Plural Diverse Treatment Stations, Zones, Or Coating Material Source Within Single Chamber Patents (Class 204/298.26)
  • Patent number: 8187434
    Abstract: A system for large scale manufacture of thin film photovoltaic cells. The system includes a chamber comprising a plurality of compartments in a common vacuum ambient therein. Additionally, the system includes one or more shutter screens removably separating each of the plurality of compartments. The system further includes one or more transfer tools configured to transfer a substrate from one compartment to another without breaking the common vacuum ambient. The substrate is optically transparent and is characterized by a lateral dimension of about 1 meter or greater for a solar module. Embodiments of the invention provide that at least some of the plurality of compartments are configured to subject the substrate to one or more thin film processes to form a Cu-rich Cu—In composite material overlying the substrate and at least one of the plurality of compartments is configured to subject the Cu-rich Cu—In composite material to a thermal process to form a chalcogenide structured material.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: May 29, 2012
    Assignee: Stion Corporation
    Inventors: Howard W. H. Lee, Chester A. Farris, III
  • Patent number: 8163144
    Abstract: The present invention relates to a magnetron sputtering device and technique for depositing materials onto a substrate at a high production rate in which the deposited films have predictive thickness distribution and in which the apparatus can operate continuously and repeatedly for very long periods. The present invention has realized increased production by reducing cycle time. Increased coating rates are achieved by coupling a planetary drive system with a large cathode. The cathode diameter is greater than the diameter of a planet and less than twice the diameter of the planet. Lower defect rates are obtained through the lower power density at the cathode which suppresses arcing, while runoff is minimized by the cathode to planet geometry without the use of a mask.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: April 24, 2012
    Inventors: Markus K. Tilsch, Richard I. Seddon, Georg J. Ockenfuss, Jeremy Hayes, Robert E. Klinger
  • Patent number: 8152975
    Abstract: A target assembly for material deposition includes a first target piece having a first sputtering surface and comprising a first target material that is to be sputtered off the first sputtering surface and to deposit on a substrate. The target assembly also includes a second target piece juxtaposed to the first target piece. The second target piece comprises a second sputtering surface and a second target material that can be sputtered off the second sputtering surface and to deposit on the substrate. The first target piece and the second target piece are configured to be switched in positions and/or orientations after a period of sputtering operations.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: April 10, 2012
    Assignee: Ascentool International
    Inventors: George X. Guo, Kai-an Wang
  • Patent number: 8147924
    Abstract: An apparatus for manufacturing a magnetic recording disk includes a magnetic-film deposition chamber in which a magnetic film for a recording layer is deposited on a substrate; a lubricant-layer preparation chamber in which a lubricant layer is prepared on the substrate in vacuum; and a cleaning chamber in which the substrate is cleaned in vacuum after the magnetic-film deposition in the magnetic-film chamber and before the lubricant-layer preparation in the lubricant-layer chamber. The apparatus may further include a transfer system that transfers the substrate from the cleaning chamber to the lubricant-layer preparation chamber without exposing the substrate to the atmosphere.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: April 3, 2012
    Assignee: Canon Anelva Corporation
    Inventors: Naoki Watanabe, Nobuyoshi Watanabe, Kazunori Tani, Shinji Furukawa, Hiromi Sasaki, Osamu Watabe
  • Patent number: 8147657
    Abstract: A sputtering apparatus according to the present invention is provided with first to fourth targets. The first and the second targets are disposed so that their surfaces face each other. The third and the fourth targets are also disposed so that their surfaces face each other. When a dielectric film is formed, sputtering is alternately performed on the first and the second targets and on the third and the fourth targets. When sputtering is performed on two of the targets having surfaces that face each other, the remaining two targets function as a ground. As a result, abnormal discharges are inhibited.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: April 3, 2012
    Assignee: Ulvac, Inc.
    Inventors: Satoru Takasawa, Sadayuki Ukishima, Noriaki Tani, Satoru Ishibashi
  • Patent number: 8137510
    Abstract: This invention relates to a coater for the coating, in particular, of large-area substrates by means of cathode sputtering, the coater having a coating chamber and, provided therein, a cathode assembly (2) where the material to be sputtered is located on a target (4) with a curved surface, the material to be sputtered being located, in particular, on the lateral surface of a cylinder, there being in a single coating chamber for a coherent coating zone at least three, preferably more, cathode assemblies (2) with rotatable, curved targets (4) positioned one beside the other.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: March 20, 2012
    Assignee: Applied Materials GmbH & Co. KG
    Inventors: Stefan Bangert, Frank Fuchs, Ralph Lindenberg, Andreas Lopp, Uwe Schüssler, Tobias Stolley
  • Patent number: 8133358
    Abstract: A method and an apparatus for producing a steel wire for reinforcing an elastomeric material. The steel wire has a metal core and a coating layer made of a metal alloy material having a composition including at least one first metal component and at least one second metal component. The method includes the steps of: a) conveying the steel core along a predetermined path in a substantially continuous manner; b) co-sputtering at least one first powered cathode made of said first metal component and at least one second powered cathode made of said second metal component onto the steel core being moved along the predetermined path to obtain a coating layer made of a metal alloy material of a first composition; and c) adjusting the power provided to at least one of the first and second cathodes to obtain a coating layer made of a metal alloy material of a second composition.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: March 13, 2012
    Assignee: Pirelli Tyre S.p.A.
