With Significant Electrical Circuitry Or Nominal Computer Device Patents (Class 204/406)
  • Publication number: 20110269648
    Abstract: A electrochemical sensor system is provided. An example system utilizes electrical and steric properties of contaminants, such as pesticides, herbicides, and heavy metals to measure an ongoing concentration of multiple contaminants simultaneously in real time. An example system has a sensor array including sensors tuned to specific contaminants, each sensor having at least two conducting elements arranged in a capacitive relationship, for example, on a printed circuit board. A binding layer on the conducing elements of each sensor selectively binds a specific contaminant, which produces a signature change in a measureable electrical property, such as impedance. Enclosed sensors and chemical buffers preserve the chemical and physical environment of the contaminants for ongoing real-time measurement of dynamic concentrations. A delivery system enables samples containing contaminants to be automatically delivered to the array of sensors without adulterating the natural state of the samples.
    Type: Application
    Filed: May 2, 2011
    Publication date: November 3, 2011
    Inventor: ANNE M. SCHWARTZ
  • Publication number: 20110247933
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Application
    Filed: February 28, 2011
    Publication date: October 13, 2011
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jonathan M. ROTHBERG, Wolfgang HINZ
  • Publication number: 20110247932
    Abstract: An ion sensing circuit includes an ion sensing element configured for exposure to an electrolytic solution and control of a sensing current through the ion sensing element according to an ion concentration of the electrolytic solution. The ion sensing circuit further includes a current-to-voltage converter coupled electrically to the ion sensing element for generating a converted voltage from the sensing current. The ion sensing circuit also includes a comparator coupled electrically to the current-to-voltage converter for comparing the converted voltage and a threshold voltage to form a comparison result. In addition, the ion sensing circuit includes a latch coupled electrically to the comparator and the current-to-voltage converter. The latch is configured for sampling the output of the comparator according to a clock signal to generate a digital signal used by the current-to-voltage converter for converting the sensing current to the converted voltage.
    Type: Application
    Filed: November 9, 2010
    Publication date: October 13, 2011
    Inventors: Tai-Ping Sun, Chung-Yuan Chen, Hsiu-Li Shieh, Tak-Shing Ching
  • Publication number: 20110240488
    Abstract: The invention relates to a device for determining the CO concentration in a gas containing hydrogen, said device comprising a detection electrode (1) in contact with said gas and separated from a counter electrode (2) by an electrolyte (3; 4). In a galvanostatic mode, the fluctuations of the hydrogen oxidation potential of the detection electrode (1) are characterized by a parameter having a value used for obtaining the CO concentration by comparison to reference data.
    Type: Application
    Filed: October 6, 2009
    Publication date: October 6, 2011
    Applicant: COMM A L'ENERGUE ATINUQYE ET AUX ENERGIES ALT.
    Inventors: Olivier Lemaire, Alejandro Franco, Nicolas Guillet
  • Patent number: 8016992
    Abstract: Disclosed herein is a reference electrode including an electrolyte containing an optically-active material, including: an electrode body provided at an end thereof with an electrolyte separation membrane and charged therein with an optically-active material and an electrolyte solution; an inner electrode disposed in the electrode body to be immersed in the electrolyte solution; and an absorbance measurement probe for transmitting light to the electrolyte solution and collecting reflected light waves, which is disposed in the electrode body to be immersed in the electrolyte solution. Since the concentration of an electrode reaction material, such as Cl?, in the electrolyte is calculated using the absorbance of the electrolyte solution containing the optically-active material, the change in potential of the reference electrode can be properly corrected even when the reference electrode is exposed to a test environment for a long period of time and thus the concentration of the electrolyte changes.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: September 13, 2011
    Assignees: Korea Atomic Energy Research Institute, Korea Hydro and Nuclear Power Co., Ltd.
    Inventors: Jei-Won Yeon, In-Kyu Choi, Won-Ho Kim, Kyuseok Song
  • Publication number: 20110214988
    Abstract: In order to compensate for variation in output of sensor elements 10, there is provided a compensating resistor 220 that has a resistance value reflected by correction information. The resistor 220 is connected in parallel with a VS cell 245 through paired electrode leads 236 and 237 and paired electrode pads 232 and 233. The paired electrode leads 236 and 237 are placed at a position electrically isolated from solid electrolyte substrates 120 and 140.
