Coating Is Discontinuous Single Metal Or Alloy Layer (e.g., Islands, Porous Layer, Etc.) Patents (Class 205/112)
  • Patent number: 10927473
    Abstract: Oxide coatings that reduce or eliminate the appearance of thin film interference coloring are described. In some embodiments, the oxide coatings are configured to reduce the appearance of fingerprints. In some cases, the oxide coatings are sufficiently thick to increase the optical path difference of incident light, thereby reducing any inference coloring by the fingerprint to a non-visible level. In some embodiments, the oxide coatings have a non-uniform thickness that changes the way light reflects off of interfaces of the oxide coating, thereby reducing or eliminating any thin film interference coloring caused by the oxide coatings themselves or by a fingerprint.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: February 23, 2021
    Assignee: APPLE INC.
    Inventors: James A. Curran, Zechariah D. Feinberg, Christopher D. Prest, Joseph C. Poole
  • Patent number: 9726609
    Abstract: Materials and objects tagged with wavelength selective particles such as SERS nanotags modified for wavelength selectivity. As used herein, a wavelength selective particle is one which cannot be effectively excited or interrogated at one or more wavelengths where a reporter molecule associated with the particle would normally produce a spectrum. Also disclosed are methods of manufacturing wavelength selective particles and methods of tagging materials or objects with wavelength selective particles.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: August 8, 2017
    Assignee: SICPA HOLDING SA
    Inventors: Michael J. Natan, Richard D. Freeman, William E. Doering, Marcelo E. Piotti
  • Patent number: 9356172
    Abstract: Disclosed is a solar cell including a support substrate, a barrier layer on the support substrate, and a photo-electro conversion part on the barrier layer. The barrier layer comprises first and second barrier layers having porosities different from each other.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: May 31, 2016
    Assignee: LG INNOTEK CO., LTD.
    Inventor: Do Won Bae
  • Patent number: 9108843
    Abstract: A method for preparation of highly porous and preferentially-oriented {100} platinum on a substrate by electrodeposition in a deposition bath, comprising using a deposition potential Edep lower than ERHE+150 mV and an acidified platinum salt solution having a Pt salt concentration less than 5.0 mmole L?1 or, in presence of hydrogen, comprising limiting the concentration of Pt salts in the electrolyte to less than 5.0 mmole L?1 and controlling the temperature of the electrolyte. Preferentially-oriented {100} platinum nanowires and thin films, comprising Pt{100} in a range between about 20 and about 60% and having a roughness factor of at least 50 are produced.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: August 18, 2015
    Assignee: INSTITUT NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Erwan Bertin, Sébastien Garbarino, Daniel Guay, Manuel Martin, Alexandre Ponrouch
  • Publication number: 20150140437
    Abstract: A method for producing a lithium electrode for a lithium-ion battery includes: a) provision of a basic body including an active material having in particular metallic lithium, a lithium alloy, and/or a lithium intercalation material; b) treatment of the basic body with a treatment composition in a wet-chemical process for the formation of a lithium-ion-conducting protective layer, with a reaction of the active material with at least one component of the treatment composition; and c) an optional treatment of the electrode at increased temperature and/or in a vacuum.
    Type: Application
    Filed: April 19, 2013
    Publication date: May 21, 2015
    Inventors: Leonore Glanz, Ulrich Hasenkox
  • Publication number: 20150114840
    Abstract: An antibacterial coating that is composed of silver is disclosed, as well as medical tools and implants comprising such a coating, and a method and an apparatus for the production of such a coating. The medical tools or the dental or orthopaedic implant comprises a metal or metal alloy having a treated surface wherein the treated surface is at least partially converted to an oxide film by plasma electrolytic oxidation using a colloid-dispersed system and wherein the converted surface is partially covered by islands formed by colloid-dispersed silver-particles of the colloid-dispersed system. An Ag—TiO2 coating shows excellent properties in terms of antibacterial efficacy (even against multi-resistant strains), adhesion and biocompatibility. The life-time of an implant in a human body is increased. The antibacterial coating can be used in the field of traumatology, orthopaedic, osteosynthesis and/or endoprothesis, especially where high infection risk exists.