    Inventors: Federico Pavan, Simone Agresti
  • Patent number: 8101049
    Abstract: Disclosed is a method for the low cost manufacturing a plurality of rigid sputtered magnetic media disks of one or more sizes from a rigid sheet, in which one or more initial steps of preparing the media are performed while the media is in sheet form. The individual disks are then removed from the sheet, and final processing is performed individually on the disks.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: January 24, 2012
    Assignee: Seagate Technology LLC
    Inventors: Jeffrey Shane Reiter, Steven Eric Barlow, Matthew James Cross
  • Patent number: 8092657
    Abstract: A module to carry targets in a sputter deposition installation for coating two-sided substrates is described. The module is mountable to the installation through an interface flange that carries at least two targets with their associated magnet systems. When the module is mounted, the targets take positions at opposite sides of the two-sided substrate, while the magnet systems orient the sputter deposition towards the substrate. The module enables coating of both sides of the substrate in one single pass. Different configurations are described with gas distribution systems and additional substrate supports. An enclosure with adjustable blinds in order to reduce gas spreading is also included.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: January 10, 2012
    Assignee: Bekaert Advanced Coatings
    Inventors: Wilmert De Bosscher, Ivan Van De Putte, Koen Staelens
  • Patent number: 8083911
    Abstract: This invention relates to an apparatus (1) for treating, e.g. coating, a substrate (35, 39) in a vacuum chamber (2). In this vacuum chamber (2) there are arranged n cathodes (7-10) and n+1 anodes (28-32), each of said anodes adjacent to a cathode (7-10). Each of the n cathodes (7-10) and n of the assigned anodes (29-32) are connected to a power supply (11-14). One of the anodes (28) not being assigned to a cathode (7-10) is connected to an electrical line (63) which is connecting each of the anodes (28-32). A pull-down resistor (34) is connected to said line (63) at its one end and to ground (33) at its other end.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: December 27, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Markus Hanika, Tobias Stolley
  • Patent number: 8052850
    Abstract: A sputtering apparatus includes a susceptor for receiving a substrate, and a first target device disposed to be opposite to a center region of a substrate and at least second and third target devices disposed to be opposite to peripheral regions of the substrate, wherein the second and third target devices are rotatable.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: November 8, 2011
    Assignees: LG Display Co., Ltd., AVACO Co., Ltd., LG Electroncs Inc.
    Inventors: Tae Hyun Lim, Hwan Kyu Yoo, Byung Han Yun
  • Publication number: 20110132755
    Abstract: An in-line system for manufacturing a solar cell is provided. The in-line system includes a substrate loading zone for inputting a substrate, a deposition part for sequentially continuously depositing a light absorption layer on a top surface of the substrate, and a thermal processing part for thermally processing the substrate transferred from the deposition part. The substrate loading zone and the thermal processing part are sequentially installed in a partitioned internal space of one integration chamber.
    Type: Application
    Filed: November 18, 2010
    Publication date: June 9, 2011
    Inventors: Woosam KIM, Youngkun KIM
  • Patent number: 7887677
    Abstract: A silicon object formation target substrate is arranged in a first chamber, a silicon sputter target is arranged in a second chamber communicated with the first chamber, plasma for chemical sputtering is formed from a hydrogen gas in the second chamber, chemical sputtering is effected on the silicon sputter target with the plasma thus formed, producing particles contributing to formation of silicon object, whereby a silicon object is formed, on the substrate, from the particles moved from the second chamber to the first chamber.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: February 15, 2011
    Assignee: Nissin Electric Co., Ltd.
