and have cross-sectional areas large enough to provide high thermal conductivity throughout the shields. Mounting flanges and other mounting surfaces are provided on the shields that form intimate thermal contact with sufficient contacting area to insure high thermal conductivity from the shields to the temperature controlled walls of the chamber.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: February 27, 2007
    Assignee: Tokyo Electron Limited
    Inventors: Mark Kleshock, Jacques Faguet, Tim Provencher
  • Patent number: 7179335
    Abstract: A variable adaptive mask is provided that can be dynamically modified in situ in a physical vapor deposition process. The mask comprises a fixed mask portion, a plurality of channels extending through the fixed mask portion, a control mechanism for controlling throughput of a vaporized target material through the channels, and a mechanism to mount the mask in a fixed position relative to a solid target material and a substrate. In one embodiment, a magnetic control mechanism is provided to control throughput of the vaporized target material through the channels. In another embodiment, a thermal control mechanism is provided to control throughput of a vaporized target material through the channels. Methods of controlling a physical vapor deposition process using the adaptive mask are also disclosed.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: February 20, 2007
    Assignee: Finisar Corporation
    Inventors: William Freeman, Yin Zhang, Lillian Qin
  • Patent number: 7163607
    Abstract: Apparatus for supporting a substrate such as a semiconductor wafer in a process chamber to improve power coupling through the substrate. The apparatus contains a pedestal assembly and a pedestal cover positioned over the top surface of and circumscribing the pedestal assembly for electrically isolating the pedestal assembly. The pedestal cover reduces conductive film growth in the wafer process region. As such, RF wafer biasing power from the pedestal assembly remains coupled through the substrate during processing.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: January 16, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Bradley O. Stimson, Mitsuhiro Kaburaki, John C. Forster, Eric Delaurentis, Praburam Gopalraja, Patricia Rodriguez, Anantha Subramani
  • Patent number: 7150859
    Abstract: A device for fabricating a high-density microarray for cDNA or protein having an arbitrary pattern comprises an electrospray part for electrostatically spraying solutions containing a plurality of kinds of biologically active samples one by one, a support part supporting sample chips on which samples in the solutions sprayed from the electrospray part are deposited, a mask part disposed between the electrospray part and the support part and having holes the number of which is the same as that of the sample chips so as to selectively deposit the samples simultaneously in the adequate positions corresponding to the sample chips, a moving part for fabricating microarrays at a time by relatively moving the sample chip support part and the mask part and depositing the samples on the sample chips. Therefore the device can fabricate a large number of inexpensive high-density microarrays.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: December 19, 2006
    Assignees: Riken, Fuence Co., Ltd.
    Inventors: Yutaka Yamagata, Kozo Inoue
  • Patent number: 7115193
    Abstract: Provided is a sputtering target, backing plate or apparatus inside a sputtering device in which an electrical discharge machining mark is formed on the face to which unwanted films during sputtering are deposited, and the electrical discharge machining mark is formed from numerous inclined protrusions having a depression angle of less than 90°. When necessary, chemical etching is further performed to the portions subject to such electrical discharge machining. Thereby, the separation and flying of deposits arising from the face to which unwanted films of the target, backing plate and apparatus inside the sputtering device are deposited can be prevented.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: October 3, 2006
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventor: Hideyuki Takahashi
  • Patent number: 7097744
    Abstract: In one embodiment, a target alignment surface disposed on a target support mechanically engages a darkspace shield alignment surface disposed on a darkspace shield as the target is lodged into a chamber body. The respective alignment surfaces are shaped and positioned so that the darkspace shield is physically moved to a desired aligned position as the alignment surfaces engage each other. In this manner a darkspace shield may be directly aligned to a target within a semiconductor fabrication chamber to provide a suitable darkspace gap between the target and the darkspace shield.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: August 29, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Alan Barry Liu, Marc O. Schweitzer, James Stephen Van Gogh, Michael Rosenstein, Jennifer L. Watia, Xinyu Zhang, Yoichiro Tanaka, John C. Forster, Anthony Chen
  • Patent number: 7097750
    Abstract: A device to fix a substrate for a thin film sputter, includes a mask, a mask pressing plate, a magnetic body, and a driving unit. The mask having patterns is positioned under the substrate so as to form the patterns on the substrate. The mask pressing plate is positioned over the substrate and moves toward and contacts a back surface of the substrate at a predetermined pressure. The magnetic body is placed over the mask pressing plate and moves toward the mask pressing plate so as to have the mask adhere closely to the substrate by a magnetic force of the magnetic body. The driving unit applies a driving force to move the magnetic body. Where the mask pressing plate descends, the mask pressing plate adheres closely to the substrate. Thereafter, the magnetic body descends toward the back surface of the substrate which is supported by the mask pressing plate. The mask underneath the substrate adheres closely to a front surface of the substrate by the magnetic force of the magnetic body.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: August 29, 2006
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Chang Ho Kang, Yong Weon Jang, Tae Seung Kim
  • Patent number: 7062348
    Abstract: A method for producing single layer or multilayer films with high thickness uniformity or thickness gradients. The method utilizes a moving mask which blocks some of the flux from a sputter target or evaporation source before it deposits on a substrate. The velocity and position of the mask is computer controlled to precisely tailor the film thickness distribution. The method is applicable to any type of vapor deposition system, but is particularly useful for ion beam sputter deposition and evaporation deposition; and enables a high degree of uniformity for ion beam deposition, even for near-normal incidence of deposition species, which may be critical for producing low-defect multilayer coatings, such as required for masks for extreme ultraviolet lithography (EUVL). The mask can have a variety of shapes, from a simple solid paddle shape to a larger mask with a shaped hole through which the flux passes.