    Type: Application
    Filed: January 6, 2014
    Publication date: April 30, 2015
    Inventors: Elvira Dingeldein, Cyrille Gasqueres, Frank Witte, Amir Eliezer
  • Publication number: 20150075995
    Abstract: A method for manufacturing a surgical implant. A metal layer is deposited onto a polyaryletherketone (PAEK) substrate by generating a series of pulses using a high power impulse magnetron sputtering process. Each pulse is applied in a series of micro pulse steps comprising (i) micro pulse on steps ranging from 10 ?s to 100 ?s and (ii) micro pulse off steps ranging from 5 ?s as to 400 ?s; at a repetition frequency ranging from 50-2000 Hz with 2 micropulses to 20 micropulses per repetition, a total pulse on time ranging from 25 ?s to 800 ?s for 5 minutes to 300 minutes at averaged power ranging from 200 W to 3000 W. The series of pulses are performed in a unipolar mode or a bipolar mode.
    Type: Application
    Filed: September 8, 2014
    Publication date: March 19, 2015
    Inventors: Paul Barker, Jörg Patscheider, Götz Thorwarth
  • Patent number: 8968668
    Abstract: A microplasma device of the invention includes a microcavity or microchannel defined at least partially within a thick metal oxide layer consisting essentially of defect free oxide. Electrodes are arranged with respect to the microcavity or microchannel to stimulate plasma generation in said microcavity or microchannel upon application of suitable voltage and at least one of the electrodes is encapsulated within the thick metal oxide layer. Large arrays can be formed and are highly robust as lack of microcracks in the oxide avoid dielectric breakdown.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: March 3, 2015
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: J. Gary Eden, Sung-Jin Park, Jin Hoon Cho, Seung Hoon Sung, Min Hwan Kim
  • Publication number: 20140340912
    Abstract: The present invention relates to a transparent light-emitting sheet which obtains high color purity and improves light collimation to improve light efficiency, and a method of manufacturing same. The transparent light-emitting sheet according to an embodiment of the present invention includes: a transparent alumina sheet having a plurality of nanopores that are uniformly aligned; and luminescent nanoparticles that are respectively disposed within the plurality of nanopores and convert wavelengths of excitation light to generate wavelength-converted light.
    Type: Application
    Filed: September 5, 2012
    Publication date: November 20, 2014
    Applicant: LG ELECTRONICS INC.
    Inventors: Dongwon Kang, Dongseon Jang, Gunyoung Hong
  • Patent number: 8888967
    Abstract: A process for creating porous anode foil for use in an electrolytic capacitor of an implantable cardioverter defibrillator is provided. The process includes electrochemical drilling a plurality of etched metal foils in sequence one after the other in a bath containing electrochemical drilling (ECD) solution initially having a pH of less than 5. Alternatively, an etched foil sheet may be passed through the bath in a substantially continuous manner such that a portion of said etched foil sheet is in contact with the ECD solution is electrochemically drilled to generate pores.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: November 18, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Jason Hemphill, Thomas F. Strange
  • Publication number: 20140332394
    Abstract: An antibacterial coating that is composed of silver is disclosed, as well as medical tools and implants comprising such a coating, and a method and an apparatus for the production of such a coating. The medical tools or the dental or orthopaedic implant comprises a metal or metal alloy having a treated surface wherein the treated surface is at least partially converted to an oxide film by plasma electrolytic oxidation using a colloid-dispersed system and wherein the converted surface is partially covered by islands formed by colloid-dispersed silver-particles of the colloid-dispersed system. An Ag—TiO2 coating shows excellent properties in terms of antibacterial efficacy (even against multi-resistant strains), adhesion and biocompatibility. The life-time of an implant in a human body is increased. The antibacterial coating can be used in the field of traumatology, orthopaedic, osteosynthesis and/or endoprothesis, especially where high infection risk exists.