    Inventors: Takashi Mikami, Atsushi Tomyo, Kenji Kato, Eiji Takahashi, Tsukasa Hayashi
  • Publication number: 20110030794
    Abstract: A method and apparatus for depositing a CIGS film and a buffer layer on to a flexible substrate. Deposition of the CIGS film occurs in monolayers due to rotation of the flexible substrate. A roll of substrate is placed on a loading roller within a flexible solar cell coating apparatus. A section of the substrate unwinds and advances around a rotating drum. The CIGS film is deposited as the section is rotated and heated. Deposition is a hybrid sputtering and evaporation process. Deposition continues until a predetermined thickness is met and the roll is completely coated. The buffer layer is then deposited on to the CIGS film. The deposition of the CIGS film utilizes elemental selenium and sodium doped indium. The elemental selenium may be ionized to increase monolayer reaction reactivity. The buffer layer is a non-toxic ZnS-O layer.
    Type: Application
    Filed: August 9, 2010
    Publication date: February 10, 2011
    Inventor: Edward Teng
  • Patent number: 7871506
    Abstract: An arc deposition apparatus comprises an evacuatable chamber and means for positioning at least two targets in the chamber, wherein a first one of the at least two targets is positionable in an operative position and another of the at least two targets is positionable in a standby position. An electrical power supply is provided for supplying electrical power to the target held in the operative position to form an arc on an emission surface of the operative target. Means are provided for preparing an emission surface of the target positioned in the standby position to have a predetermined morphology. Alternatively, or in conjunction with the surface preparing means, means are provided for inspecting whether the emission surface of the target positioned in the standby position has a predetermined morphology. Preferably, the positioning means is configured to interchange the at least two targets at a predetermined time.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: January 18, 2011
    Assignee: Nanofilm Technologies International Pte Ltd
    Inventors: Xu Shi, Li Kang Cheah
  • Patent number: 7857946
    Abstract: A sputtering film forming method. which positions a target 4 and 5 at an incline to a surface of a substrate 10 whereupon a film is to be formed, and forms the film upon the surface of the substrate 10 whereupon the film is to be formed in an incline direction while the substrate 10 is rotated about a normal axis, terminates the forming of the film at a predetermined timing from the commencement of the forming of the film, wherein the forming of the film is terminated, when the substrate has rotated by 360 degrees×n+180 degrees+?, where n is a natural number, including 0, and ?10 degrees<?<10 degrees.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: December 28, 2010
    Assignee: Canon Anelva Corporation
    Inventors: Naomu Kitano, Naoki Yamada, Takaaki Tsunoda, Nobuo Yamaguchi, Motomu Kosuda
  • Patent number: 7850827
    Abstract: A double-layer shutter control method of a multi-sputtering system provided with three targets in a single chamber and a double-layer rotating shutter mechanism having shutter plates which independently rotate and have holes formed therein, comprising selecting a target by a combination of holes of a first shutter plate and a second shutter plate and uses the selected target for a pre-sputtering step and a main sputtering step with continuous discharge so as to deposit a film on a substrate, whereby it is possible to prevent cross-contamination between targets due to target substances etc. deposited on the shutter plates.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: December 14, 2010
    Assignee: Canon Anelva Corporation
    Inventors: Shuji Nomura, Ayumu Miyoshi, Hiroshi Miki
  • Patent number: 7828900
    Abstract: A vacuum film-forming apparatus comprising substrate stages; vacuum chamber-forming containers opposed to the stages; a means for moving the substrate between the stages; and gas-introduction means connected to every containers, wherein one of the stage and the container is ascended or descended towards the other to bring the upper face of the stage and the opening of the container into contact with one another so that vacuum chambers can be formed and that a raw gas and/or a reactant gas can be introduced into each space of the chamber through each gas-introduction means to carry out either the adsorption or reaction step for allowing the raw gas to react with the reactant gas. The apparatus permits the independent establishment of process conditions for the adsorption and reaction processes and the better acceleration of the reaction between raw and reactant gases to give a film having excellent quality and the apparatus can be manufactured at a low cost.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: November 9, 2010
    Assignee: ULVAC, Inc.
    Inventors: Masanobu Hatanaka, Michio Ishikawa, Se-Ju Lim, Fumio Nakamura
  • Patent number: 7815782
    Abstract: A physical vapor deposition target assembly is configured to isolate a target-bonding layer from a processing region. In one embodiment, the target assembly comprises a backing plate, a target having a first surface and a second surface, and a bonding layer disposed between the backing plate and the second surface. The first surface of the target is in fluid contact with a processing region and the second surface of the target is oriented toward the backing plate. The target assembly may include multiple targets.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: October 19, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Makoto Inagawa, Bradley O. Stimson, Akihiro Hosokawa, Hienminh Huu Le, Jrjyan Jerry Chen
  • Patent number: 7794574
    Abstract: A multi-chamber processing system is described for depositing materials on multiple workpieces (wafers, display panels, or any other workpieces) at a time in a vacuum chamber. The system includes a sputtering chamber and a separate pre-clean chamber, where wafers can be transferred between the two chambers by a robotic arm without breaking a vacuum. The wafers are mounted one-by-one onto a rotating pallet in the pre-cleaning chamber and sputtering chamber. The pallet is firmly fixed to a rotatable table in the sputtering chamber. Copper tubing in the table couples RF energy to the wafers, and a liquid running through the copper tubing controls the temperature of the wafers. Multiple targets, of the same or different materials, may concurrently deposit material on the wafers as the pallet is rotating. Multiple magnets (one for each target) in the magnetron assembly in the sputtering chamber oscillate over their respective targets for uniform target erosion and uniform deposition on the wafers.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: September 14, 2010
    Assignee: Tango Systems, Inc.