    Type: Application
    Filed: March 1, 2011
    Publication date: September 8, 2011
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventors: Shin YOSHIDA, Shigeki MORI, Takeshi KAWAI, Hiroshi INAGAKI, Seiji OYA, Kentaro MORI
  • Publication number: 20110210013
    Abstract: A detection system is presented. The detection system includes a sensing component and a data analyzer. The sensing component includes a first sensor and a second sensor in fluid communication with the first sensor. The first sensor is disposed to allow operation at a predetermined temperature T1 and is selective to a first gas species at T1 and in presence of a second gas species. The second sensor is disposed to allow operation at a temperature T2 and is sensitive to the first gas species and a second gas species at T2. Temperature T2 is lower than T1. The data analyzer is disposed to receive an output signal from the sensing component and configured to calculate concentrations of the first gas species and the second gas species based on the output signal from the sensing component. A method of calculating concentrations of gas species in a gaseous mixture is also presented.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 1, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Vidya Ramaswamy, James Anthony Ruud, Mohan Manoharan, Todd-Michael Striker, Patrick Daniel Willson
  • Publication number: 20110203925
    Abstract: The present invention provides a test strip for measuring a concentration of an analyte of interest in a biological fluid, wherein the test strip may be encoded with information that can be read by a test meter into which the test strip is inserted. In one embodiment, a first test strip comprises: a first measurement electrode connectable to a test meter; a first trace loop with a first associated resistance, where the first trace loop is connectable to the test meter; and a second trace loop with a second associated resistance, where the second trace loop is connectable to the test meter. The test meter is adapted to: receive the first test strip; connect to the first measurement electrode, the first trace loop, and the second trace loop; and obtain a first resistance ratio by comparing the first and second associated resistances.
    Type: Application
    Filed: April 27, 2011
    Publication date: August 25, 2011
    Inventors: Terry A. Beaty, David W. Burke, Michael J. Celentano
  • Patent number: 8002965
    Abstract: Testing of the performance of an electrochemical meter used to measure the presence of an analyte in a biological sample, particularly glucose in whole blood, includes introducing a control solution containing a predetermined amount of the analyte and a predetermined amount of an internal reference compound. The internal reference compound is selected such that it is oxidized at a potential greater than that used to oxidize the analyte, thereby making it possible to distinguish the control solution from a biological sample.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: August 23, 2011
    Assignee: Bayer HealthCare LLC
    Inventors: Greg P. Beer, Huan-Ping Wu
  • Publication number: 20110192720
    Abstract: Micromachined reference electrodes for use in miniaturized electrochemical sensors, and methods for fabricating such reference electrodes and electrochemical sensors, for example, as a part of a microfluidic system, are disclosed. Electrochemical measurements allow for inexpensive detection of a wide variety of (bio-)chemical compounds in solution. The reference electrode is one of the main parts of an electrochemical cell. The reference electrode, from which no current is drawn, has a stable, constant potential.
    Type: Application
    Filed: February 9, 2011
    Publication date: August 11, 2011
    Applicant: Stichting IMEC Nederland
    Inventors: Michiel Blauw, Javier Gonzalo Ruiz, Mercedes Crego Calama, Sywert H. Brongersma
  • Publication number: 20110180406
    Abstract: Temperature compensation for ion-selective electrodes is obtained by positioning a temperature-measuring element in a chamber of limited thermal mass which is in thermal contact with the measuring electrode filling solution but is thermally isolated from other filling solutions in the electrode. In a preferred embodiment, the temperature-measuring element comprises a thermistor enclosed within thin flexible tubing; the electrical leads of the thermistor are forced against a segment of the inner wall of the tubing by an elongated strand of material abutting the thermistor to enhance heat transfer with the thermistor.
    Type: Application
    Filed: January 25, 2010
    Publication date: July 28, 2011
    Inventors: Moshe Hirshberg, Xiaowen Wen, Hyoungsik Yim, Dawood Bhaijee
  • Publication number: 20110174615
    Abstract: A deterioration signal generation device for an oxygen sensor having a power supply different than a power supply connected to an external device, including a connection unit for electrically connecting the ground lines of the respective power supplies; a first acquisition unit for electrically connecting to a first output line at a reference potential side and to a second output line at a sensor potential side of the oxygen sensor, to obtain first and second potentials, respectively; an operation unit that calculates a first differential value between the first and second potentials; a processing unit that performs an operation on the first differential value; a second acquisition unit that acquires a third potential of a first input line at a reference potential side of the external device; and an output unit that generates the deterioration signal by superposing the second differential value on the third potential.
    Type: Application
    Filed: January 19, 2011
    Publication date: July 21, 2011
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventor: Seiji MAEDA
  • Publication number: 20110174616
    Abstract: Electrochemical measurement techniques for measuring the concentration of an analyte in a physiological fluid sample are described. More particularly, the present invention relates to techniques for distinguishing a signal caused by an extraneous event from a desired information providing signal such as one indicative of a measurement error.