    Type: Application
    Filed: January 6, 2014
    Publication date: November 13, 2014
    Inventors: Elvira Dingeldein, Cyrille Gasqueres, Frank Witte, Amir Eliezer
  • Patent number: 8846208
    Abstract: Articles of manufacture comprise a body. A porous material is plated on the body, the porous material comprising nickel having a plurality of pores disposed in a generally ordered array extending into the nickel. Methods of forming a porous material on a body comprise disposing an anode and a cathode in an electrolyte comprising nickel ions. An electrical signal is pulsed to at least one of the anode and the cathode. A porous material comprising nickel having a plurality of pores generally disposed in an ordered array extending into the nickel is deposited on the cathode.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: September 30, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Hendrik John, Sven Hartwig, Claus-Peter Klages
  • Publication number: 20140262790
    Abstract: A silicon polymer treatment with included pigments for anodized aluminum objects such as wheels. Titanium dioxide may be dispersed in polysiloxane or polysilazane to form a white polymer treatment on the object. Other beneficial components, such as corrosion inhibitors may be included in the polymer matrix.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Inventors: Thomas Levendusky, Albert Askin, Luis Fanor Vega
  • Patent number: 8821708
    Abstract: A surface treatment method of cladding a Sn or Sn alloy coating with one or more metals selected from among Mn, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, In, Ti, Ge, Pb, Sb and Bi continuously or discontinuously in such a way as to make the Sn or Sn alloy coating partially exposed, which method makes it possible to inhibit the generation of whiskers in an Sn or Sn alloy coating formed on the surface of a substrate to which other member is pressure-welded or the joint surface to be soldered. Cladding an Sn or Sn alloy coating with a prescribed metal continuously or discontinuously in such a way as to make the coating partially exposed inhibits the generation of whiskers by contact pressure in pressure welding, and further inhibits the generation of whiskers without impairing the solder wettability of the coating even when the cladding is not followed by heat treatment or reflowing.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: September 2, 2014
    Assignees: C. Uyemura & Co., Ltd., Osaka University
    Inventors: Masanobu Tsujimoto, Isamu Yanada, Katsuaki Suganuma, Keunsoo Kim
  • Publication number: 20140197036
    Abstract: A method for manufacturing a moth-eye mold of an embodiment of the present invention employs a mold base including a metal base, an organic insulating layer provided on the metal base, and an aluminum alloy layer provided on the organic insulating layer, the aluminum alloy layer containing aluminum and a non-aluminum metal element M, an absolute value of a difference between a standard electrode potential of the metal element M and a standard electrode potential of aluminum being not more than 0.64 V, and a content of the metal element M in the aluminum alloy layer not exceeding 10 mass %.
    Type: Application
    Filed: March 29, 2012
    Publication date: July 17, 2014
    Applicants: GEOMATEC CO., LTD., SHARP KABUSHIKI KAISHA
    Inventors: Akinobu Isurugi, Kiyoshi Minoura, Hiroyuki Sugawara
  • Publication number: 20140183048
    Abstract: Embodiments of the present disclosure provide for methods for manufacturing a metallized or metallizable felt by percolation of at least one felt element by electrodeposition.
    Type: Application
    Filed: December 6, 2013
    Publication date: July 3, 2014
    Inventors: Didier FLONER, Florence GENESTE, Dominique PARIS, Olivier LAVASTRE
  • Publication number: 20140174936
    Abstract: Monovalent copper plating baths are used to metallize current tracks of the front side or emitter side of semiconductor wafers. Copper is selectively deposited on the current tracks by electrolytic plating or LIP. Additional metallization of the current tracks may be done using conventional metal plating baths. The metalized semiconductors may be used in the manufacture of photovoltaic devices.
    Type: Application
    Filed: April 19, 2012
    Publication date: June 26, 2014
    Applicant: Rohm and Haas Electronic Materials LLC
    Inventors: Gary Hamm, Jason A. Reese, Lingyun Wei
  • Publication number: 20140178728
    Abstract: A method of fabricating an energy storage device with a large surface area electrode comprises: providing an electrically conductive substrate; depositing a semiconductor layer on the electrically conductive substrate, the semiconductor layer being a first electrode; anodizing the semiconductor layer, wherein the anodization forms pores in the semiconductor layer, increasing the surface area of the first electrode; after the anodization, providing an electrolyte and a second electrode to form the energy storage device. The substrate may be a continuous film and the electrode of the energy storage device may be fabricated using linear processing tools. The semiconductor may be silicon and the deposition tool may be a thermal spray tool. Furthermore, the semiconductor layer may be amorphous. The energy storage device may be rolled into a cylindrical shape. The energy storage device may be a battery, a capacitor or an ultracapacitor.
    Type: Application
    Filed: February 26, 2014
    Publication date: June 26, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Omkaram NALAMASU, Steven VERHAVERBEKE
  • Publication number: 20140166493
    Abstract: An antibacterial coating that is composed of silver is disclosed, as well as medical tools and implants comprising such a coating, and a method and an apparatus for the production of such a coating. The medical tools or the dental or orthopaedic implant comprises a metal or metal alloy having a treated surface wherein the treated surface is at least partially converted to an oxide film by plasma electrolytic oxidation using a colloid-dispersed system and wherein the converted surface is partially covered by islands formed by colloid-dispersed silver-particles of the colloid-dispersed system. An Ag—TiO2 coating shows excellent properties in terms of antibacterial efficacy (even against multi-resistant strains), adhesion and biocompatibility. The life-time of an implant in a human body is increased. The antibacterial coating can be used in the field of traumatology, orthopaedic, osteosynthesis and/or endoprothesis, especially where high infection risk exists.
