Ceramic Or Glass Substrate Patents (Class 205/162)
  • Patent number: 5545308
    Abstract: The present invention provides electronically conducting polymer films formed from photosensitive formulations of pyrrole and an electron acceptor that have been selectively exposed to UV light, laser light, or electron beams. The formulations may include photoinitiators, flexibilizers, solvents and the like. These solutions can be used in applications including printed circuit boards and through-hole plating and enable direct metallization processes on non-conducting substrates. After forming the conductive polymer patterns, a printed wiring board can be formed by sensitizing the polymer with palladium and electrolytically depositing copper.
    Type: Grant
    Filed: June 19, 1995
    Date of Patent: August 13, 1996
    Assignee: Lynntech, Inc.
    Inventors: Oliver J. Murphy, G. Duncan Hitchens, Dalibor Hodko, Eric T. Clarke, David L. Miller, Donald L. Parker
  • Patent number: 5536386
    Abstract: The modification of carbon particles is disclosed for achieving enhanced plating upon a non-conductive surface which has been previously treated with said modified carbon particles. The invention is particularly useful in plating through holes of printed circuit boards.
    Type: Grant
    Filed: February 10, 1995
    Date of Patent: July 16, 1996
    Assignee: MacDermid, Incorporated
    Inventors: Donald Ferrier, Rosa Martinez, Eric Yakobson
  • Patent number: 5525440
    Abstract: Method for the manufacture of a photoelectrochemical cell and a cell made by this method. A disadvantage of such cells (1) is the fact that their efficiency is not sufficient for economic use. It is therefore the aim of the invention to avoid this disadvantage. The method according to the invention makes it possible to produce a photoelectrochemical cell (1) comprising a porous electrode (4), the effective surface of which is by a factor 700 greater than that of electrodes of comparable size.
    Type: Grant
    Filed: November 2, 1993
    Date of Patent: June 11, 1996
    Assignee: Ecole Polytechnique Federale de Lausanne (EPFL)
    Inventors: Andreas G. Kay, Michael Graetzel, Brian O'Regan
  • Patent number: 5503732
    Abstract: A method for manufacturing a substrate useful as a color filter for LCD and having window-shaped coating films and a frame-shaped, functional coating film at the regions not occupied with the window-shaped coating films, which comprises the steps of:(a) forming a functional coating film on a transparent substrate having electrically conductive circuits on a surface thereof,(b) superposing a photomask having a predetermined pattern on the surface of the coating film formed in step (a), and exposing the thus masked coating film to light,(c) subjecting the intermediate product to developing to leave a frame-shaped coating film, and(d) subjecting the resulting substrate formed through steps (a) to (c) to electro-deposition to form electro-deposition coating films on the electrically conductive circuits, enables production of coating films of fine pattern with improved precision.
    Type: Grant
    Filed: July 12, 1994
    Date of Patent: April 2, 1996
    Assignee: Shinto Paint Co., Ltd.
    Inventors: Susumu Miyazaki, Tsuyoshi Nakano, Yoshikatsu Okada, Yasuhiko Teshima, Miki Matsumura
  • Patent number: 5478445
    Abstract: Improved electrolytic deposition of semiconductors is obtained by separating the anode from the cathode by an ion-exchange membrane. The process is useful in the deposition of IIB/VIB semiconductors in the fabrication of photovoltaic cells.
    Type: Grant
    Filed: July 11, 1994
    Date of Patent: December 26, 1995
    Assignee: BP Solar Limited
    Inventors: Jeremy Barker, Rodney J. Marshall, Mehran Sadeghi
  • Patent number: 5476580
    Abstract: A composition and process for preparing a non-conductive substrate for electroplating. The composition comprises 0.1 to 20% by weight carbon (e.g. graphite or carbon black) having a mean particle size within the range of 0.05 to 50 microns; optionally, 0.01 to 10% by weight of a water soluble or dispersible binding agent for binding to the carbon particles; optionally, an effective amount of an anionic dispersing agent for dispersing the bound carbon particles; optionally, an amount of a surfactant that is effective for wetting the through hole; a pH within the range of 4-14; and an aqueous dispersing medium. Improved methods of applying the composition to a through hole, a printed wiring board having a through hole treated with the composition, and a method of fixing a carbon coating deposited on a through hole using an acid solution are also disclosed.