    Type: Application
    Filed: March 30, 2011
    Publication date: July 21, 2011
    Applicant: LifeScan, Inc.
    Inventors: Neil ROBERTS, Gary Smeaton
  • Patent number: 7981265
    Abstract: A gas concentration measuring apparatus for use in air-fuel ratio control of automotive engines is designed to determine the concentration of oxygen within a wide and a narrow range using a sensor current flowing through a sensor element. The apparatus includes an amplifier circuit equipped with an operational amplifier and a plurality of amplifying resistors and a switch. The switch is responsive to a request signal to switch a relation in electrical connection between an operational amplifier and the amplifying resistors to distribute the amplifying resistors into an input resistor and a feedback resistor for the operational amplifier to change an amplification factor of the amplifier circuit. This results in a change in resolution of measurement of the concentration of oxygen, thereby ensuring enhanced accuracy in determining the concentration of oxygen in a selected one of the narrow and wide ranges.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: July 19, 2011
    Assignee: Denso Corporation
    Inventors: Tomoo Kawase, Eiichi Kurokawa, Satoshi Hada, Toshiyuki Suzuki, Katsuhide Akimoto
  • Patent number: 7981264
    Abstract: The present invention discloses a method and an apparatus of the drift calibration of sensors. The method includes shifting the sensing signal and differential technology to remove the drift signal by time during a long measuring. The apparatus includes two voltage sensors and readout circuits, a signal-shifting circuit and a differential circuit, and the apparatus is used for outputting the response signal without time drifting.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: July 19, 2011
    Assignee: Chung Yuan Christian University
    Inventors: Shen-Kan Hsung, Jung-Chuan Chou, Tai-Ping Sun, Chung-We Pan, Chu-Neng Tsai
  • Publication number: 20110168574
    Abstract: A gas sensor control apparatus including internal resistance detection means for detecting an internal resistance value of one of cells of a gas sensor, concentration detection means for detecting a concentration value of a specific gas component in a gas to be measured and outputting the detected concentration value, heater current supply control means for controlling a current to be supplied to a heater of the gas sensor such that the detected internal resistance value becomes a target value, determination means for determining whether or not the detected internal resistance value is within a permissible range including the target value, and nullification setting means for setting the detected concentration value to a predetermined nullification concentration value to nullify the detected concentration value, when it is determined that the target value is out of the permissible range.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 14, 2011
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventor: Hisashi SASAKI
  • Patent number: 7976689
    Abstract: The invention relates to a gas sensor for determining the oxygen concentration in a gas mixture, especially in the exhaust gas of internal combustion engines. Said gas sensor comprises a pump cell having an outer pump electrode, exposed to the gas mixture, and an inner pump electrode, exposed to the gas mixture via a diffusion barrier, and a solid electrolyte body interposed between the outer pump electrode and the inner pump electrode. The gas sensor also has a reference electrode, exposed to a reference gas, and a sensor heating device. The outer pump electrode is connected to a circuit arrangement via a pump current line, the inner pump electrode via a measuring line, the reference electrode via a reference current line and the sensor heating device via two heating lines.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: July 12, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Marcus Scheffel, Holger Reinshagen, Lothar Diehl, Thomas Seiler
  • Publication number: 20110162969
    Abstract: A method and system are disclosed for controlling plating bath compositions. Speciation analyzers including HPLC and mass spectrometry are employed to separate, detect, identify, and quantify additives and degradation products. A control unit is linked to a plating bath interface, analyzer interface, and valves to control the flow of plating bath to an analyzer sampler and back to plating bath. For each degradation product, a response output is determined for at least one performance factor in terms of an additive equivalent amount that produces the same effect. A data processing unit receives concentration data for additives and degradation products from speciation analyzers and calculates an amount of each additive needed to replenish a used bath. As a result, the bleed-and-feed ratio for maintaining plating baths can be substantially reduced with significant productivity improvement and cost savings in terms of chemicals, chemical disposal, less down time and improved product quality.