    Type: Application
    Filed: January 6, 2014
    Publication date: June 19, 2014
    Applicant: aap Biomaterials GmbH
    Inventors: Elvira Dingeldein, Cyrille Gasqueres, Frank Witte, Amir Eliezer
  • Publication number: 20140151234
    Abstract: The invention concerns a method for manufacturing of an object having phosphorescent properties, comprising the steps of providing an object having a surface made from aluminium or from an aluminium-based alloy and forming a layer of porous aluminium (hydr)oxide at said surface. The invention is characterized in that the method comprises the step of contacting the layer of porous aluminium (hydr)oxide with one or several solutions containing metal dopant ions such as to allow the metal dopant ions to bind to the layer of porous aluminium (hydr)oxide, wherein at least one of said solutions contains ions of at least one element selected from a first group consisting of calcium (Ca), magnesium (Mg), strontium (Sr) and barium (Ba), and wherein at least one of said solutions contains ions of europium (Eu). The invention also concerns an object obtainable by the above method.
    Type: Application
    Filed: April 12, 2011
    Publication date: June 5, 2014
    Applicant: Alusera AB
    Inventors: Knut Irgum, Erika Wikberg
  • Publication number: 20140140054
    Abstract: Methods are provided for fabricating a multi-structure pore membrane. In one method, an anodized aluminum oxide (AAO) template is formed with an array of pores exposing underlying regions of a conductive layer top surface. A plurality of photoresist layers is patterned to sequentially expose a plurality of AAO template sections. Each exposed AAO template section is sequentially etched to widen pore diameters, so that each AAO template section may be associated with a corresponding unique pore diameter. A target material is deposited in the pores of the AAO template and, as a result, an array of target material structures is formed on the top surface, where the target material structures associated with each AAO template section have a corresponding diameter. Also provided is a multi-structure pixel device formed with subpixels having different structure dimensions.
    Type: Application
    Filed: November 20, 2012
    Publication date: May 22, 2014
    Inventors: Akinori Hashimura, Douglas J. Tweet, Apostolos T. Voutsas
  • Publication number: 20140124374
    Abstract: A position locator for use in dental restorative procedure is described. The position locator is inserted into a replica of a dental implant or into a replica of an abutment. The position and orientation of the implant replica is determined by scanning the model with the implant replica and the position locator. Alternatively, the position locator can be inserted into the dental implant and scanning is carried out in the mouth of the patient. The position locator is made of an optically opaque material, such as titanium, and has an outer surface detectable by an optical scanner, e.g. with a layer of porous titanium oxide applied through anodic oxidation.
    Type: Application
    Filed: October 31, 2013
    Publication date: May 8, 2014
    Applicant: Nobel Biocare Services AG
    Inventors: Thomas Eriksson, Magnus Ottsjö
  • Publication number: 20140061054
    Abstract: An anodizing color drawing method includes the steps of providing a metal workpiece; performing an anodic treatment of the metal workpiece to form a coating layer on a surface of the metal workpiece and a plurality of pores on the coating layer; using a plurality of electronic ink-jet nozzles to spray a plurality of dyes by a printing method and the dyes permeate into the pores of the coating layer, and forming a color drawing pattern on the coating layer; and performing a sealing treatment on the coating layer with the color drawing pattern. A color drawing layer processed by the anodic treatment has an enhanced hardness to reduce scratches and damages and maintain the aesthetic look.
    Type: Application
    Filed: August 29, 2012
    Publication date: March 6, 2014
    Inventor: Jack Ye
  • Publication number: 20140044938
    Abstract: Disclosed is process for producing a protective layer for protecting a component against high temperatures and aggressive media. The process comprises forming a surface layer comprising aluminum and chromium on a surface of the component to be provided with the protective layer by chromizing and alitizing. The chromizing and/or the alitizing in different regions of the component surface to be protected is carried out simultaneously but differently to result in a protective layer that has different regions.
    Type: Application
    Filed: August 8, 2013
    Publication date: February 13, 2014
    Applicant: MTU AERO ENGINES AG
    Inventors: Horst PILLHOEFER, Erwin BAYER, Thomas DAUTL, Stefan MUELLER
  • Publication number: 20140014520
    Abstract: A method for forming metal members on a casing, includes steps of providing the casing of an electron device; selecting at least two areas on a common surface of the casing; forming, by an electroplating way, a metal layer on all of the selected areas; and forming, by a patterning way, the metal layer respectively with different metal member pattern layers on different selected areas, wherein the metal member pattern layers are selected from the group consisting of an antenna member pattern, a ground wire member pattern, and an electromagnetic shielding member pattern, so as to use these members as an antenna member, a ground wire member, or an electromagnetic shielding member of the electron device.