    Type: Grant
    Filed: May 3, 1994
    Date of Patent: December 19, 1995
    Assignee: Electrochemicals Inc.
    Inventors: Charles E. Thorn, Frank Polakovic, Charles A. Mosolf
  • Patent number: 5472592
    Abstract: An apparatus (10) for electrolytic plating of a substrate (44) includes a tank (14) in which a shaft (30) is centrally mounted for rotation about a first axis (28). The shaft carries an arm (40), on the distal end (112) of which is rotatably mounted a fixture wheel (44). The substrate to be plated is carried on the fixture wheel, which rides on an annular track (50) formed on the bottom of the tank around the shaft. A plurality of spaced pins (52) projecting upwardly from the track engage with a plurality of spaced recesses (56) formed about the perimeter (54) of the wheel, so that the wheel rotates about a second axis (64) while revolving around the first axis. The fixture carries a plurality of electrical contact members (46) that contact the substrate. Each contact member is separately supplied with current from a multichannel power supply (22).
    Type: Grant
    Filed: July 19, 1994
    Date of Patent: December 5, 1995
    Assignee: American Plating Systems
    Inventor: Kenneth J. Lowery
  • Patent number: 5466358
    Abstract: A method of forming a fluorescent screen for a field emission display by electrodeposition comprises: forming a transparent solid electrode or transparent stripe or dot electrodes (1) in an effective area and a guard electrode (3, 8) in an ineffective area surrounding the effective area on the inner surface of a screen panel (13), immersing the screen panel (13) in an electrodeposition solution (12G, 12B, 12R, 12M) containing dispersed particles of a fluorescent material and contained in an electrodeposition tank (11), applying a voltage to the transparent solid electrode or the transparent stripe or dot electrodes, and a reverse bias voltage to the guard electrode (3, 8) to deposit particles of the fluorescent material only on the transparent solid electrode or the transparent stripe or dot electrodes to which the voltage is applied. The guard electrode (3, 8) prevents the deposition of particles of the fluorescent material in the ineffective area.
    Type: Grant
    Filed: August 15, 1994
    Date of Patent: November 14, 1995
    Assignee: Sony Corporation
    Inventors: Tadashi Kiyomiya, Toshio Ohoshi, Masami Okita
  • Patent number: 5454928
    Abstract: A method of forming solid metal vias extending between the top and bottom surfaces of a substrate with the ends of the vias being substantially coplanar with the top and bottom surfaces. The method includes the steps of forming holes through the substrate, plating the interior of the holes with excess metal to fill the holes and extend beyond the ends of the holes, heating the substrate to cause the metal to melt and consolidate to form solid vias with domed ends, and lapping the top and bottom surfaces of the substrate to remove the domes. Conductive layers may then be formed over the vias. These layers may have windows over a portion of each via to provide an escape route for expanding fluids during further processing of the substrate.
    Type: Grant
    Filed: January 14, 1994
    Date of Patent: October 3, 1995
    Assignee: Watkins Johnson Company
    Inventors: Michael R. Rogers, Theodore E. Washburn, Michael A. Novice, Ronald S. Besser, Brian S. White
  • Patent number: 5281326
    Abstract: A method for coating a dielectric ceramic piece by a layer of electrical conductivity whereby the method consists of coating the ceramic piece with an electrically conductive paste and of growing a metal layer of good electrical conductivity upon this layer.