    Inventors: Ravi Mullapudi, Dean Smith, Srikanth Dasaradhi
  • Patent number: 7785455
    Abstract: A multi-chamber processing system is described for depositing materials on multiple workpieces (wafers, display panels, or any other workpieces) at a time in a vacuum chamber. The system includes a sputtering chamber and a separate pre-clean chamber, where wafers can be transferred between the two chambers by a robotic arm without breaking a vacuum. The wafers are mounted one-by-one onto a rotating pallet in the pre-cleaning chamber and sputtering chamber. The pallet is firmly fixed to a rotatable table in the sputtering chamber. Copper tubing in the table couples RF energy to the wafers, and a liquid running through the copper tubing controls the temperature of the wafers. Multiple targets, of the same or different materials, may concurrently deposit material on the wafers as the pallet is rotating. Multiple magnets (one for each target) in the magnetron assembly in the sputtering chamber oscillate over their respective targets for uniform target erosion and uniform deposition on the wafers.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: August 31, 2010
    Assignee: Tango Systems, Inc.
    Inventors: Ravi Mullapudi, Dean Smith
  • Patent number: 7763153
    Abstract: A hydrogen gas is supplied into a deposition chamber accommodating a silicon sputter target and a deposition target object, a high-frequency power is applied to said gas to generate plasma exhibiting H?/SiH* from 0.3 to 1.3 between an emission spectral intensity H? of hydrogen atom radicals at a wavelength of 656 nm and an emission spectral intensity SiH* of silane radicals at a wavelength of 414 nm in plasma emission, and chemical sputtering is effected on the silicon sputter target by the plasma to form a crystalline silicon thin film on the deposition target object. Thereafter a high-frequency power is applied to a terminally treating gas to generate plasma for terminating treatment and the surface of the crystalline silicon thin film is terminally treated by the plasma in the terminally treating chamber.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: July 27, 2010
    Assignee: Nissin Electric Co., Ltd.
    Inventors: Eiji Takahashi, Hirokazu Kaki
  • Publication number: 20100181193
    Abstract: In-line metallizer assemblies can include an external rotating actuator exchange that can be operable to exchange one or more parts between a conveyor system and a vacuum chamber, and an internal rotating actuator exchange within the vacuum chamber that can be operable to receive the one or more parts from the external rotating actuator exchange, transition the one or more parts to a sputter coater integrated with the vacuum chamber for metallizing, and return metallized one or more parts to the external rotating actuator exchange such that the external rotating actuator exchange can return the metallized one or more parts to the conveyor system.
    Type: Application
    Filed: January 15, 2010
    Publication date: July 22, 2010
    Applicant: MARCA COATING TECHNOLOGIES, LLC
    Inventors: Donald G. Parent, Joseph W. Gresik, Eric J. Brown, Jeffrey J. Black
  • Patent number: 7749364
    Abstract: Methods and coaters for applying films onto a substrate (e.g., a large-area glass substrate) are disclosed. Certain embodiments involve a coater for applying thin films onto a sheet-like substrate. The coater in some embodiments has a transport system adapted for conveying the substrate along a path of substrate travel extending through the coater. The substrate transport system in certain embodiments includes an upward coating deposition gap. The coater preferably has a source of coating material adapted for delivering coating material upwardly through such gap and onto a bottom major surface of the substrate as the substrate is conveyed along a desired portion of the path of substrate travel, which portion of the path of substrate travel extends over the upward coating deposition gap.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: July 6, 2010
    Assignee: Cardinal CG Company
    Inventor: Klaus Hartig
  • Publication number: 20100116654
    Abstract: An exemplary film coating holder includes a main body, a holding member, a first target electrode, a second target electrode and a driving module. The main body defines a chamber therein. The holding member receives in the chamber and has a plurality of through holes. The through holes being configured for receiving workpieces to be coated. The first target electrode and the second target electrode disposed on the main body and configured for supporting a first target material and a second target material respectively. The driving member is disposed on the main body and mechanically coupled with the holding member, and configured for driving the holding member to rotate about a horizontally oriented axis, thus the first targeted material and the second targeted material can be respectively deposit on opposite sides of each of the workpieces.
