Moving Magnetic Field Or Target Patents (Class 204/298.2)
  • Patent number: 6627050
    Abstract: A method of forming a tantalum-containing layer on a substrate is described. The tantalum-containing layer is formed using a physical vapor deposition technique wherein a magnetic field in conjunction with an electric field function to confine material sputtered from a tantalum-containing target within a reaction zone of a deposition chamber. The electric field is generated by applying a power of at least 8 kilowatts to the tantalum-containing target. The magnetic field is generated from a magnetron including a first magnetic pole of a first magnetic polarity surrounded by a second magnetic pole of a second magnetic polarity opposite the first magnetic polarity. The first magnetic pole preferably has a magnetic flux at least about 30% greater than a magnetic flux of the second magnetic pole. The tantalum-containing layer deposition method is compatible with integrated circuit fabrication processes. In one integrated circuit fabrication process, an interconnect structure is formed.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: September 30, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Michael Andrew Miller, Peijun Ding, Howard Tang, Tony Chiang, Jianming Fu
  • Publication number: 20030178299
    Abstract: An RMIM electrode, a method for manufacturing the RMIM electrode, and a sputtering apparatus using the RMIM electrode, wherein the RMIM electrode includes a magnet unit including a cylinder-shaped magnet located at a center of the magnet unit and a plurality of ring-shaped magnets having increasingly larger diameters surrounding the cylinder-shaped magnet; and a driver unit for supporting and for off-axis-rotating the magnet unit, wherein in the magnet unit, adjacent magnets have opposite magnetization directions.
    Type: Application
    Filed: March 13, 2003
    Publication date: September 25, 2003
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Jai-kwang Shin, Seong-gu Kim, Young-kyou Park, Hyeon-ill Um
  • Publication number: 20030173215
    Abstract: A sputtering target having an annular vault with a throat between two sidewalls and facing a substrate to be sputter coated. The vault is partially closed by a plate placed in the annular throat between the sidewalls. Thereby, the plasma density is increased within the vault. Furthermore, the position of the annular gap in the plate between the two sidewalls may be chosen to increase uniformity of sputtering deposition arising from the two sidewalls. The plate may be formed of one or more annular rings attached to the walls or a single plate having apertures formed therein may bridge the throat. Alternatively, the target may be formed as a cylindrical hollow cathode with the plate partially closing the circular throat. A rotating asymmetric roof magnetron may be combined with a hollow cathode without the restricting plate.
    Type: Application
    Filed: March 12, 2002
    Publication date: September 18, 2003
    Applicant: Applied Materials, Inc.
    Inventor: Wei Wang
  • Patent number: 6620298
    Abstract: A first target is arranged opposite a substrate while a second target is arranged not opposite the substrate within a vacuum chamber. Pressure within the vacuum chamber is adjusted to a first pressure, and during a period wherein the pressure is changed from the first pressure to a second pressure which is lower than the first pressure, plasma density above the second target is made greater than plasma density above the first target. At a time point when the second pressure is reached, the plasma density above the first target is made greater than the plasma density above the second target.
    Type: Grant
    Filed: April 18, 2000
    Date of Patent: September 16, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Hiroshi Hayata
  • Patent number: 6610184
    Abstract: An array of auxiliary magnets is disclosed that is positioned along sidewalls of a magnetron sputter reactor on a side towards the wafer from the target. The magnetron preferably is a small, strong one having a stronger outer pole of a first magnetic polarity surrounding a weaker outer pole of a second magnetic polarity and rotates about the central axis of the chamber. The auxiliary magnets preferably have the first magnetic polarity to draw the unbalanced magnetic field component toward the wafer. The auxiliary magnets may be either permanent magnets or electromagnets.
    Type: Grant
    Filed: November 14, 2001
    Date of Patent: August 26, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Peijun Ding, Rong Tao, Zheng Xu
  • Publication number: 20030146084
    Abstract: A magnetic dipole ring assembly positioned inside a vacuum chamber and around a wafer being sputter deposited with a ferromagnetic material such as NiFe or other magnetic materials so that the material is deposited with a predetermined magnetization direction in the plane of the wafer. The magnetic dipole ring may include 8 or more arc-shaped magnet segments arranged in a circle with the respective magnetization directions precessing by 720° around the ring. The dipole ring is preferably encapsulated in a vacuum-tight stainless steel carrier and placed inside the vacuum chamber. The carrier may be detachably mounted on a cover ring, on the shield, or on the interior of the chamber sidewall. In another embodiment, the magnet is a magnetic disk placed under the wafer. Such auxiliary magnets allow the magnetron sputter deposition of aligned magnetic layers.