    Type: Application
    Filed: October 23, 2012
    Publication date: January 16, 2014
    Applicant: APONE TECHNOLOGY LTD.
    Inventor: WEI-LIN LIU
  • Publication number: 20140011020
    Abstract: The invention relates to a method for promoting the adhesion of a surface of a titanium material (5). In order to enable improved, in particular environmentally friendly, adhesion promotion of the surface, an adhesion promoting layer is applied, which comprises nanotubes (13) that include titanium dioxide (TiO2) and have diameters of 10 to 300 nm. The method also comprises applying an organic material to the adhesion promoting layer (11) with good adhesion.
    Type: Application
    Filed: December 12, 2011
    Publication date: January 9, 2014
    Inventors: Tobias Mertens, Martin Beneke, Franz J. Gammel
  • Publication number: 20130321983
    Abstract: The present invention relates to a nano-porous electrode for a super capacitor and a manufacturing method thereof, and more specifically, to a nano-porous electrode for a super capacitor and a manufacturing method thereof wherein pores are formed on the surface or inside an electrode using an electrodeposition method accompanied by hydrogen generation, thereby increasing the specific surface area of the electrode and thus improving the charging and discharging capacity, energy density, output density, and the like of a capacitor.
    Type: Application
    Filed: January 6, 2012
    Publication date: December 5, 2013
    Applicant: SUNGKYUNKWAN UNIVERSITY FOUNDATION FOR CORPORATE COLLABORATION
    Inventors: Chanhwa Chung, Myung Gi Jeong, Serhiy Cherevko
  • Publication number: 20130319866
    Abstract: Methods and structures for forming anodization layers that protect and cosmetically enhance metal surfaces are described. In some embodiments, methods involve forming an anodization layer on an underlying metal that permits an underlying metal surface to be viewable. In some embodiments, methods involve forming a first anodization layer and an adjacent second anodization layer on an angled surface, the interface between the two anodization layers being regular and uniform. Described are photomasking techniques and tools for providing sharply defined corners on anodized and texturized patterns on metal surfaces. Also described are techniques and tools for providing anodizing resistant components in the manufacture of electronic devices.
    Type: Application
    Filed: September 11, 2012
    Publication date: December 5, 2013
    Inventors: Lucy Elizabeth Browning, Julie Hanchak-Connors, John Murray Thornton, III
  • Publication number: 20130256141
    Abstract: A method for making a titanium-and-resin composite or titanium alloy-and-resin composite includes: providing a titanium or titanium alloy substrate; electrochemically treating the substrate to form a titanium hydride layer; anodizing the substrate having the titanium hydride layer to form an nano-porous oxide film on the surface of the substrate, the nano-porous oxide film having nano pores and comprising at least two layers of different porosity or pore diameters; and inserting the substrate in a mold and melting resin on the surface of the nano-porous oxide film to form the composite.
    Type: Application
    Filed: May 30, 2013
    Publication date: October 3, 2013
    Inventors: HUANN-WU CHIANG, CHENG-SHI CHEN, DAI-YU SUN, YUAN-YUAN FENG, YU-QIANG WANG
  • Publication number: 20130240365
    Abstract: A method of producing metallic medical supplies includes supplying a metallic material as a base material; treating the base material by carrying out any one of electrochemical treatment, chemical treatment, thermal and/or mechanical treatment or a combination of two or more of these treatments to form a film having micro pores and/or micro unevennesses having a density of 5? 104/mm2 on a surface of the base material; and carrying out iodine-impregnation treatment to impregnate the film with iodine or iodine compounds.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 19, 2013
    Applicant: PROSTEC CO., LTD.