    Type: Application
    Filed: July 16, 2009
    Publication date: May 13, 2010
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: CHIA-YING WU
  • Patent number: 7708866
    Abstract: A sputtering apparatus comprises a substrate unit that includes a substrate on which a target material is deposited in a chamber and a target unit on which a plurality of target sections formed of the target material are arranged. The sputtering apparatus further comprises a cathode plate that supplies electric power to surfaces of the plurality of target sections and a plurality of gas supply ports provided on regions between the plurality of target sections.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: May 4, 2010
    Assignee: LG. Display Co., Ltd.
    Inventors: Sung Eun Kim, Cheon Soo Lee, Hwan Kyu Yoo, Byung Han Yun
  • Patent number: 7695598
    Abstract: A coater having a substrate cleaning device is disclosed. The substrate cleaning device comprises an ion gun (i.e., an ion source) that is positioned beneath a path of substrate travel (e.g., beneath a substrate support) extending through the coater and that is adapted for treating a bottom major surface of a substrate. Certain embodiments involve an upward coating apparatus that is further along the path of substrate travel than the substrate cleaning device. In some embodiments of this nature, the upward coating apparatus is configured for depositing a photocatalytic coating upwardly onto the bottom major surface of the substrate. Certain embodiments of the invention involve a downward coating apparatus, wherein the substrate cleaning device is further along the path of substrate travel than the downward coating apparatus. Some embodiments involve an upward coating apparatus that is further along the path of substrate travel than the substrate cleaning device.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: April 13, 2010
    Assignee: Cardinal CG Company
    Inventor: Klaus Hartig
  • Patent number: 7670469
    Abstract: In recent years, copper wiring has emerged as a promising substitute for the aluminum wiring in integrated circuits, because copper offers lower electrical resistance and better reliability at smaller dimensions than aluminum. However, use of copper typically requires forming a diffusion barrier to prevent contamination of other parts of an integrated circuit and forming a seed layer to facilitate copper plating steps. Unfortunately, conventional methods of forming the diffusion barriers and seed layers require use of separate wafer-processing chambers, giving rise to transport delays and the introduction of defect-causing particles. Accordingly, the inventors devised unique wafer-processing chambers and methods of forming barrier and seed layers.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: March 2, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Publication number: 20090324972
    Abstract: The present invention refers to a coating device for depositing of barrier layers on a plastic substrate comprising a first coating station for depositing a first layer comprising a metal and a second coating station for depositing a second layer comprising a resin, wherein a treatment station for treating the deposited first layer is arranged between the first and the second coating stations which comprises sputter means for depositing one or several atomic layers or isles of deposition material. The invention further refers to an appropriate method which can be carried out by the coating device and to a layer system produced thereby.
    Type: Application
    Filed: April 3, 2009
    Publication date: December 31, 2009
    Applicants: Applied Materials, Inc., Biofilm S.A.
    Inventors: Gerd Hoffman, Alexandra L. Quiceno
  • Patent number: 7638022
    Abstract: A magnetron source for producing a magnetic field near a surface of a target in a deposition system include a first magnet, a second magnet separated by a gap from the first magnet along a first direction, and a target holder configured to hold the target in the gap between the first magnet and the second magnet. The target includes a sputtering surface from which target material can be sputtered and deposited on a substrate. The target holder is so configured that the sputtering surface is substantially parallel to the first direction and the first magnet and the second magnet can produce a magnetic field near a surface of the target.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: December 29, 2009
    Assignee: Ascentool, Inc
    Inventor: George Xinsheng Guo
  • Publication number: 20090288944
    Abstract: A sputtering apparatus of a continuous system that a first target 17a and a second target 17b are arranged to obliquely face a substrate 6 and other targets to form a film while conveying the substrate 6 along a conveying path 15, wherein shields 19a, 19b facing the conveying direction of at least the substrate 6 are provided between the conveying path 15 and the first and second targets 17a, 17b to have therebetween an extended region toward the conveying path 15 in the space between the first target 17a and the second target 17b to enable to obtain a high quality film and to enable to prevent particles from diffusing in a chamber 3.