    Type: Grant
    Filed: July 13, 2000
    Date of Patent: June 13, 2006
    Assignee: The Extreme Ultaviolet Lithography LLC
    Inventor: James A. Folta
  • Patent number: 7048837
    Abstract: Plasma etching or resputtering of a layer of sputtered materials including opaque metal conductor materials may be controlled in a sputter reactor system. In one embodiment, resputtering of a sputter deposited layer is performed after material has been sputtered deposited and while additional material is being sputter deposited onto a substrate. A path positioned within a chamber of the system directs light or other radiation emitted by the plasma to a chamber window or other optical view-port which is protected by a shield against deposition by the conductor material. In one embodiment, the radiation path is folded to reflect plasma light around the chamber shield and through the window to a detector positioned outside the chamber window.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: May 23, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Sasson R. Somekh, Marc O. Schweitzer, John C. Forster, Zheng Xu, Roderick C. Mosely, Barry L. Chin, Howard E. Grunes
  • Patent number: 7041200
    Abstract: In a magnetron sputtering chamber, a substrate is placed in the chamber and a deposition shield is maintained about the substrate to shield internal surfaces in the chamber. The deposition shield has a textured surface that may be formed by a hot pressing process or by a coating process, and that allows the accumulated sputtered residues to stick thereto without flaking off. An electrical power is applied to a high density sputtering target facing the substrate to form a plasma in the chamber while a rotating magnetic field of at least about 300 Gauss is applied about the target to sputter the target. Advantageously, the sputtering process cycle can be repeated for at least about 8,000 substrates without cleaning the internal surfaces in the chamber, and even while still generating an average particle count on each processed substrate of less than 1 particle per 10 cm2 of substrate surface area.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: May 9, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Hien-Minh Huu Le, Keith A. Miller, Hoa T. Kieu, Kenny King-Tai Ngan
  • Patent number: 7041201
    Abstract: One aspect of the invention includes an auxiliary magnet ring positioned outside of the chamber wall of a plasma sputter reactor and being disposed at least partially radially outwardly of an RF coil used to inductively generate a plasma, particularly for sputter etching the substrate being sputter deposited. Thereby, a magnetic barrier prevents the plasma from leaking outwardly to the coil and improves the uniformity of sputter etching. The magnetic field also acts as a magnetron when the coil, when made of the same material as the primary target, is being used as a secondary target. Another aspect of the invention includes a one-piece inner shield extending from the target to the pedestal with a smooth inner surface and supported by an annular flange in a middle portion of the shield. The shield may be used to support the RF coil.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: May 9, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Tza-Jing Gung, Xianmin Tang, John Forster, Peijun Ding, Marc Schweitzer, Keith A. Miller, Ilya Lavitsky
  • Patent number: 7033461
    Abstract: The present invention provides an efficient thin film forming apparatus which is capable of correcting a film thickness so as to take care of a variation in distribution in the film thickness and to take care of the circumferential distribution of the film thickness, as well as a method for forming a thin film using this film forming apparatus.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: April 25, 2006
    Assignee: ULVAC, Inc.
    Inventors: Noriaki Tani, Toshihiro Suzuki, Satoshi Ikeda, Hiroaki Kawamura, Satoru Ishibashi, Kouichi Hanzawa, Takafumi Matsumoto
  • Patent number: 7011733
    Abstract: In a sputtering apparatus, target particles to be deposited onto a substrate are selectively ionized relative to other particles in the deposition chamber. For example, titanium or titanium-containing target particles are selectively ionized, while inert particles, such as argon atoms, remain substantially unaffected. Advantageously, one or more optical ionizers, such as lasers, are used to create one or more ionization zones within the deposition chamber in which such selective ionization takes place.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: March 14, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Gurtej S. Sandhu
  • Patent number: 7008520
    Abstract: An object of the invention is to provide a sputtering device which can provide increased distribution of film formation and coverage distribution better than prior sputtering devices. Thus, this invention is that, in the sputtering device constituted of a substrate holder for holding a substrate, at least one target for forming a thin film on the substrate, at least one sputtering cathode which has the target and magnets arranged behind the substrate, an axis of the target is inclined to an axis of the sputtering cathode, and the sputtering cathode is rotated on its axis to make the target swing relative to the substrate.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: March 7, 2006
    Assignee: CYG Corporation
    Inventor: Nobuyuki Takahashi
  • Patent number: 7008517
    Abstract: The present invention generally provides a method and apparatus for use in a physical vapor deposition chamber. In one embodiment, invention provides a shutter disk mechanism that eliminates the need for axially orientating a shutter disk to a robot blade that transfers the shutter disk to a substrate support.