    Type: Application
    Filed: February 5, 2002
    Publication date: August 7, 2003
    Inventor: Jianming Fu
  • Publication number: 20030136671
    Abstract: To optimize the yield of sputtered-off material as well as the service life of the target on a magnetron source, in which simultaneously good attainable distribution values of the layer on the substrate, stable over the entire target service life, a concave sputter face 20 in a configuration with small target-substrate distance d is combined with a magnet system to form the magnetron electron trap in which the outer pole 3 of the magnetron electron trap is disposed stationarily and an eccentrically disposed inner pole 4 with a second outer pole part 11 is developed rotatable about the central source axis 6.
    Type: Application
    Filed: June 4, 2002
    Publication date: July 24, 2003
    Inventors: Bernd Heinz, Martin Dubs, Thomas Eisenhammer, Pius Grunenfelder, Walter Haag, Stanislav Kadlec, Siegfried Krassnitzer
  • Publication number: 20030132106
    Abstract: A sputtering chamber includes a sputtering target with a front target surface, and a magnetron behind the sputtering target. The magnetron provides a magnetic field at the front target surface along a generally round path that includes a path indentation. A shutter is spaced apart from the front target surface by a shutter spacing. A substrate is aligned with a central region in front of the front target surface and spaced apart from the front target surface by a selected spacing that is greater than the shutter spacing. The central region has a diameter defined by a uniformly sputtered thickness of deposited layers on the substrate. The path indentation is set to a path indentation depth that adjusts the selected spacing to maximize the diameter.
    Type: Application
    Filed: April 4, 2002
    Publication date: July 17, 2003
    Inventors: Peter R. Krauss, Shaun E. McKinlay
  • Patent number: 6589398
    Abstract: The present invention pertains to methods for preventing metal or metal-derived material from flaking during sputter processing of substrates. Methods of the invention are particularly useful for non-planar sputter targets. The magnetic field configuration in a sputter apparatus is modulated during a pasting process. Flaking from regions of the target, shield, or other internal components of the sputter apparatus is inhibited by pasting methods which include encapsulation and optionally removal of material, for example by erosion via high density plasma.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: July 8, 2003
    Assignee: Novellus Systems, Inc.
    Inventors: Jean Qing Lu, Jeffrey Andrew Tobin, Linda Lee Stenzel, Lananh Pham
  • Publication number: 20030116432
    Abstract: Embodiments of the invention provide a processing apparatus having a lower reactor portion, an adjustable reactor wall portion attached to an upper portion of the lower reactor portion, the adjustable reactor wall portion being configured for selective linear expansion and contraction, and a source assembly positioned above the adjustable reactor wall portion. The cooperative operation of the source, adjustable wall, and the lower reactor creates a processing apparatus wherein the throw distance may be varied without disassembly of the reactor.
    Type: Application
    Filed: December 26, 2001
    Publication date: June 26, 2003
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Marc O. Schweitzer, Dinesh Saigal, Alan Liu
  • Publication number: 20030116427
    Abstract: A magnetron sputter reactor for sputtering deposition materials such as tantalum, tantalum nitride and copper, for example, and its method of use, in which self-ionized plasma (SIP) sputtering and inductively coupled plasma (ICP) sputtering are promoted, either together or alternately, in the same chamber. Also, bottom coverage may be thinned or eliminated by ICP resputtering. SIP is promoted by a small magnetron having poles of unequal magnetic strength and a high power applied to the target during sputtering. ICP is provided by one or more RF coils which inductively couple RF energy into a plasma. The combined SIP-ICP layers can act as a liner or barrier or seed or nucleation layer for hole. In addition, an RF coil may be sputtered to provide protective material during ICP resputtering.
    Type: Application
    Filed: July 25, 2002
    Publication date: June 26, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Peijun Ding, Zheng Xu, Roderick C. Mosely, Suraj Rengarajan, Nirmalya Maity, Daniel A. Carl, Barry Chin, Paul F. Smith, Darryl Angelo, Anish Tolia, Jianming Fu, Fusen Chen, Praburam Gopalraja, Xianmin Tang, John C. Forster
  • Patent number: 6582569
    Abstract: A DC magnetron sputter reactor for sputtering copper, its method of use, and shields and other parts promoting self-ionized plasma (SIP) sputtering, preferably at pressures below 5 milliTorr, preferably below 1 milliTorr. Also, a method of coating copper into a narrow and deep via or trench using SIP for a first copper layer. SIP is promoted by a small magnetron having poles of unequal magnetic strength and a high power applied to the target during sputtering. The SIP copper layer can act as a seed and nucleation layer for hole filling with conventional sputtering (PVD) or with electrochemical plating (ECP). For very high aspect-ratio holes, a copper seed layer is deposited by chemical vapor deposition (CVD) over the SIP copper nucleation layer, and PVD or ECP completes the hole filling. The copper seed layer may be deposited by a combination of SIP and high-density plasma sputtering. For very narrow holes, the CVD copper layer may fill the hole.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: June 24, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Tony P. Chiang, Yu D. Cong, Peijun Ding, Jianming Fu, Howard H. Tang, Anish Tolia
  • Patent number: 6579421
    Abstract: Ionized sputter deposition apparatus and method employing a low frequency or DC transverse magnetic field to increase the transverse component of the trajectory of sputtered material ions being deposited on the workpiece. Adjusting the strength of the magnetic field will adjust the trajectory angles of the sputtered material being deposited on the workpiece, thereby controlling the ratio between the deposition rates on the upper and lower side walls of openings in the workpiece. Accordingly, the invention permits optimizing the top-to-bottom uniformity of layers deposited on the side walls by adjusting the strength of the magnetic field. The invention is especially useful for depositing thin wetting layers or side wall barrier layers having uniform thickness.