    Type: Application
    Filed: May 19, 2009
    Publication date: November 26, 2009
    Applicant: CANON ANELVA CORPORATION
    Inventor: Daisuke Aonuma
  • Publication number: 20090246941
    Abstract: A deposition system is provided to avoid cross contamination in each layer formed in a manufacturing process of organic electroluminescent device, etc., and also provided to reduce footprint. Provided is an apparatus 13 for forming a film onto a substrate which includes a first deposition mechanism 35 for forming a first layer and a second deposition mechanism 36 for forming a second layer in a processing chamber 30. The apparatus 13 further includes an exhaust opening 31 through which inside of the processing chamber 30 is evacuated, and the first deposition mechanism 35 is positioned closer to the exhaust opening 31 than the second deposition mechanism 36. The first layer, for example, is formed on the substrate by an evaporation method by the first deposition mechanism 35 and the second layer, for example, is formed on the substrate by a sputtering method by the second deposition mechanism 36.
    Type: Application
    Filed: August 8, 2007
    Publication date: October 1, 2009
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Shinji Matsubayashi, Kazuki Moyama, Yasuhiro Tobe
  • Patent number: 7588669
    Abstract: A deposition system includes a process chamber, a workpiece holder for holding the workpiece within the process chamber, a first target comprising a first material, a second target comprising a second material, a single magnet assembly disposed that can scan across the first target and the second target to deposit the first material and the second material on the workpiece, and a transport mechanism that can cause relative movement between the magnet assembly and the first target or the second target.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: September 15, 2009
    Assignee: Ascentool, Inc.
    Inventor: George Xinsheng Guo
  • Patent number: 7578909
    Abstract: A method of forming a CNT containing wiring material is conducted by sputtering simultaneously CNT and a metal material on a surface of a substrate to form a CNT containing metal layer, then pattern-etching the CNT containing metal layer to form a wiring pattern. A sputtering target material having a metal material and CNT is used in the method.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: August 25, 2009
    Assignee: Hitachi Cable, Ltd.
    Inventors: Satoru Mano, Harunori Sakaguchi
  • Patent number: 7575662
    Abstract: The invention relates to a method for operating a magnetron sputter cathode, in particular a tube cathode or several tube cathodes forming an array. In such cathodes a target passes through a magnetic field, whereby induction currents flow in the target which distort the magnetic field. This results in the nonuniform coating of a substrate. By having the relative movement between magnetic field and target alternately reverse its direction, the effect of the magnetic field distortion can be compensated. This yields greater uniformity of the coating on a substrate to be coated.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: August 18, 2009
    Assignee: Applied Materials GmbH & Co. KG
    Inventors: Stefan Bangert, Wolfgang Buschbeck, Markus Hanika, Karl-Albert Keim, Michael Konig, Jorg Krempel-Hesse, Andreas Lopp, Harald Rost, Jurgen Schroeder, Tobias Stolley
  • Patent number: 7537676
    Abstract: A system and method for sputtering having a substrate holder, the target-cathode and the shield that are all electrically isolated from each other and are all capable of independently being subjected to different voltages. The substrate holder can be a pallet that holds a plurality of substrates. The system further includes a plurality of target-cathodes and shields disposed along the path of travel of the moving substrate holder, and a controller configured to selectively vary the target-cathode voltage, the shield voltage, and the pallet bias voltage while the pallet moves along the path of travel. The target-cathodes and shields are spaced apart along the path of travel by a distance less than a length of the pallet and on both sides of the path of travel. The controller can include a timing circuit for synchronizing changes in the target-cathode voltages with changes in the pallet bias voltage and shield voltage.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: May 26, 2009
    Assignee: Seagate Technology LLC
    Inventors: Thomas Larson Greenberg, Paul Stephen McLeod
  • Patent number: 7491301
    Abstract: A method and apparatus for coating two sides of a single pane of glass or other substrate in a single pass through a coating apparatus. A sputtering line is provided, this line comprising a series of sputtering chambers. At least one of the chambers comprises a downward sputtering chamber having an upper target. At least one of the chambers comprises an upward sputtering chamber having a lower target. In some embodiments, the upper and lower targets are rotary targets. The coating apparatus advantageously has a plurality of transport rollers for conveying the substrate along the sputtering line. In certain embodiments, a majority of the chambers of the sputtering line are downward sputtering chambers each having only an upper target with no lower target.
    Type: Grant
    Filed: August 20, 2004
    Date of Patent: February 17, 2009
    Assignee: Cardinal CG Company
    Inventors: Annette J. Krisko, Bob Bond, Roger Stanek, Gary Pfaff, Klaus Hartig
  • Patent number: 7479210
    Abstract: A multi-chamber processing system is described for depositing materials on multiple workpieces (wafers, display panels, or any other workpieces) at a time in a vacuum chamber. The system includes a sputtering chamber and a separate pre-clean chamber, where wafers can be transferred between the two chambers by a robotic arm without breaking a vacuum. The wafers are mounted one-by-one onto a rotating pallet in the pre-cleaning chamber and sputtering chamber. The pallet is firmly fixed to a rotatable table in the sputtering chamber. Copper tubing in the table couples RF energy to the wafers, and a liquid running through the copper tubing controls the temperature of the wafers. Multiple targets, of the same or different materials, may concurrently deposit material on the wafers as the pallet is rotating. Multiple magnets (one for each target) in the magnetron assembly in the sputtering chamber oscillate over their respective targets for uniform target erosion and uniform deposition on the wafers.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: January 20, 2009
    Assignee: Tango Systems, Inc.