    Type: Application
    Filed: January 7, 2010
    Publication date: July 7, 2011
    Inventor: Boli Zhou
  • Publication number: 20110147211
    Abstract: A sensor control apparatus includes: a gas sensor including an oxygen concentration detection cell having a first solid electrolyte body, a reference electrode and a detection electrode, and a heater; an electric current supply unit that supplies electric current to the oxygen concentration detecting cell; an activation determination unit; and a heater control unit that controls electric current supply to the heater by setting a first target temperature equal to or higher than an activation determination temperature as a target temperature when the activation determination unit determines that the temperature of the gas sensor is equal to or higher than the activation determination temperature, the sensor control apparatus further includes: an automatic stop detection unit and a first temperature switching unit that controls electric current supplied to the heater such that the target temperature of the heater is switched to a second target temperature being different from a temperature at which blackening is
    Type: Application
    Filed: December 21, 2010
    Publication date: June 23, 2011
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventor: Hiroshi INAGAKI
  • Patent number: 7959777
    Abstract: A method of adjusting the output of an electrochemical sensor including a working electrode and a counter electrode, includes: electronically causing a current flow between the working electrode and the counter electrode via an electrolyte without introducing a test analyte to the electrochemical sensor; measuring a response of the sensor to the current demand resulting from the electronically generated current flow; and using the measured response to adjust the sensor output during sampling of an analyte gas.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: June 14, 2011
    Assignee: Mine Safety Appliances Company
    Inventor: Towner B. Scheffler
  • Patent number: 7955494
    Abstract: The gas sensor control apparatus is for controlling a gas sensor including a sensor element having a solid electrolyte layer, and first and second electrodes located on opposite sides of the solid electrolyte layer, the first electrode serving as a gas detecting electrode, the second electrode serving as a reference electrode, the sensor element generating, as a sensor output, a current flowing between the first and second electrodes having a value depending on concentration of a specific gas component contained in a gas under measurement. The gas sensor control apparatus includes a determination function of determining whether or not it is time for the gas sensor to start operation, and a control function of forcibly supplying oxygen from a side of the second electrode to a side of the first electrode on a temporary basis when a determination result of the first function becomes affirmative.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: June 7, 2011
    Assignee: Denso Corporation
    Inventors: Tomoo Kawase, Eiichi Kurokawa, Toshiyuki Suzuki, Takahito Masuko
  • Patent number: 7943034
    Abstract: A method and apparatus for provide a stable voltage to an electrochemical cell used for measurement of an analyte such as glucose in a liquid sample. The apparatus uses a circuit in which multiple switching positions provide both calibration information for use in calibration of electronic components in the circuit and error checking functionality.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: May 17, 2011
    Assignee: Agamatrix, Inc.
    Inventors: Steven Diamond, Martin Forest, Darius Rad, Baoguo Wei
  • Patent number: 7943023
    Abstract: The present invention is directed to devices and methods for carrying out and/or monitoring biological reactions in response to electrical stimuli. A programmable multiplexed active biologic array includes an array of electrodes coupled to sample-and-hold circuits. The programmable multiplexed active biologic array includes a digital interface that allows external control of the array using an external processor. The circuit may monitor, digitally control, and deliver electrical stimuli to the electrodes individually or in selected groups.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: May 17, 2011
    Assignee: Gamida for Life B.V.
    Inventors: Richard Gelbart, Don L. Powrie, Paul David Swanson
  • Publication number: 20110100810
    Abstract: A chip integrated ion sensor is provided, which comprises a substrate having arranged thereon an electrolyte insulator semiconductor structure and a reference electrode. In particular, the electrolyte insulator semiconductor (EIS) structure may be formed on a chip already processed, i.e. the EIS structure may be formed in a Back End process on an already formed chip comprising a plurality of formed electronic components. In particular, the ion sensor may be adapted to form an ion concentration sensor, e.g. a pH sensor, i.e. may form a pH sensor. The reference electrode may be a non-polarizable electrode. In particular, the reference electrode may comprise Ag or AgCl as material.
    Type: Application
    Filed: May 19, 2009
    Publication date: May 5, 2011
    Applicant: NXP B.V.
    Inventor: Matthias Merz
  • Publication number: 20110089050
    Abstract: An apparatus and method for electrochemical fluid analysis comprises a chamber (1202) having a depth dimension for accommodating a volume of a fluid under test, first and second electrodes (A1) disposed within the chamber and extending along the depth dimension in spaced relation with each other, and a soluble solid, such as an annealed polymer, e.g. EUDRAGIT occupying a lateral gap between the first and second electrodes. The rate of dissolution as monitored by electrochemical impedance spectroscopy (EIS) of the soluble solid within the fluid depends on the chemical concentration of a corresponding analyte present in solution in the fluid. In one embodiment a silicon-based integrated circuit device defining an upper margin includes an array of electrodes disposed along said upper margin to permit direct exposure of the electrode array to the fluid under test. The device is constructed using CMOS technology.