    Inventors: Hiroyuki Tsuchiya, Matsufumi Takaya, Masatsugu Maejima
  • Patent number: 8535507
    Abstract: A process for creating porous anode foil for use in an electrolytic capacitor of an implantable cardioverter defibrillator is provided. The process includes electrochemical drilling a plurality of etched metal foils in sequence one after the other in a bath containing electrochemical drilling (ECD) solution initially having a pH of less than 5. Alternatively, an etched foil sheet may be passed through the bath in a substantially continuous manner such that a portion of said etched foil sheet is in contact with the ECD solution is electrochemically drilled to generate pores. Electrochemical drilling is achieved when a current is passed to the foil or portion of the foil sheet in solution.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: September 17, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Ralph Jason Hemphill, Thomas F. Strange
  • Publication number: 20130200541
    Abstract: The invention relates to a stamper in which an oxide film having a fine concave-convex structure made up of a plurality of fine pores having an aspect ratio represented by [the depth of the fine pores/the average interval between the fine pores] of 1 to 4 is formed on the surface of an aluminum base material which is made of aluminum having a content of Ti of 150 ppm to 500 ppm, a content of B or C of 1 ppm to 50 ppm and a purity of 99.9% or more. According to the invention, it is possible to provide a low-cost stamper in which the emergence of a pattern derived from the traces of crystal grains on the surface of the oxide film is suppressed, an article having a favorable appearance, which is manufactured using the above stamper, and a method for manufacturing the above.
    Type: Application
    Filed: September 28, 2011
    Publication date: August 8, 2013
    Applicant: Mitsubishi Rayon Co., Ltd.
    Inventors: Hiroaki Kita, Kota Shirai, Katsuhiro Kojima
  • Patent number: 8500985
    Abstract: Selectively accelerated or selectively inhibited metal deposition is performed to form metal structures of an electronic device. A desired pattern of an accelerator or of an inhibitor is applied to the substrate; for example, by stamping the substrate with a patterned stamp or spraying a solution using an inkjet printer. In other embodiments, a global layer of accelerator or inhibitor is applied to a substrate and selectively modified in a desired pattern. Thereafter, selective metal deposition is performed.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: August 6, 2013
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, John Stephen Drewery, Eric G. Webb
  • Publication number: 20130183492
    Abstract: Provided are metal nanoparticles formed by using a low-temperature process, uniformly distributed on a substrate, and having a uniform and accurate size, and a method of forming the same. A method of forming metal nanoparticles on a substrate includes preparing a substrate including a polymer; forming a metal containing layer on the substrate; and forming nanoparticles of the metal from the metal containing layer by processing the metal containing layer with inductively coupled plasma.
    Type: Application
    Filed: January 17, 2013
    Publication date: July 18, 2013
    Applicant: SNU R&DB FOUNDATION
    Inventor: SNU R&DB FOUNDATION
  • Publication number: 20130182249
    Abstract: Provided are patterned nanoporous gold (“P-NPG”) films that may act as at least one of an effective and stable surface-enhanced Raman scattering (“SERS”) substrate. Methods of fabricating the P-NPG films using a low-cost stamping technique are also provided. The P-NPG films may provide uniform SERS signal intensity and SERS signal intensity enhancement by a factor of at least about 1×107 relative to the SERS signal intensity from a non-enhancing surface.
    Type: Application
    Filed: September 20, 2011
    Publication date: July 18, 2013
    Applicant: Vanderbilt University
    Inventors: Sharon M. Weiss, Yang Jiao, Judson D. Ryckman, Peter N. Ciesielski, G. Kane Jennings
  • Publication number: 20130164555
    Abstract: An article includes an aluminum or aluminum alloy substrate, an anodic layer formed on the substrate, and an electroplating layer formed on the anodic layer. The anodic layer includes a barrier layer formed on the substrate, and a porous layer formed on the barrier layer. The anodic layer defines a plurality of through pores. A method for making the article is also provided.
    Type: Application
    Filed: August 3, 2012
    Publication date: June 27, 2013
    Applicants: FIH (HONG KONG) LIMITED, SHENZHEN FUTAIHONG PRECISION INDUSTRY CO., LTD.
    Inventor: TING DING
  • Publication number: 20130154061
    Abstract: An anodizing apparatus for causing an anodizing reaction to substrates immersed in an electrolyte solution. The apparatus includes a storage tank for storing the electrolyte solution, a holder for holding a plurality of substrates in liquid-tight contact with circumferential surfaces of the substrates, a moving mechanism for moving the holder between a transfer position outside the storage tank and a treating position inside the storage tank, and a closing device disposed in the storage tank for cooperating with the holder to complete a liquid-tight closure of the circumferential surfaces of the substrates held by the holder. Chemical reaction treatment is carried out with the circumferential surfaces of the substrates placed in a liquid-tight state. After the chemical reaction treatment is completed, the closing device is made inoperative and the holder is moved away from the treating position to unload the substrates from the storage tank.
    Type: Application
    Filed: November 29, 2012
    Publication date: June 20, 2013
    Applicants: SOLEXEL, INC., DAINIPPON SCREEN MFG. CO., LTD.
    Inventors: Dainippon Screen MFG. Co., Ltd., Solexel, Inc.