    Inventors: Ravi Mullapudi, Dean Smith, Edward Strepka
  • Patent number: 7347919
    Abstract: According to the invention, when targets are sputtered, each of them moves with respect to a substrate; and therefore, the entire area of the substrate is opposed to the targets during sputtering, so that a film of homogeneous quality can be formed on the surface of the substrate. During the sputtering, not only the targets but also magnetic field forming devices are moved relative to the targets, and therefore, a large area of the targets can be sputtered. In addition, when the magnetic field forming devices are also moved with respect to the substrate, the region of the target which is highly sputtered, moves with respect to the substrate, so that the thickness distribution of the film formed on the substrate can be even more uniform.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: March 25, 2008
    Assignee: ULVAC, Inc.
    Inventors: Shigemitsu Sato, Masasuke Matsudai, Hiroki Oozora, Junya Kiyota, Hajime Nakamura, Satoru Ishibashi, Atsushi Ota
  • Publication number: 20080035477
    Abstract: A vacuum coating system for coating elongate substrates includes one or several coating sections and one or several pump sections, at lease one magnetron in an arrangement as a sputter-down-variant above the substrate which has a target surface opposite the upper side of the substrate and/or in an arrangement as a sputter-up-variant below the substrate which has a target surface opposite the lower side of the substrate, and a transport device. The aim is to form an inline coating system for the two lateral coatings of elongate substrates, wherein construction costs and space required are reduced. The aim is achieved by use of a transport device arranged in a divided manner on a drive plane and on a transport plane. In sputter-up-variants, the underside of a magnetron body containing the magnetron lies above the drive plane.
    Type: Application
    Filed: November 4, 2004
    Publication date: February 14, 2008
    Inventors: Olaf Gawer, Jens Melcher, Steffen Lessmann, Erwin Zschieschang
  • Patent number: 7285196
    Abstract: In recent years, copper wiring has emerged as a promising substitute for the aluminum wiring in integrated circuits, because copper offers lower electrical resistance and better reliability at smaller dimensions than aluminum. However, use of copper typically requires forming a diffusion barrier to prevent contamination of other parts of an integrated circuit and forming a seed layer to facilitate copper plating steps. Unfortunately, conventional methods of forming the diffusion barriers and seed layers require use of separate wafer-processing chambers, giving rise to transport delays and the introduction of defect-causing particles. Accordingly, the inventors devised unique wafer-processing chambers and methods of forming barrier and seed layers.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: October 23, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7279201
    Abstract: This invention relates to a method of forming a precursor for chemical vapour deposition including the steps of: (a) forming metal ions at a source, (b) introducing the ions into a reaction chamber; and (c) exposing the ions to a gas or gasses within the chamber to react with the ions to form the precursor.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: October 9, 2007
    Assignee: Aviza Europe Limited
    Inventor: John Macneil
  • Patent number: 7264741
    Abstract: A coater having a substrate cleaning device is disclosed. Also disclosed are methods of processing substrates in a coater equipped with a substrate cleaning device. The substrate cleaning device comprises an ion gun (i.e., an ion source) that is positioned beneath a path of substrate travel (e.g., beneath a substrate support) extending through the coater and that is adapted for treating a bottom major surface of a substrate. Certain embodiments involve an upward coating apparatus that is further along the path of substrate travel than the substrate cleaning device. In some embodiments of this nature, the upward coating apparatus is configured for depositing a photocatalytic coating upwardly onto the bottom major surface of the substrate. Certain embodiments of the invention involve a downward coating apparatus, wherein the substrate cleaning device is further along the path of substrate travel than the downward coating apparatus.
    Type: Grant
    Filed: December 31, 2003
    Date of Patent: September 4, 2007
    Assignee: Cardinal CG Company
    Inventor: Klaus Hartig
  • Publication number: 20070178229
    Abstract: A method of fabricating a film of magnetic nanocomposite particles including depositing isolated clusters of magnetic nanoparticles onto a substrate surface and coating the isolated clusters of magnetic nanoparticles with an insulator coating. The isolated clusters of magnetic nanoparticles have a dimension in the range between 1 and 300 nanometers and are separated from each other by a distance in the range between 1 and 50 nanometers. By employing PVD, ablation, and CVD techniques the range of useful film thicknesses is extended to 10-1000 nm, suitable for use in wafer based processing. The described methods for depositing the magnetic nanocomposite thin films are compatible with conventional IC wafer and Integrated Passive Device fabrication.