    Type: Application
    Filed: August 29, 2008
    Publication date: April 21, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Lucian R. Albu, Hans Zou, Jeff Shimizu
  • Publication number: 20110083974
    Abstract: A device for measuring blood coagulation time is formed from a first substrate; a second substrate; a spacer layer disposed between the first and second substrates, said spacer layer having an opening formed therein defining a sample receiving chamber, a vented sink chamber, and an elongated reservoir forming a conduit for liquid movement between the sample receiving chamber and the sink chamber; a first electrode disposed on the first substrate, said first electrode being exposed in the reservoir portion through a first opening in the spacer layer; and a second electrode disposed on the second substrate, said second electrode being exposed in the reservoir portion through a second opening in the spacer layer. The device of the invention is used in combination with an apparatus that is connected to the first and second electrodes for measuring current flow between the first and second electrodes.
    Type: Application
    Filed: November 16, 2010
    Publication date: April 14, 2011
    Applicant: AGAMATRIX, INC.
    Inventors: Ian Harding, Sridhar G. Iyengar, Ha Nguyen, Richard Williams
  • Patent number: 7924017
    Abstract: The measuring device has at least one measuring probe, e.g., a physical or electrochemical measuring probe, which is equipped with one or more memory units and which is connected through a cable, e.g., a coaxial cable, to a transmitter which includes a processor. The measuring probe has a ground wire and is connected to the memory unit through a first signal wire, wherein under the control of the processor in accordance with a transmission protocol, the first signal wire and a connecting cable serve for the unidirectional transmission of the analog or digital measuring signal of the measuring probe as well as the preferably bidirectional transmission between the measuring probe and the transmitter of digital operating data which are read from or to be written into the memory unit.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: April 12, 2011
    Assignee: Mettler-Toledo AG
    Inventors: Jürgen Ammann, Jiangdong Di, René Rissi, Antonio De Agostini, Klaus-Dieter Anders
  • Patent number: 7914655
    Abstract: A circuit arrangement, an electrochemical sensor, a sensor arrangement, and a method for processing a current signal provided by a sensor electrode are disclosed. The circuit arrangement includes a sensor electrode, a first circuit unit, electrically coupled to the sensor electrode and a second circuit unit, including a first capacitor, whereby the first circuit arrangement is embodied to hold the electrical potential of the sensor electrode in a given first reference range about a set electrical potential and, when the sensor electrode potential falls outside the first reference range, the first capacitor and the sensor electrode are coupled such that a matching of the electrical potentials is possible. The second circuit unit is embodied such that, when the electrical potential of the first capacitor falls outside a second reference range, this event is detected and the first capacitor brought to a first electrical reference potential.
    Type: Grant
    Filed: May 11, 2004
    Date of Patent: March 29, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Alexander Frey, Christian Paulus, Meinrad Schienle, Roland Thewes
  • Patent number: 7909970
    Abstract: An oxygen sensor is employed for determining whether the exhaust air-fuel ratio is rich or lean. A voltage is applied to the oxygen sensor at device impedance calculation intervals to calculate device impedance. After device impedance calculation, a reverse voltage is applied to the oxygen sensor with a view toward promptly negating the influence of voltage application on the sensor output. Subsequently, the sensor output of the oxygen sensor is sampled at sampling time intervals until it is concluded that the device impedance calculation period is over.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: March 22, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenji Tashiro, Kazutaka Hattori
  • Publication number: 20110056847
    Abstract: An ion concentration measurement system is provided. The ion concentration measurement system has: at least an end system having a sensing unit for measuring the ion concentration of a test solution to generate at least a sensing signal; a control unit for controlling the acquisition of the sensing signal; a display unit for displaying the sensing signal in real time; and an end wireless transmission interface for transmitting the sensing signal wirelessly.