  • Publication number: 20130122375
    Abstract: The invention offers a porous metal body that has a three-dimensional network structure, that has less reduction in performance during the pressing and compressing steps when an electrode material is produced, and that can be used as an electrode material capable of achieving good electric properties, a method of producing the porous metal body, and an electrode material and a battery both incorporating the foregoing porous metal body. A porous metal body has a skeleton structure that is formed of a metal layer, that has a three-dimensional network structure, and that has an end portion provided with a nearly spherical portion. It is desirable that the metal be aluminum and that the nearly spherical portion have a diameter larger than the outer diameter of the skeleton structure.
    Type: Application
    Filed: October 10, 2012
    Publication date: May 16, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: SUMITOMO ELECTRIC INDUSTRIES, LTD.
  • Publication number: 20130101919
    Abstract: Provided are a MEA, a fuel cell, and a gas detoxification apparatus that allow at high efficiency a general electrochemical reaction causing gas decomposition or the like and are excellent in cost efficiency; and a method for producing a MEA. In this MEA 7, a porous base 3, a porous anode 2, an ion-conductive solid electrolyte 1, and a porous cathode 5 are stacked. The anode 2 or the cathode 5 is in contact with a surface of the porous base 3. The porous anode 2 includes a metal deposit body 21 having catalysis for gas decomposition.
    Type: Application
    Filed: June 27, 2011
    Publication date: April 25, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu
  • Patent number: 8404558
    Abstract: In a preferred method of formation embodiment, a metal foil or film is obtained or formed with micro-holes. The foil is anodized to form metal oxide. One or more self-patterned metal electrodes are automatically formed and buried in the metal oxide created by the anodization process. The electrodes form in a closed circumference around each microcavity in a plane(s) transverse to the microcavity axis, and can be electrically isolated or connected. Preferred embodiments provide inexpensive microplasma device electrode structures and a fabrication method for realizing microplasma arrays that are lightweight and scalable to large areas. Electrodes buried in metal oxide and complex patterns of electrodes can also be formed without reference to microplasma devices—that is, for general electrical circuitry.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: March 26, 2013
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: J. Gary Eden, Sung-Jin Park, Kwang-Soo Kim
  • Publication number: 20130068719
    Abstract: A method for making a master disk to be used in the nanoimprinting process to make patterned-media disks uses an electrically conductive substrate and guided self-assembly of a block copolymer to form patterns of generally radial lines and/or generally concentric rings of one of the block copolymer components. A metal is electroplated onto the substrate in the regions not protected by the lines and/or rings. After removal of the block copolymer component, the remaining metal pattern is used as an etch mask to fabricate either the final master disk or two separate molds that are then used to fabricate the master disk.
    Type: Application
    Filed: September 19, 2011
    Publication date: March 21, 2013
    Inventors: Christian Rene' Bonhote, Jeffrey S. Lille, Ricardo Ruiz, Georges Gibran Siddiqi
  • Publication number: 20130071297
    Abstract: A microplasma device includes a microcavity or microchannel defined at least partially within a thick metal oxide layer consisting essentially of defect free oxide. Electrodes are arranged with respect to the microcavity or microchannel to stimulate plasma generation in said microcavity or microchannel. At least one of the electrodes is encapsulated within the thick metal oxide layer. A method of fabricating a microcavity or microchannel plasma device includes anodizing a flat or gently curved or gently sloped metal substrate to form a thick layer of metal oxide consisting essentially of nanopores that are perpendicular to the surface of the metal substrate. Material removal is conducted to remove metal oxide material to form a microcavity or microchannel in the thick layer of metal oxide.
    Type: Application
    Filed: June 20, 2012
    Publication date: March 21, 2013
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: J. Gary Eden, Sung-Jin Park, Jin Hoon Cho, Seung Hoon Sung, Min Hwan Kim
  • Publication number: 20130037412
    Abstract: An anodized layer formation method includes: (a) providing an aluminum base or an aluminum film deposited on a support; anodization step (b) in which a forming voltage is increased to a predetermined first voltage level under a predetermined condition with a surface of the aluminum base or a surface of the aluminum film being kept in contact with an electrolytic solution, and thereafter, the forming voltage is maintained at the first voltage level for a predetermined period of time, whereby a porous alumina layer which has a minute recessed portion is formed; and etching step (c) in which, after step (b), the porous alumina layer is brought into contact with an etching solution, whereby the minute recessed portion is enlarged and a lateral surface of the minute recessed portion is sloped.