    Type: Grant
    Filed: January 7, 1999
    Date of Patent: June 17, 2003
    Assignee: Applied Materials, Inc.
    Inventor: Jianming Fu
  • Patent number: 6579424
    Abstract: A target of an alloy of metals having different specific weights is used in a method for producing substrates that are coated with a layer comprising the same two metals by magnetron sputtering of the target. When sputtering such a target material, the metals of the alloy will sputter off with different sputtering characteristics with regard to a static angle &agr; at which the sputtered off material leaves the target. For this reason, at the substrate to be sputter-coated, there occurs a demixing effect of these metals which will be deposited with a varying local ratio of the metals, that differs form the ratio of the metals in the alloy of the target. To counter-act this demixing phenomenon, the location of an electron trap formed by the magnetron field of the sputter source at the target with respect to the location of the substrate, is selected.
    Type: Grant
    Filed: February 1, 2001
    Date of Patent: June 17, 2003
    Assignee: Unaxis Deutschland GmbH
    Inventors: Bernhard Cord, Gerd Deppich, Karl-Heinz Schuller, Oliver Keitel
  • Patent number: 6572744
    Abstract: A dual collimation deposition apparatus and method are disclosed in which the dual collimation apparatus includes at least a long-throw collimator in combination with one or more physical collimators. A new physical collimator and shield design are also disclosed for improved process uniformity and increased equipment productivity.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: June 3, 2003
    Assignee: Veeco Instruments, Inc.
    Inventors: Ajit Paranjpe, Peter Schwartz, Jacques Kools, Kang Song, Dorian Heimanson, Mehrdad Moslehi
  • Publication number: 20030094362
    Abstract: The invention relates to an arc source or a source for vaporizing or sputtering of materials and a method for operating a source. The source comprises an insulated counter-electrode and/or an AC magnet system. Thereby, dependent on the requirement, any desired potential can be applied to the counter-electrode and/or the source can be operated with different magnet systems, in particular as arc or sputter source.
    Type: Application
    Filed: November 13, 2002
    Publication date: May 22, 2003
    Inventors: Oliver Gstoehl, Mauro Pedrazzini
  • Patent number: 6565717
    Abstract: An apparatus and method for processing workpieces, which include a chamber having a coil for inductively coupling RF energy through a dielectric window into the chamber to energize a plasma, and a shield positioned between a sputtering target and the dielectric window to reduce or eliminate deposition of sputtered material onto a portion of the dielectric window. In the illustrated embodiment, the window shield is spaced from the dielectric window to define a gap and has at least one opening, which permit RF energy to be coupled through the gap and through the window shield opening to the interior of the chamber. As a consequence, the coil may be positioned exterior to the chamber to simplify construction and operation of the chamber.
    Type: Grant
    Filed: September 15, 1997
    Date of Patent: May 20, 2003
    Assignee: Applied Materials, Inc.
    Inventors: David Michael Leet, John C. Forster
  • Publication number: 20030089601
    Abstract: An array of auxiliary magnets positioned along sidewalls of a magnetron sputter reactor on a side towards the wafer from the target. The magnetron preferably is a small, strong one having a stronger outer pole of a first magnetic polarity surrounding a weaker outer pole of a second magnetic polarity and rotates about the central axis of the chamber. The auxiliary magnets preferably have the first magnetic polarity to draw the unbalanced magnetic field component toward the wafer. The auxiliary magnets may be either permanent magnets or electromagnets.
    Type: Application
    Filed: November 14, 2001
    Publication date: May 15, 2003
    Inventors: Peijun Ding, Rong Tao, Zheng Xu
  • Publication number: 20030052001
    Abstract: A sputtering apparatus includes a sputtering chamber, a target disposed in the sputtering chamber, and a magnetic field generator for generating a rotating magnetic field at the front of the target. The magnetic field generator includes a main magnetic field-generating part that faces the back of the target and is horizontally (laterally) offset from a vertical line passing through the center of the target. A magnetic annule of the main magnetic field-generating part forms a magnetic enclosure having openings therethrough at locations faced in the directions of the central and peripheral portions of the target. The magnetic field-generating part thus produces a magnetic field having a non-uniform distribution at the front of the target. A substrate is positioned within the sputtering chamber facing the front of the target. A metal layer is formed by sputtering atoms from the front of the target onto the substrate. The behavior of the sputtered atoms can be effectively controlled by the magnetic field.