    Type: Application
    Filed: December 4, 2009
    Publication date: March 10, 2011
    Applicant: NATIONAL YUNLIN UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Jung-Chuan Chou, Chang-Chi Lee
  • Patent number: 7901562
    Abstract: A deterioration detection apparatus for an oxygen sensor is able to detect an abnormality of the oxygen sensor constantly with high precision, without being affected by the temperature characteristic of the element impedance. The apparatus applies a voltage V to the oxygen sensor, and calculates an element impedance real value Rsr=V/1 of a sensor element based on the applied voltage and the current I caused to flow by the voltage. The apparatus calculates an element temperature estimated value Tex of the oxygen sensor from a factor that affects the temperature of the oxygen sensor. The apparatus determines whether the oxygen sensor has an abnormality on the basis of whether the relationship between the element impedance real value Rsr and the element temperature estimated value Tex can be regarded as a relationship that agrees with a normal temperature characteristic.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: March 8, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kazutaka Hattori
  • Publication number: 20110048941
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Application
    Filed: September 21, 2010
    Publication date: March 3, 2011
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: RAJIV SHAH, WAYNE A. MORGAN, DAVID Y. CHOY, JAMES L. HENKE, BAHAR REGHABI, GOPIKRISHNAN SOUNDARARAJAN, PETER SCHULTZ, UDO HOSS
  • Publication number: 20110048969
    Abstract: An electrochemical sensor and a method for using an electrochemical sensor are described where the electrochemical sensor comprises a working electrode having thereon one or more redox species that are sensitive to an analyte to be measured and a polymer coating that provides for interaction between the redox species and the analyte.
    Type: Application
    Filed: August 6, 2010
    Publication date: March 3, 2011
    Inventors: Nathan Lawrence, Valerie Lafitte
  • Publication number: 20110042238
    Abstract: A sodium sensor to measure a concentration of sodium methylate in methanol. The sensor assembly includes a solid alkali ion conducting membrane, a reference electrode, and a measurement electrode. The solid alkali ion conducting membrane transports ions between two alkali-containing solutions, including an aqueous solution and a non-aqueous solution. The reference electrode is at least partially within an alkali halide solution of a known alkali concentration on a first side of the solid alkali ion conducting membrane. The measurement electrode is on a second side of the solid alkali ion conducting membrane. The measurement electrode exhibits a measurable electrical characteristic corresponding to a measured alkali concentration within the non-aqueous solution, to which the measurement electrode is exposed.
    Type: Application
    Filed: February 16, 2010
    Publication date: February 24, 2011
    Inventors: Sai Bhavaraju, Shekar Balagopal, Justin Pendelton, Peter Wall
  • Publication number: 20110036714
    Abstract: A handheld sensor device is provided for measuring an ion concentration in a solution. The solution is in an electrochemical cell that includes a counter electrode, a working electrode, and a reference electrode. The sensor includes a control amplifier configured to provide a current through the counter electrode and the working electrode so as to maintain a predetermined voltage between the working electrode and the reference electrode. The sensor also includes a current amplifier configured to measure the current provided through the counter electrode and the working electrode. In one embodiment, the sensor also includes a direct digital frequency synthesizer (DDFS) including a phase accumulator. The DDFS is configured to selectively generate a waveform specified by an electrochemical technique such as square wave voltammetry, cyclic voltammetry, linear sweep voltammetry, differential-pulse polarography, normal-pulse polarography, or other known electrochemical techniques.
    Type: Application
    Filed: October 25, 2010
    Publication date: February 17, 2011
    Applicant: Utah State University
    Inventors: Anhong Zhou, Hui-Fang Dou
  • Publication number: 20110024305
    Abstract: A differential amplifier and method of sensing includes a first carbon nanotube field effect transistor (CNTFET) that selectively detects an analyte from an environment comprising analytes and nonspecific interferences, and produces a first signal associated with the detected analyte and any nonspecific interferences; a second CNTFET adjacent to the first CNTFET, wherein the second CNTFET detects the nonspecific interferences of the environment, and produces a second signal associated with the detected nonspecific interferences; and means for generating a differential output signal using the first signal and the second signal as input, wherein the differential output signal is completely devoid of the second signal.
    Type: Application
    Filed: June 30, 2010
    Publication date: February 3, 2011
    Inventor: Matthew H. Ervin
  • Patent number: 7875165
    Abstract: A method of correcting an output of a NOx sensor including: a first step of obtaining a sensor-variation relational expression based on a relationship between an Ip2/Ip0 value and an output change percentage for a calibration sensor; a second step of obtaining, from the relational expression, an output change percentage ? that corresponds to an Ip2/Ip0 value of a subject NOx sensor; a third step of calculating a pressure correction coefficient ? based on the obtained ?; and a fourth step of performing output correction on the subject NOx sensor by calculating the pumping current Ip2(p0) under a reference pressure based on the pumping current Ip2(p) and a pressure p of the measurement gas which are detected upon measurement of the NOx concentration in the measurement gas.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: January 25, 2011
    Assignee: NGK Insulators, Ltd.