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: March 7, 2006
    Assignee: Applied Materials, Inc.
    Inventor: Michael Feltsman
  • Patent number: 7001491
    Abstract: One or more chambers of a multi-chamber vacuum processing apparatus are provided with a high gas flow conductance path to an exhaust volume of the apparatus that is maintained at high vacuum with a high vacuum pump. Separate pumps for the one or more chambers are made unnecessary by providing such chambers with a protective deposition shield or shield set that is configured to substantially protect walls of the chamber and the gas flow conductance path from deposition and to partially impede the gas flow from the chamber through the gas flow conductance path to the exhaust volume so that the chamber can be operated at a higher pressure than that of the exhaust volume and the chambers can be operated at different pressures and without cross-contamination. Preferably, a nested set of chamber shields is used. A controller is programmed to control the processing of wafers in the chambers by controlling the supply of process gas into the chambers.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: February 21, 2006
    Assignee: Tokyo Electron Limited
    Inventors: Michael J. Lombardi, Glyn J. Reynolds, Robert F. Foster, Robert C. Rowan, Jr., Frederick T. Turner
  • Patent number: 6998033
    Abstract: An adapter assembly is provided for supporting a sputtering cathode in a fixed opening in the chamber of a sputter coating machine. The assembly includes: one of several adapter bodies, each configured to support, in the fixed opening, a target of one of a plurality of sizes and types, and at one of several target-to-substrate spacings; one of several insulator rings, each for a target of a different size or type; one of several dark-space shields, each for a target of a different size, type, material, or processing pressure; and one of several adapter shields, each for a different adapter body and target material. Only the shields accumulate deposits and require cleaning or replacement. The dark-space shield is spaced from the target rim by a gap of at 0.045 to 0.067 inches to form a deep narrow space that prevents deposits onto the insulator ring while avoiding arcing and plasma formation in the gap.
    Type: Grant
    Filed: May 14, 2003
    Date of Patent: February 14, 2006
    Assignee: Tokyo Electron Limited
    Inventors: John Lawson, Dale Irwin, Steve Chervenak, John McIntee
  • Patent number: 6955726
    Abstract: A mask frame assembly includes a frame having an opening and a mask having at least two unit mask elements. Both ends of each unit mask element are fixed to the frame in a state of tension. The unit mask elements include a unit masking pattern, and overlap each other on a predetermined width to form a single mask pattern block. Each unit mask element has a recessed wall in an overlapping portion thereof so as to maintain the thickness of the mask constant at an overlap between the unit mask elements. Accordingly, the mask frame assembly reduces distortion in an evaporation pattern due to an increase in the size of a mask pattern, facilitates the adjustment of a total pitch of evaporation patterns, and prevents evaporation from occurring at undesired positions.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: October 18, 2005
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Chang Ho Kang, Tae Seung Kim
  • Patent number: 6929720
    Abstract: A plasma processing system is provided with a cylindrical target, open at both ends, and with a magnet array that forms a hollow cathode magnetron (HCM). At one of the open ends is placed an inductively coupled RF energy source. A dielectric window at one end of the cylindrical target forms a seal between atmosphere and the processing system. A deposition baffle shield permits the coupling of RF energy from the coil into the chamber. The open end of the cylindrical target opposite the RF source faces the processing space. Magnetron magnets produce a magnetic trapping field having a null which acts as a mirror and separates a plasma-source from the processing space.
    Type: Grant
    Filed: June 9, 2003
    Date of Patent: August 16, 2005
    Assignee: Tokyo Electron Limited
    Inventor: Glyn Jeremy Reynolds
  • Patent number: 6929725
    Abstract: A sputter ion source includes an ionizer; a sputter cathode, including a cathode, a sputter insert, and a shielding cap; a forming electrode; cathode insulator; a hollow, cylindrical shielding cathode, surrounding the sputter cathode, and tapered rotationally symmetrically in the region of the sputter insert; and a vacuum-tight housing for enclosing all of the foregoing. The sputter ion source has a prolonged operating life, low maintenance costs, and prevents atomization of parts of the ion source, for generating negative ions, in the vicinity of the cathode insert.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: August 16, 2005
    Assignee: Forschungszentrum Rossendorf e.V.
    Inventors: Manfred Friedrich, Horst Tyrroff
  • Patent number: 6929724
    Abstract: This invention relates to a shutter for use in physical vapour deposition apparatus having a chamber. The shutter, generally indicated at 5, is located in a side housing 6 of the vacuum chamber 7, whilst sputtering is taking place. Once the substrate 2 is treated, the substrate is removed from the chamber and the shutter is brought in to an operative position above a wafer pedestal or support 1. The shutter is mounted on an arm 8 using a fixing boss 10, the arm and the boss being magnetically coupled.
    Type: Grant
    Filed: May 9, 2003
    Date of Patent: August 16, 2005
    Assignee: Trikon Technologies Limited
    Inventors: Gordon Robert Green, Robert Kenneth Trowell