    Type: Application
    Filed: March 27, 2002
    Publication date: March 20, 2003
    Inventors: Young-Kyou Park, Hyeon-Ill Um, Jai-Kwang Shin, Seong-Gu Kim
  • Publication number: 20030038025
    Abstract: Increased sidewall coverage by a sputtered material is achieved by generating an ionizing plasma in a relatively low pressure sputtering gas. By reducing the pressure of the sputtering gas, it is believed that the ionization rate of the deposition material passing through the plasma is correspondingly reduced which in turn is believed to increase the sidewall coverage by the underlayer. Although the ionization rate is decreased, sufficient bottom coverage of the by the material is maintained. In an alternative embodiment, increased sidewall coverage by the material may be achieved even in a high density plasma chamber by generating the high density plasma only during an initial portion of the material deposition. Once good bottom coverage has been achieved, the RF power to the coil generating the high density plasma may be turned off entirely and the remainder of the deposition conducted without the high density plasma.
    Type: Application
    Filed: October 2, 2002
    Publication date: February 27, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Ken Ngan, Simon Hui, Seshadri Ramaswami
  • Patent number: 6521106
    Abstract: Sputtering apparatus using a collimating filter to limit the angles at which sputtered particles will reach the surface of the substrate or workpiece being processed is shown. The sputtering apparatus relies on a combination of a planar sputter source larger in size than the workpiece and having highly uniform emission characteristics across the much of its surface, including its center; a collimating filter; and low operating pressure to avoid scattering of sputtered atoms after they have passed through the collimation filter. In the preferred embodiment, the collimation filter is made from a material which has substantially the same thermal coefficient of expansion as the film which is deposited on the substrate. In one specific embodiment, a titanium collimation filter is used when the sputtering system is used to deposit films of titanium, titanium nitride or titanium/tungsten alloy.
    Type: Grant
    Filed: June 18, 1996
    Date of Patent: February 18, 2003
    Assignee: Novellus Systems, Inc.
    Inventors: Geri M. Actor, Ronald R. Cochran, Vance E. Hoffman, Jr.
  • Publication number: 20030019739
    Abstract: This application discloses a multi-layer film deposition apparatus comprising; plural cathodes comprising targets respectively, a main rotation mechanism for rotating each cathode together, and a substrate holder to hold a substrate onto which a multi-layer film is deposited by sputtering. The targets are arranged at positions where their center axes are on a circumference. The main rotation mechanism rotates the cathodes around the axis in common to the circumference. The substrate is located at a position within an area in view to the direction of the axis. The area is formed of two loci of points on the rotated targets. One of the locus is drawn by the point nearest to the axis, and the other locus is drawn by the point furthest from the axis.
    Type: Application
    Filed: July 26, 2002
    Publication date: January 30, 2003
    Inventors: Masahiro Shibamoto, Shinji Furukawa, Tetsuya Endoh, Miho Sakai, Naoki Watanabe
  • Patent number: 6500321
    Abstract: An apparatus and method for controlling and optimizing a non-planar target shape of a sputtering magnetron system are employed to minimize the redeposition of the sputtered material and optimize target erosion. The methodology is based on the integration of sputtered material from each point of the target according to its solid angle view of the rest of the target. The prospective target's geometry is optimized by analytically comparing and evaluating the methodology's results of one target geometry against that of another geometry, or by simply altering the first geometry and recalculating and comparing the results of the first geometry against the altered geometry. The target geometries may be of many different shapes including trapezoidal, cylindrical, parabolic, and elliptical, depending upon the optimum process parameters desired.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: December 31, 2002
    Assignee: Novellus Systems, Inc.
    Inventors: Kaihan A. Ashtiani, Larry D. Hartsough, Richard S. Hill, Karl B. Levy, Robert M. Martinson
  • Patent number: 6497796
    Abstract: A magnetron source comprises a hollow cathode with a non-planar target. By using a magnet between the cathode and a substrate, plasma can be controlled to achieve high ionization levels, good step coverage, and good process uniformity. Step coverage uniformity is also improved by controlling the magnetic fields, and thus the flow of ions and electrons, near the plane of the substrate.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: December 24, 2002
    Assignee: Novellus Systems, Inc.
    Inventors: Kaihan A. Ashtiani, Karl B. Levy, Kwok F. Lai, Andrew L. Nordquist, Larry D. Hartsough
  • Patent number: 6497802
    Abstract: A magnetron especially advantageous for low-pressure plasma sputtering or sustained self-sputtering having reduced area but full target coverage. The magnetron includes an outer pole of one magnetic surrounding an inner pole of the other polarity with a gap therebetween. The magnetron is small, primarily located on one side of the central axis, about which it is rotated. The total magnetic flux of the outer pole is at least 1.5 times that of the inner pole. Different shapes include a racetrack, an ellipse, an egg shape, a triangle, and a triangle with an arc conforming to the target periphery. The invention allows increased ionization of the sputtered atoms.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: December 24, 2002
    Assignee: Applied Materials, Inc.