    Type: Grant
    Filed: April 30, 1992
    Date of Patent: January 25, 1994
    Assignee: LK-Products OY
    Inventor: Elli K. Galla
  • Patent number: 5234715
    Abstract: An article comprising a non-conductive substrate having a sub-micron thickness of an oxidizable conductive first metal coating thereon, and a second (promoter) metal which is galvanically effective to promote the corrosion of the first metal, discontinuously coated on the first metal coating. Optionally, the second metal-doped, first metal-coated substrate may be further coated with a salt, to accelerate the galvanic corrosion reaction by which the conductive first metal coating is oxidized. Also disclosed is a related method of forming such articles, comprising chemical vapor depositing the first metal on the substrate and chemical vapor depositing the second metal on the applied first metal coating, and of optionally applying a salt by salt solution contacting of the second metal-doped, first metal-coated substrate. When utilized in a form comprising fine-diameter substrate elements such as glass or ceramic filaments, the resulting product may be usefully employed as an evanescent chaff.
    Type: Grant
    Filed: August 7, 1991
    Date of Patent: August 10, 1993
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ward C. Stevens, Edward A. Sturm, Delwyn F. Cummings
  • Patent number: 5209837
    Abstract: This invention relates to a process for preparing a magnetic disk, which comprises (a) subjecting a substrate having an anodized aluminum film to mirror surface-finishing, (b) widening pores of the anodized aluminum film by chemical dissolution treatment so that the total area of pores becomes from 20 to 80% of the entire surface area, thereby retaining crystalline alumina of the anodized aluminum film extruded after the chemical dissolution treatment, and (c) coating the resultant substrate with a magnetic continuous thin film.
    Type: Grant
    Filed: July 25, 1991
    Date of Patent: May 11, 1993
    Inventors: Noboru Tsuya, Tadao Tokushima, Toshiro Takahashi
  • Patent number: 5185074
    Abstract: A process for producing color filters, which comprises dispersing or dissolving pigments and the like having spectral properties in three primary colors, and a structure reinforcing resin in an aqueous medium, in the presence of a surfactant comprising a ferrocene compound, to prepare micelle solutions of dispersions in each color, and dipping the patterned electroconductive transparent substrate to be subjected to electrolytic treatment in each color, and thus forming a color-separated filter on the substrate. The color filter produced according to the above process can be utilized for display elements of filters, such as liquid crystal display devices, electrochromic display devices, latitude display devices, plasma display panels, spectroscopic devices, solid-state photographic devices and dimmers.
    Type: Grant
    Filed: January 30, 1991
    Date of Patent: February 9, 1993
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Seiichiro Yokoyama, Hideaki Kurata
  • Patent number: 5183553
    Abstract: The method of forming a high temperature resistant copper coating on a ceramic and/or enamel substrate, includes the steps of chemically depositing a copper layer having a thickness of at least 3 .mu.m on the substrate, heating the copper layer formed thereon at a temperature of from 200.degree. to 450.degree. C., mechanically treating the copper layer with brush and polishing means to consolidate an upper surface thereof and galvanically depositing an additional copper layer having a thickness of 3 .mu.m on the upper surface. The high temperature resistant copper coating for the ceramic or enamel substrate can stand a higher thermal load for a longer time than similar conventional coatings and can act to rapidly dissipate heat generated by electronic components.
    Type: Grant
    Filed: July 13, 1989
    Date of Patent: February 2, 1993
    Assignee: Schering Aktiengesellschaft
    Inventors: Detlef Tenbrink, Martin Bock, Kurt Heymann, Martin Rimkus
  • Patent number: 5135619
    Abstract: A process for producing an organic thin film comprising solubilizing a hydrophobic organic substance with a surfactant containing a ferrocene compound in an aqueous medium to form a micelle solution, and electrolyzing the micelle solution to form a thin film of the hydrophobic organic substance on an electrode. The ferrocene compound has the formula: ##STR1## G is hydrogen, methyl or ethyl, R.sup.4 is hydrogen, methyl or ethyl,m is a positive integer satisfying the expression0.ltoreq.k+m.ltoreq.10,Z is --O-- or ##STR2## R.sup.1 and R.sup.2 are identical or different and each is H, NH.sub.2, N(CH.sub.3).sub.2, CH.sub.3, CH.sub.3 O, OH or halogen,R.sup.3 is hydrogen or methyl,k is a positive integer satisfying the expression 0.ltoreq.k+m.ltoreq.10,n is a real number of 2 to 70, a is an integer of 1 to 4, andb is an integer of 1 to 5.