    Inventors: Osamu Nakasone, Yuichi Sasaki
  • Patent number: 7872480
    Abstract: A gas sensor control apparatus for controlling a gas sensor includes a resistance detection unit and a heater control unit. The resistance detection unit detects a resistance of an object cell of the gas sensor. When the resistance of the object cell is lower than a predetermined threshold, the heater control unit controls energization of a heater such that the resistance detected by the resistance detection unit is a first predetermined resistance. Subsequently, after elapse of a predetermined time, the heater control unit further controls energization of the heater in such a manner that the resistance detected by the resistance detection unit is a second predetermined resistance of a resistance value that is higher than that of the first predetermined resistance.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: January 18, 2011
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Kenji Kato, Hisashi Sasaki, Koji Shiotani
  • Patent number: 7867369
    Abstract: A biosensor having multiple electrical functionalities located both within and outside of the measurement zone in which a fluid sample is interrogated. Incredibly small and complex electrical patterns with high quality edges provide electrical functionalities in the biosensor and also provide the electrical wiring for the various other electrical devices provided in the inventive biosensor. In addition to a measurement zone with multiple and various electrical functionalities, biosensors of the present invention may be provided with a user interface zone, a digital device zone and/or a power generation zone. The inventive biosensors offer improved ease of use and performance, and decrease the computational burden and associated cost of the instruments that read the biosensors by adding accurate yet cost-effective functionalities to the biosensors themselves.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: January 11, 2011
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Raghbir S. Bhullar, Harvey B. Buck, Jr., Brian S. Hill, Paul Douglas Walling, Terry A. Beaty, David W. Burke, Eric R. Diebold
  • Publication number: 20110000795
    Abstract: A method is provided for determining the concentration of an analyte in a sample which comprises: a) performing an electrochemical test comprising: (i) contacting the sample with an electrochemical cell comprising at least two electrodes; and (ii) obtaining at least one group of three or more measurements of an electrochemical parameter from the cell, wherein each measurement in each at least one group is obtained at a different time; b) deriving from said at least one group of three or more measurements a single value that is indicative of the time-dependent behavior of the measured parameter; c) comparing the single value indicative of the time-dependent behavior of the measured parameter with a pre-determined range of acceptable time-dependent behaviors; d) determining whether the test is acceptable based on the result of said comparison; e) optionally repeating the above-mentioned steps; and 0 determining the concentration of the analyte from the measurements obtained from the acceptable test or acceptabl
    Type: Application
    Filed: December 15, 2009
    Publication date: January 6, 2011
    Inventors: Kevin Lorimer, Nigel Carter, Andrew Allan, Howard Orman
  • Patent number: 7862697
    Abstract: A sensor control device, and a gas sensor and sensor control device for applying a voltage to a sensor element of the gas sensor including an oxygen ion conductor and a pair of electrodes formed on the oxygen ion conductor of the gas sensor. The sensor control device includes a potential output terminal electrically connected to one of the pair of electrodes and a potential reference terminal electrically connected to the other of the pair of electrodes constituting the sensor element. The sensor control device applies a target voltage to the sensor element via the potential output terminal, corrected to take into account variation in the potential of the potential reference terminal.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: January 4, 2011
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Yasuhiro Ishiguro, Shinji Kumazawa
  • Publication number: 20100326824
    Abstract: An analyte test strip (e.g., an electrochemical-based analyte test strip for determining glucose in a bodily fluid sample) for use with a test meter includes a first insulating layer and a electrically conductive layer disposed on the first insulating layer. The electrically conductive layer includes at least one electrode portion and at least one electrical contact pad configured for an electrical connector pin of a test meter to travel therealong during insertion of the analyte test strip into the test meter. In addition, the electrical contact pad is in electrical communication with the electrode portion. The analyte test strip also includes at least one meter identification feature (such as stripes of visually transparent material) disposed on the electrical contact pad such that the electrical connector pin of the test meter travels across the meter identification feature during insertion of the analyte test strip into the test meter.
    Type: Application
    Filed: June 24, 2009
    Publication date: December 30, 2010
    Applicant: LifeScan, Inc.
    Inventor: Koon-wah LEONG
  • Patent number: 7846320
    Abstract: A gas detector with a compensated electrochemical sensor exhibits altered sensitivity in response to decreasing stochastic noise in an output thereof. A gain parameter can be adjusted to alter sensitivity. A life-time estimate can be made based on sensitivity.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: December 7, 2010
    Assignee: Honeywell International Inc.