    Inventor: Jianming Fu
  • Patent number: 6495009
    Abstract: An unbalanced magnetron rotatable about the back of a sputtering target and including a nested magnetron part having an outer magnetic pole of a first magnetic polarity surrounding an inner magnetic pole of an opposed second magnetic polarity and an auxiliary magnet increasing the unbalance and adjusting the uniformity of sputtering. In a first embodiment, the auxiliary magnet is horizontally magnetized and placed between the inner pole and the portion of the outer pole near the target periphery. This embodiment most strongly affects the sputtering erosion pattern near the target periphery. In a second embodiment, the auxiliary magnet is vertically magnetized and placed on an opposite side of the rotation axis from the major portion of the nested magnetron part. This embodiment most strongly affects the vertical magnetic field distribution near the wafer and can produce a more uniform magnetic field at the wafer. The two embodiments can be combined.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: December 17, 2002
    Assignee: Applied Materials, Inc.
    Inventor: Tza-Jing Gung
  • Patent number: 6494999
    Abstract: A sputtering apparatus includes a sputtering process chamber, a sputtering target assembly, and an adjustable magnetron assembly. The sputtering target assembly includes heating/cooling passages within the sputtering target assembly. A first side of a heat exchanger/pressure relieving plate is attached to a target backing. A second or opposing side of the heat exchanger/pressure relieving plate is attached to an insulation cover to form, within the sputtering target assembly, pressure relieving vacuum passages. The target assembly completely covers and seals against a high-vacuum-compatible insulator resting over and sealed to a top flange of the process chamber. A magnetron assembly resting over the target assembly, is independent from vacuum, or vacuum components, and provides means to move or scan a magnetron or magnet array over the target assembly. The distance between the magnetron and target assembly is adjustable throughout the useful life of the target independent from vacuum, or vacuum components.
    Type: Grant
    Filed: November 9, 2000
    Date of Patent: December 17, 2002
    Assignee: Honeywell International Inc.
    Inventors: Manuel J. Herrera, Philip G. Pitcher
  • Patent number: 6491801
    Abstract: An unbalanced magnetron rotatable about the back of a sputtering target and including a nested magnetron part having an outer magnetic pole of a first magnetic polarity surrounding an inner magnetic pole of an opposed second magnetic polarity and an auxiliary magnet increasing the unbalance and adjusting the uniformity of sputtering. In a first embodiment, the auxiliary magnet is vertically magnetized and placed on an opposite side of the rotation axis from the major portion of the nested magnetron part. This embodiment most strongly affects the vertical magnetic field distribution near the wafer and can produce a more uniform magnetic field at the wafer. In a second embodiment, the auxiliary magnet is horizontally magnetized and placed between the inner pole and the portion of the outer pole near the target periphery. This embodiment most strongly affects the sputtering erosion pattern near the target periphery. The two embodiments can be combined.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: December 10, 2002
    Assignee: Applied Materials, Inc.
    Inventor: Tza-Jing Gung
  • Patent number: 6488824
    Abstract: A sputtering apparatus and method for high rate deposition of electrically insulating and semiconducting coatings with substantially uniform stoichiometry. At least one set of vertically mounted, dual and triple rotatable cylindrical (or planar) magnetrons with associated vacuum pumps, form semi-isolated sputtering modules. The sputtering modules can be independently controlled for the sequential deposition of layers of similar or different materials. Constant voltage operation of AC power with an optional reactive gas flow feedback loop maintains constant coating stoichiometry during small changes in pumping speed caused by substrate motion. The coating method is extremely stable over long periods (days) of operation, with the film stoichiometry being selectable by the voltage control point.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: December 3, 2002
    Assignee: Raycom Technologies, Inc.
    Inventors: Dennis R. Hollars, Martin P. Rosenblum, Carl T. Petersen
  • Publication number: 20020175074
    Abstract: A DC magnetron sputter reactor capable of creating a self-ionized plasma and including a small unbalanced magnetron rotating about the back of the target. The magnetron includes an outer pole of one magnetic polarity in a closed band shape surrounding an inner pole of the opposed magnetic polarity and of lesser total magnetic intensity. The inner pole, for example, including a tubular magnet has a central, magnet free passage allowing magnetic field to pass therethrough from one side to the other of the inner pole. The outer band may be generally triangular with the base and apex composed of circular segments smoothly joined to straight sides. The pole face of the inner pole may be cantilevered away from the inner pole towards the apex of the outer pole.