    Type: Application
    Filed: January 29, 2007
    Publication date: August 2, 2007
    Inventors: Albert S. Bergendahl, Paul C. Castrucci, Daniel J. Fleming, T. D. Xiao
  • Patent number: 7198699
    Abstract: A coating apparatus deposits a first coating (single or multi-layered) onto a first side of a substrate (e.g., glass substrate) passing through the apparatus, and a second coating (single or multi-layered) onto the other or second side of the substrate. In certain example embodiments, the first coating may be deposited via sputtering while the second coating is deposited via ion beam deposition. In such a manner, it is possible to coat both sides of the substrate in a single apparatus in an efficient manner. In other embodiments, the coating apparatus may sputter a coating onto a first side of the substrate and ion beam mill at least one surface of the substrate as the substrate passes through the coating apparatus. In other embodiments of this invention, a dual mode chamber may be provided that is adapted to receive a removable ion beam module on one side of a substrate and a removable sputtering module on the other side of the substrate.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: April 3, 2007
    Assignee: Guardian Industries Corp.
    Inventors: Scott V. Thomsen, Hugh A. Walton
  • Patent number: 7153367
    Abstract: The invention relates to a drive mechanism for a vacuum treatment apparatus by which substrate holders can be transported around an axis (A—A) from an entrance airlock to an exit airlock. A stationary supporting column (1) is disposed in the center and on it a rotatory drive chamber (6) is borne which has control rods (9) for a rotation and a radial displacement of the substrate holders. In the rotatory drive chamber (6), a motor (4) and rotatory displacement drives for the control rods (9) are arranged on the supporting column (1), the control rods being in active connection each with a corresponding substrate holder.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: December 26, 2006
    Assignee: Applied Materials GmbH & Co. KG
    Inventors: Ralph Lindenberg, Michael Konig, Uwe Schussler, Stefan Bangert
  • Patent number: 7153399
    Abstract: The invention provides a method and apparatus for producing uniform, isotropic stresses in a sputtered film. In the presently preferred embodiment, a new sputtering geometry and a new domain of transport speed are presented, which together allow the achievement of the maximum stress that the film material can hold while avoiding X-Y stress anisotropy and avoiding stress non-uniformity across the substrate.
    Type: Grant
    Filed: August 23, 2002
    Date of Patent: December 26, 2006
    Assignee: NanoNexus, Inc.
    Inventor: Donald Leonard Smith
  • Patent number: 7141145
    Abstract: A method of forming a thin film on a substrate/workpiece by sputtering, comprising steps of: (a) providing an apparatus comprising a vacuum chamber including at least one sputtering source and a gas supply means for injecting a gas containing at least one reactive component into said chamber, the gas supply means comprising a plurality of differently-sized outlet orifices adapted for providing substantially the same flow rate of gas from each orifice; (b) providing a substrate/workpiece having at least one surface for formation of a thin film thereon; (c) generating a sputtered particle flux from the at least one sputtering source; (d) injecting the gas containing the at least one reactive component into the chamber via the gas supply means, such that the same gas flow rate is provided at each orifice; and (e) forming a reactively sputtered thin film on the at least one surface of the substrate/workpiece, the reactively sputtered thin film having a substantially uniform content of the at least one reactive
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: November 28, 2006
    Assignee: Seagate Technology LLC
    Inventors: Charles Frederick Brucker, Paul S. McLeod, Chang Yi
  • Patent number: 7090754
    Abstract: An object of the invention is to provide a method of sputtering and a device for sputtering which can improve distribution of a film's thickness and coverage distribution improve. The device for sputtering includes at least a substrate, a substrate holder which holds the substrate, a target for forming a thin film on the substrate, a sputtering cathode in which the target is installed, a means for sputtering which makes materials of the target sputter to the substrate. Sputtering is carried out by making the substrate holder rotate and making a sputter cathode unit comprising at least one sputtering cathode move along an arc over the rotating substrate held on the substrate holder.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: August 15, 2006
    Inventor: Nobuyuki Takahashi
  • Patent number: 7063984
    Abstract: A memory fabrication apparatus includes a pair of targets arranged so as to be spaced apart from one another within a closed vacuum vessel, each target of said pair of targets having a sputtering surface facing the sputtering surface of the other target of said pair of targets; and substrate holder adapted to receive facing target sputtering a CMO material on an electrode.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: June 20, 2006
    Inventors: Makoto Nagashima, Darrell Rinerson, Steve K. Hsia, Larry Matheny