    Inventor: Lee D. Tice
  • Patent number: 7846313
    Abstract: An oxygen sensor is employed for determining whether the exhaust air-fuel ratio is rich or lean. A voltage is applied to the oxygen sensor at device impedance calculation intervals to calculate device impedance. After device impedance calculation, a reverse voltage is applied to the oxygen sensor with a view toward promptly negating the influence of voltage application on the sensor output. Subsequently, the sensor output of the oxygen sensor is sampled at sampling time intervals until it is concluded that the device impedance calculation period is over.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: December 7, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenji Tashiro, Kazutaka Hattori
  • Patent number: 7842174
    Abstract: A handheld sensor device is provided for measuring an ion concentration in a solution. The solution is in an electrochemical cell that includes a counter electrode, a working electrode, and a reference electrode. The sensor includes a control amplifier configured to provide a current through the counter electrode and the working electrode so as to maintain a predetermined voltage between the working electrode and the reference electrode. The sensor also includes a current amplifier configured to measure the current provided through the counter electrode and the working electrode. In one embodiment, the sensor also includes a direct digital frequency synthesizer (DDFS) including a phase accumulator. The DDFS is configured to selectively generate a waveform specified by an electrochemical technique such as square wave voltammetry, cyclic voltammetry, linear sweep voltammetry, differential-pulse polarography, normal-pulse polarography, or other known electrochemical techniques.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: November 30, 2010
    Assignee: Utah State University
    Inventors: Anhong Zhou, Huifang Dou
  • Publication number: 20100294661
    Abstract: A method for improving the performance of a galvanic fuel cell type oxygen sensor comprises providing a pressure equalization port leading to the interior of an inner core housing that contains the membrane, the electrolyte and the anode and cathode electrodes and hermetically sealing the sensor housing except for its sample inlet port and its sample outlet port. By connecting the same vacuum source to both the pressure equalization port and the sample outlet port, the device's membrane is less subject to movement or rupture as gas samples are drawn in via the sample inlet port. A technique for ensuring a hermetic seal is also described.
    Type: Application
    Filed: May 22, 2009
    Publication date: November 25, 2010
    Applicant: Medical Graphics Corporation
    Inventors: Timothy P. Fitzgerald, C. Peter Howard
  • Publication number: 20100288635
    Abstract: Disclosed is a low-cost deformation sensor which is light-weighted and flexible. The deformation sensor stably operates with high responsivity in the air. Specifically disclosed is a deformation sensor (6) which is a sheet composed of a nonaqueous polymer solid electrolyte (10) and at least a pair of electrodes (7, 8) sandwiching the nonaqueous polymer solid electrolyte (10). The nonaqueous polymer solid electrolyte (10) contains a polymer component which is selected from at least either of a polymer containing a monomer unit having a heteroatom and a block copolymer containing a block of the polymer, and an ionic liquid. The sensor generates an electromotive force when deformed, and is able to sense the position of deformation and the pressure distribution.
    Type: Application
    Filed: January 28, 2009
    Publication date: November 18, 2010
    Applicant: KURARAY CO., LTD.
    Inventors: Ryota Komiya, Toshinori Kato, Taketoshi Okuno, Nozumu Sugoh
  • Publication number: 20100285981
    Abstract: The invention is directed to devices that allow for simultaneous multiple biochip analysis. In particular, the devices are configured to hold multiple cartridges comprising biochips comprising arrays such as nucleic acid arrays, and allow for high throughput analysis of samples.
    Type: Application
    Filed: October 31, 2007
    Publication date: November 11, 2010
    Applicant: Clinical Micro Sensors, Inc.
    Inventor: Jon Faiz Kayyem
  • Publication number: 20100274181
    Abstract: The present disclosure provides an orientation-nonspecific sensor port for use in analyte meters designed to detect and quantify analyte levels in a fluid sample along with methods of using the same. The present disclosure also provides compositions and methods for facilitating the correct insertion of a sensor into a corresponding analyte meter.
    Type: Application
    Filed: April 28, 2009
    Publication date: October 28, 2010
    Inventors: Yi Wang, Benjamin J. Feldman, Benjamin Rush, Charlene Haley
  • Publication number: 20100270153
    Abstract: An exemplary gas sensing system includes a gas sensing unit, a detecting unit, and a processing unit. The gas sensing unit includes a quartz crystal substrate, a first electrode layer, a second electrode layer, a first activating layer, and a sensor medium layer having adsorption ability and desorption ability to chemiacal gas. The detecting unit is electrically connected with the first electrode and the second electrode, and is configured for detecting a frequency change of the gas sensing unit before and after adsorbing the chemiacal gas. The processing unit is electrically connecting with the detecting unit, and is configured for obtaining a mass change of the gas sensing unit according to the frequency change.
    Type: Application
    Filed: March 24, 2010
    Publication date: October 28, 2010
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: SHAO-KAI PEI