    Type: Application
    Filed: April 13, 2001
    Publication date: November 28, 2002
    Inventor: Tza-Jing Gung
  • Patent number: 6485617
    Abstract: A target and magnetron for a plasma sputter reactor and the associated sputtering method provided by the extended magnetic fields and plasma regions. The target has an annular vault facing the wafer to be sputter coated. Various types of magnetic means positioned around the vault, some of which may rotate along the vault, create a magnetic field in the vault to support a plasma extending over a large volume of the vault from its top to its bottom. The large plasma volume increases the probability that the sputtered metal atoms will become ionized and be accelerated towards an electrically biased wafer support electrode.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: November 26, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Jianming Fu, Praburam Gopalraja
  • Patent number: 6471831
    Abstract: A PVD system comprises a hollow cathode magnetron with a downstream plasma control mechanism. The magnetron has a hollow cathode with a non-planar target and at least one electromagnetic coil to generate and maintain a plasma within the cathode. The magnetron also has an anode located between the cathode and a downstream plasma control mechanism. The control mechanism comprises a first, second and third electromagnetic coil beneath a mouth of the target, vertically spaced so as to form a tapered magnetic convergent lens between the target mouth and a pedestal of the magnetron.
    Type: Grant
    Filed: January 9, 2001
    Date of Patent: October 29, 2002
    Assignee: Novellus Systems, Inc.
    Inventors: Jean Qing Lu, Tom Yu, Linda Stenzel, Jeffrey Tobin
  • Publication number: 20020148725
    Abstract: A plasma sputter reactor including a target with an annular vault formed in its surface facing the wafer to be sputter coated and having inner and outer sidewalls and a roof thereover. A well is formed at the back of the target between the tubular inner sidewall. A magneton associated with the target includes a stationary annular magnet assembly of one vertical polarity disposed outside of the outer sidewall, a rotatable tubular magnet assembly of the other polarity positioned in the well behind the inner sidewall, and a small unbalanced magnetron rotatable over the roof about the central axis of the target.
    Type: Application
    Filed: June 13, 2002
    Publication date: October 17, 2002
    Inventors: Anantha Subramani, Umesh Kelkar, Jianming Fu, Praburam Gopalraja
  • Patent number: 6464841
    Abstract: A sputtering system for depositing a thin film onto a substrate is disclosed wherein the system includes an evacuatable chamber which includes the substrate. In particular, the system includes a target positioned within the chamber, wherein the target has a back surface and a sputtering surface. Further, the system includes plasma for eroding the target to provide material for forming the thin film wherein erosion of the target occurs in a predetermined erosion pattern and is controlled by a shape of the plasma. The system also includes a support for supporting the substrate opposite the sputtering surface. A magnet arrangement is provided which provides a magnetic field on the target for controlling the shape of the plasma, wherein the magnet arrangement is positioned adjacent the back surface. The magnet arrangement includes a plurality of magnet segments which may be moved into desired positions so as to change the shape of the magnet arrangement.
    Type: Grant
    Filed: March 4, 1997
    Date of Patent: October 15, 2002
    Assignee: Tokyo Electron Limited
    Inventor: Steven Hurwitt
  • Patent number: 6461484
    Abstract: A sputtering device is provided in which at least one target is sputtered by sputtering discharge to produce a film of target material on at least the first surface of a substrate. The sputtering device has a principal rotating mechanism that rotates the at least one target about an axis of revolution coaxial with the central axis of the substrate. The target is positioned offset from and circumferential to the central axis of the substrate coaxial with the axis of revolution. A magnet mechanism for magnetron discharge of the sputtering discharge forms a magnetic field asymmetrical to a central axis of the target and is rotated by an auxiliary rotating mechanism. The principal rotating mechanism integrates rotation of the targets with the magnet mechanism.
    Type: Grant
    Filed: August 20, 2001
    Date of Patent: October 8, 2002
    Assignee: Anelva Corporation
    Inventors: Kamikura Yo, Naoki Yamada, Terushige Takeyama, Shuji Kumagai
  • Patent number: 6454920
    Abstract: A sputter source has at least two electrically mutually isolated stationar bar-shaped target arrangements mounted one alongside the other and separated by respective slits. Each of the target arrangements includes a respective electric pad so that each target arrangement may be operated electrically independently from the other target arrangement. Each target arrangement also has a controlled magnet arrangement for generating a time-varying magnetron field upon the respective target arrangement. The magnet arrangements may be controlled independently from each others. The source further has an anode arrangement with anodes alongside and between the target arrangements and/or along smaller sides of the target arrangements.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: September 24, 2002
    Assignee: Unaxis Trading AG
    Inventors: Walter Haag, Pius Grunenfelder, Urs Schwendener, Markus Schlegel, Siegfried Krassnitzer
  • Patent number: 6451177
    Abstract: A target and magnetron for a plasma sputter reactor. The target has an annular vault facing the wafer to be sputter coated. Various types of magnetic means positioned around the vault create a magnetic field supporting a plasma extending over a large volume of the vault. Preferably, the magnetron includes annular magnets of opposed polarities disposed behind the two vault sidewalls and a small closed unbalanced magnetron of nested magnets of opposed polarities scanned along the vault roof. An integrated copper via filling process with the inventive reactor or other reactor includes a first step of highly ionized sputter deposition of copper, which can optionally be used to remove the barrier layer at the bottom of the via, a second step of more neutral, lower-energy sputter deposition of copper to complete the seed layer, and a third step of electroplating copper into the hole to complete the metallization. The first two steps can be also used with barrier metals.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: September 17, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Praburam Gopalraja, Jianming Fu, Fusen Chen, Girish Dixit, Zheng Xu, Wei Wang, Ashok K. Sinha
  • Publication number: 20020125127
    Abstract: The present invention provides a magnetron sputtering system, which ensures a formation of a desired thin film, using a thick target. In the sputtering process, a portion of the target does not have erosion free portions. The present invention provides a magnetron sputtering system comprising a chamber for sputtering, a target electrode 5 installed inside said chamber, a substrate electrode 6 installed in the chamber opposite to the target electrode, a ring-shaped magnet 2 installed so as to enclose the side surface of the target electrode, and a semi-circular disk shaped magnet installed opposite to the target-mounted surface of the target electrode, wherein the semi-circular disk shaped magnet is rotated in the circumferential direction of the target electrode and is magnetized in the direction perpendicular to the target electrode. This ensures a specific magnetic field component to be generated over the thick planar target surface 3.