    Type: Grant
    Filed: January 30, 1991
    Date of Patent: August 4, 1992
    Assignee: Idemitsu Kosan Co., Inc.
    Inventors: Mitsuru Eida, Yoshio Hiroi, Seiichiro Yokoyama
  • Patent number: 5126017
    Abstract: A process for producing an electrically conductive polymer film which comprises electrically polymerizing a monomer, capable upon polymerization of providing conjugated double bonds, in an electrolytic polymerization solution containing a fluorocarbon surfactant and a dopant electrolyte using a working electrode and a counter-electrode immersed in the electrolytic polymerization solution, with the proviso that for an anodic oxidation electrolytic polymerization a fluorocarbon surfactant except an anionic fluorocarbon surfactant is used, and for a cathodic reduction electrolytc polymerization a fluorocarbon surfactant except a cationic fluorocarbon surfactant is used.
    Type: Grant
    Filed: August 30, 1991
    Date of Patent: June 30, 1992
    Assignee: Toho Rayon Co., Ltd.
    Inventors: Katsumi Nakama, Hiroyuki Satoh
  • Patent number: 5122237
    Abstract: A high molecular humidity sensor and manufacturing method thereof in which polypyrrole being of conductive high molecule is electrochemically polymerized and then reduced whereby ionic conductive property is given go that humidity sensibility becomes excellent.The high molecular humidity sensor of the invention is characterized in that it is a structure in which polypyrrole doped with dodecylsulfate anion DS.sup.- is stuck in film form on the surface of fine electrode, and cations Na.sup.+, K.sup.+ are permeated to said polypyrrole whereby salt is formed, and humidity sensibility is exhibited in region of 10.sup.4 -10.sup.6 .OMEGA., and humidity sensing speed becomes within several tens seconds to several minutes.
    Type: Grant
    Filed: January 22, 1991
    Date of Patent: June 16, 1992
    Assignee: Korea Institute of Science and Technology
    Inventors: Chung Y. Kim, Hee-Woo Rhee, Inseok Hwang, Jai K. Kim
  • Patent number: 5082539
    Abstract: Novel ferrocene derivatives represented by the general formula: ##STR1## or the general formula: ##STR2## or the general formula: ##STR3## (wherein all the symbols are as described in the specification) are excellent as surfactants.By application of an electrochemical method using the novel ferrocene derivatives or other ferrocene derivatives as a micelle forming agent (surfactant), an organic thin film of a hydrophobic organic substance can be efficiently produced.
    Type: Grant
    Filed: January 24, 1990
    Date of Patent: January 21, 1992
    Assignee: Idemitsu Kosan Company Limited
    Inventors: Tetsuo Saji, Katsuyoshi Hoshino
  • Patent number: 5074971
    Abstract: This invention relates to a process for preparing a magnetic disk, which comprises (a) subjecting a substrate having an anodized aluminum film to mirror surface-finishing, (b) widening pores of the anodized aluminum film by chemical dissolution treatment so that the total area of pores becomes from 20 to 80% of the entire surface area, thereby retaining crystalline alumina of the anodized aluminum film extruded after the chemical dissolution treatment, and (c) coating the resultant substrate with a magnetic continuous thin film.
    Type: Grant
    Filed: February 23, 1990
    Date of Patent: December 24, 1991
    Inventors: Noboru Tsuya, Tadao Tokushima, Toshiro Takahashi