    Type: Application
    Filed: April 26, 2011
    Publication date: February 14, 2013
    Applicant: SHARP KABUSHIKI KAISHA
    Inventor: Ichiroh Ihara
  • Publication number: 20130029170
    Abstract: Articles of manufacture comprise a body. A porous material is plated on the body, the porous material comprising nickel having a plurality of pores disposed in a generally ordered array extending into the nickel. Methods of forming a porous material on a body comprise disposing an anode and a cathode in an electrolyte comprising nickel ions. An electrical signal is pulsed to at least one of the anode and the cathode. A porous material comprising nickel having a plurality of pores generally disposed in an ordered array extending into the nickel is deposited on the cathode.
    Type: Application
    Filed: July 29, 2011
    Publication date: January 31, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Hendrik John, Sven Hartwig, Claus-Peter Klages
  • Publication number: 20130015073
    Abstract: The present invention is aimed to fabricate nanoporous anodic oxide ceramic membrane tubes with excellent pore characteristics by anodizing metal tubes located in a cylindrical symmetry with respect to a cathode which itself has a cylindrical symmetry. The membrane tubes may have protruded portions acting as supports and joints. The present invention also deals with stacks and bundles consisted of numbers of the anodic oxide ceramic tubes for filter and dialysis applications.
    Type: Application
    Filed: September 20, 2012
    Publication date: January 17, 2013
    Applicant: Korea Electrotechnology Research Institute
    Inventor: Dae Yeong Jeong
  • Publication number: 20130012801
    Abstract: A probe element and a method of forming a probe element are provided. The probe element includes a carrier comprising biodegradable and/or bioactive material; and at least one electrode coupled to the carrier.
    Type: Application
    Filed: October 29, 2010
    Publication date: January 10, 2013
    Inventors: Levent Yobas, Ajay Agarwal, Ramana Murthy Badam, Rama Krishna Kotlanka, Xiang Jie Cyrus Foo
  • Publication number: 20130004612
    Abstract: One of the objects of the present invention is to provide a method for readily manufacturing a seamless mold in the form of a roll which has a porous alumina layer over its surface. The mold manufacturing method of the present invention is a method for manufacturing a mold which has a porous alumina layer over its surface, including the steps of: providing a hollow cylindrical support; forming an insulating layer on an outer perimeter surface of the hollow cylindrical support; depositing aluminum on the insulating layer to form an aluminum film; and anodizing a surface of the aluminum film to form a porous alumina layer which has a plurality of minute recessed portions.
    Type: Application
    Filed: February 8, 2011
    Publication date: January 3, 2013
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Akinobu Isurugi, Kiyoshi Minoura, Hidekazu Hayashi
  • Publication number: 20120325670
    Abstract: An anodized layer formation method of an embodiment of the present invention includes the step a of providing an aluminum film which is formed on a first principal surface of a support and the step b of anodizing a surface of the aluminum film to form a porous alumina layer which has a plurality of minute recessed portions. In the step a, a second principal surface of the support which is opposite to the first principal surface is provided with a low heat conduction member that has a predetermined pattern. According to an embodiment of the present invention, a porous alumina layer can be formed which includes regions of different minute structures in the predetermined pattern.
    Type: Application
    Filed: March 8, 2011
    Publication date: December 27, 2012
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Kenichiro Nakamatsu, Hidekazu Hayashi, Kiyoshi Minoura, Akinobu Isurugi
  • Publication number: 20120325666
    Abstract: Frost-free surfaces and methods for manufacturing such surfaces are described. The frost-free surfaces reduce ice build-up, prevent vapor condensation and reduce adhesion force between ice and a solid substrate. The surfaces can be on parts used in devices where superhydrophobic properties may be obtained post or during device manufacturing. The superhydrophobic properties are the result of aluminum oxide clusters made on such surfaces.
    Type: Application
    Filed: November 10, 2009
    Publication date: December 27, 2012
    Inventor: Chunbo Ran
  • Publication number: 20120297982
    Abstract: Embodiments of the invention relate to a method for preparing crystalline metal-organic frameworks (MOFs). The method includes the steps of providing an electrolyte solution in contact with a conductive surface, and applying a current or potential to the conductive surface in contact with the electrolyte solution. The electrolyte solution includes a protonated organic ligand, a metal ion, and a probase. Application of the reductive current or potential to the conductive surface produces the crystalline metal-organic framework (MOF) deposited on the conductive surface. The MOFs produced by the method may be incorporated into a gas separation membrane, a purification filter, and/or a sensor.
    Type: Application
    Filed: April 4, 2012
    Publication date: November 29, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Mircea Dinca, Minyuan Li