    Type: Application
    Filed: December 21, 2001
    Publication date: September 12, 2002
    Inventors: Masataka Watanabe, Satoshi Okazaki, Hideo Kaneko, Ken Ohashi, Hideki Kobayashi
  • Patent number: 6444104
    Abstract: A target for a magnetron plasma sputter reactor. The target has an annular vault facing the wafer to be sputter coated and has a width of preferably at least 5 cm and an aspect ratio of at least 1:2, preferably 1:1. Various types of magnetic means positioned around the walls of the vault, some of which may rotate along the vault, create a magnetic field in the vault to support a plasma extending over a large volume of the vault from its top to its bottom. The large plasma volume within the vault increases the probability that the sputtered metal atoms will become ionized and be accelerated towards an electrically biased wafer support electrode.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: September 3, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Praburam Gopalraja, Jianming Fu
  • Patent number: 6444105
    Abstract: A novel hollow cathode magnetron source is disclosed. The source comprises a hollow cathode with a non-planar target. By using a magnet between the cathode and a substrate, plasma can be controlled to achieve high ionization levels, good step coverage, and good process uniformity.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: September 3, 2002
    Assignee: Novellus Systems, Inc.
    Inventors: Kwok F. Lai, Andrew L. Nordquist, Kaihan A. Ashtiani, Larry D. Hartsough, Karl B. Levy
  • Patent number: 6440282
    Abstract: In a sputtering device which has a small rotatable magnetron (30) arranged opposite a target 16, the magnetron (30) has a first magnet band (44) and a second magnet opposite a target 16, the magnetron (30) has a first magnet band (44) and a second magnet a greater total magnetic flux. Some of the lines of magnetic flux from the second magnet band (42) pass through the first magnet band (44) and terminate at the second magnet band (42). The remaining lines of magnetic flux from the second magnet band (42) form a magnetic flux loop that encloses the first magnet band (44) and that terminates at the second magnet band (42). The outer band is preferably in an oval shape having a minor axis no smaller than 0.8 of the major axis, and more preferably in a circular shape.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: August 27, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Yuichi Wada, Hisashi Aida, Kihwan Yoon
  • Patent number: 6436251
    Abstract: A target and magnetron for a plasma sputter reactor. The target has an annular vault facing the wafer to be sputter coated. Preferably, the magnetron includes annular magnets of opposed polarities disposed behind the two vault sidewalls and a small closed unbalanced magnetron of nested magnets of opposed polarities scanned along the vault roof. The nested magnets are rotated along the vault. An integrated copper via filling process with the inventive reactor or other reactor includes a first step of highly ionized sputter deposition of copper, which can optionally be used to remove the barrier layer at the bottom of the via, a second step of more neutral, lower-energy sputter deposition of copper to complete the seed layer, and a third step of electroplating copper into the hole to complete the metallization. The first two steps can be also used with barrier metals.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: August 20, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Praburam Gopalraja, Jianming Fu, Wei Wang
  • Publication number: 20020092766
    Abstract: A sputter deposition apparatus for depositing a film onto a substrate includes a surrogate rotating magnetron includes an internal magnet and a wall thickness that permits a fringe magnetic field to support an electron cyclotron resonance. Auxiliary coating sources are modulated for depositing a desired sequence of material onto the substrate.
    Type: Application
    Filed: January 16, 2002
    Publication date: July 18, 2002
    Inventor: Curtis M. Lampkin
  • Publication number: 20020088711
    Abstract: A PVD system comprises a hollow cathode magnetron with a downstream plasma control mechanism. The magnetron has a hollow cathode with a non-planar target and at least one electromagnetic coil to generate and maintain a plasma within the cathode. The magnetron also has an anode located between the cathode and a downstream plasma control mechanism. The control mechanism comprises a first, second and third electromagnetic coil beneath a mouth of the target, vertically spaced so as to form a tapered magnetic convergent lens between the target mouth and a pedestal of the magnetron.
    Type: Application
    Filed: January 9, 2001
    Publication date: July 11, 2002
    Inventors: Jean Qing Lu, Tom Yu, Linda Stenzel, Jeffrey Tobin
  • Patent number: 6416639
    Abstract: A magnetron including a target (2) for sputtering onto a substrate in described. The magnetron comprises a magnetic field generator (4) for generating a closed loop magnetic field adapted to generate a plasma race-track above the target (2) and a driving device for establishing relative substantially translational movement between the race-track and the target (2) and adapted to influence the magnetic field generated by the magnetic field generator (4) at least during part of the relative substantially translational movement, the distance between any point on the race track and the momentarily closest part of the one or more pieces (50) of ferromagnetic material varying in accordance with the relative substantially translational movement of the race-track and the target (2).
    Type: Grant
    Filed: June 21, 2000
    Date of Patent: July 9, 2002
    Assignee: Sinvaco N.V.
    Inventors: Wilmert De Bosscher, Steven August Van Hove
  • Patent number: 6413382
    Abstract: A magnetron sputter reactor having a target that is pulsed with a duty cycle of less than 10% and preferably less than 1% and further having a small magnetron of area less than 20% of the target area rotating about the target center, whereby a very high plasma density is produced during the pulse adjacent to the area of the magnetron. The power pulsing frequency needs to be desynchronized from the rotation frequency so that the magnetron does not overlie the same area of the magnetron during different pulses. Advantageously, the power pulses are delivered above a DC background level sufficient to continue to excite the plasma so that no ignition is required for each pulse.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: July 2, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Wei Wang, Praburam Gopalraja, Jianming Fu, Zheng Xu
  • Patent number: 6406599
    Abstract: A plasma sputter reactor including a target with an annular vault formed in a surface facing the wafer to be sputter coated and having inner and outer sidewalls and a roof thereover. A well is formed at the back of the target between the tubular inner sidewall. A magneton associated with the target includes a stationary annular magnet assembly of one vertical polarity disposed outside of the outer sidewall, a rotatable tubular magnet assembly of the other polarity positioned in the well behind the inner sidewall, and a small unbalanced magnetron rotatable over the roof about the central axis of the target. The lower frame supports the target while the upper frame supports the magnetron, including the magnets adjacent the lower frame. The inner magnet assembly has a cooling water passage passing to the bottom of the inner magnet to inject the cooling water to the bottom of the well.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: June 18, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Anantha Subramani, Umesh Kelkar, Jianming Fu, Praburam Gopalraja
  • Patent number: 6402906
    Abstract: A method and system for producing thin film alloy by a sputtering deposition process comprising using a crescent-shaped aperture interposed between the target and substrate of a sputtering deposition system.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: June 11, 2002
    Assignee: Delphi Technologies, Inc.
    Inventors: Robert O. Pichulo, Gregory Keller Rasmussen, Mark Ray McClanahan
  • Patent number: 6402903
    Abstract: A plasma sputtering system is disclosed, along with methods of sputtering and methods of arranging an array of magnets disposed within the sputtering system. An embodiment of the sputtering system includes a vacuum chamber. A rotating magnetron is disposed in the vacuum chamber. A target is positioned between the magnetron and a substrate upon which material from the target is to be deposited. The magnetron includes an array of pairs of oppositely poled permanent magnets. A closed loop magnetic path extends between the pairs of oppositely poled magnets of the array. The magnetic path includes an inturn region proximate to an axis of rotation of the magnetron and at least two (e.g., five) indent regions.
    Type: Grant
    Filed: February 4, 2000
    Date of Patent: June 11, 2002
    Assignee: STEAG HamaTech AG
    Inventors: Mingwei Jiang, Ken Lee, Gil Lavi
  • Patent number: 6395156
    Abstract: A sputtering chamber has a target that moves with an orbital motion relative to an ion beam. An X-Y assembly allows for target movement in both the horizontal and vertical directions. The X-Y assembly has a base plate, an intermediate plate, and a target mounting plate that attaches to the target. The plates are connected together by bearing blocks that slide along rails in the X and Y directions. A rotating shaft has gears that rotate a center shaft through the base and intermediate plates. The rotating center shaft has an arm on its end that attaches to the target mounting plate. The arm produces an orbital movement of the target. Rather than simply rotating the target around the center shaft, the center of the target orbits around the center of the center shaft. Ion-beam wear is spread across the target surface, extending target life and improving deposition uniformity.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: May 28, 2002
    Assignee: Super Light Wave Corp.
    Inventors: Paul Hsueh, Abraham C. Ma