At Least One Anodic Coating Patents (Class 205/171)
  • Patent number: 6003509
    Abstract: A solar collector for absorbing solar energy and for conversation thereof into thermal energy includes an aluminum foil. One side only of the aluminum foil is blackened to an extent such that it will absorb solar energy, preferably to an extent approximating a black body. The blackening is achieved by subjecting the one surface of the aluminum foil to an electrochemical surface etching treatment.
    Type: Grant
    Filed: September 28, 1995
    Date of Patent: December 21, 1999
    Assignee: Becromal S.p.A.
    Inventors: Giovanni Pietro Chiavarotti, Francesco di Quarto, Salvatore Piazza, Carmelo Sunseri
  • Patent number: 5989631
    Abstract: The invention relates to a process for equipping a kitchenware object, for example a pan, a pot, roasters or the like, comprising metal, for example aluminum, an aluminum alloy, magnesium or a magnesium alloy, with an anti-adhesion coating in the stressed surface regions, for example, on the inside, in which onto the metal surface of the object, for example after roughening, a mechanically-resistant layer, such as a mechanically-resistant anodization layer or similar mechanically-resistant layer is provided, and subsequently the stressed surface regions are provided with the anti-adhesion layer, wherein, before providing the mechanically-resistant layer, a durable surface layer is applied onto the surface regions, not to be provided with the coating system (mechanically-resistant layer or the like with or without anti-adhesion layer), of the object.
    Type: Grant
    Filed: August 5, 1997
    Date of Patent: November 23, 1999
    Assignee: Fissler GmbH
    Inventor: Klaus Dorfschmidt
  • Patent number: 5989735
    Abstract: A coating for protecting metal components against corrosion in a saline atmosphere comprises at least one layer of a tin/zinc alloy containing between 8% and 35% by weight of zinc deposited on a sublayer of an alloy of zinc/nickel containing between 10% and 16% by weight of nickel, the thickness proportion of the two alloys forming the coating being two-thirds in the case of the zinc/nickel alloy and one-third in the case of the tin/zinc alloy. The coating may also include an external chromate film.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: November 23, 1999
    Assignee: Societe Nationale d'Etude et de Construction de Moteurs d'Aviation "SNECMA"
    Inventors: Michel Ruimi, Jean-Paul Guerbert-Jubert
  • Patent number: 5820740
    Abstract: A colored anodic coating for use on surfaces of substrates, e.g. aluminum substrates in which it is desirable to maintain a high solar absorptance (a) and a high infrared emittance (e), particularly in low earth orbit space environments. This anodic coating is preferably a dark colored coating, and even more preferably a black coating. This coating allows a touch temperature within an acceptable design range to preclude burning of an astronaut in case of contact, but also allows a solar radiation absorption in an amount such that an a/e ratio of unity is achieved. The coating of the invention comprises a first layer in the form of an acid anodized colored anodic layer for achieving a high solar absorptance and a second or high emittance layer in the form of a clear acid anodized layer for achieving a high emittance. The entire coating is quite thin, e.g. 1-2 mils and is quite stable in a hostile space environment of the type encountered in a low earth orbit.
    Type: Grant
    Filed: July 9, 1997
    Date of Patent: October 13, 1998
    Assignees: Aluminum Finishing Corporation, McDonnell Douglas Corporation
    Inventors: Huong Giang Le, John L. Chesterfield
  • Patent number: 5685968
    Abstract: In a ceramic substrate with a thin-film capacitor, having a ceramic substrate a lower electrode layer formed on the ceramic substrate, a dielectric layer formed on the lower electrode layer and made of an oxide of a material constituting the lower electrode layer, and an upper electrode layer formed on the dielectric layer, a plating layer is provided between the ceramic base and the lower electrode layer to serve as a basis for the lower electrode layer.
    Type: Grant
    Filed: October 11, 1995
    Date of Patent: November 11, 1997
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Toshitaka Hayakawa, Shinobu Yoshida, Toshikatsu Takada
  • Patent number: 5683567
    Abstract: The present invention relates to an electrolytic electrode comprising a core material made of a valve metal, a dense electrically conductive tin oxide layer formed on the core material, an .alpha.-lead dioxide layer formed on the tin oxide layer, and a .beta.-lead dioxide layer formed on the .alpha.-lead dioxide layer. The present invention also relates to a method for preparing the electrolytic electrode.
    Type: Grant
    Filed: January 18, 1995
    Date of Patent: November 4, 1997
    Assignee: Permelec Electrode Ltd.
    Inventors: Takayuki Shimamune, Yasuo Nakajima
  • Patent number: 5665218
    Abstract: An oxygen generating electrode has a base material with at least a surface thereof made of titanium alone or a titanium alloy, a primary coating formed on the surface of the base material, and a catalyst layer formed on the primary coating and containing an oxide of platinum group element as a main component. The primary coating is composed of a titanium oxide coating and an oxide mixture layer, the titanium oxide coating being made of a titanium oxide only and including a first titanium oxide layer formed by electrolytically oxidizing the surface of the base material and a second titanium oxide layer formed on the first titanium oxide layer by a thermal decomposition method, the oxide mixture layer including at least one layer formed on the titanium oxide coating and consisting of a mixture containing an oxide of an element belonging to a group other than the platinum group, as a main component, and an oxide of a platinum group element.
    Type: Grant
    Filed: January 4, 1996
    Date of Patent: September 9, 1997
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Koichi Ashizawa, Toshio Horie, Hitoshi Kato
  • Patent number: 5643432
    Abstract: A method for forming solid electrolytic capacitors provides for anode lead and body surface with increased dielectric thickness as distinguished from a dielectric thickness formed within the inner anode body such that a capacitance value associated therewith is not substantially decreased. The method includes the steps of anodizing the anode to form a predetermined dielectric thickness on the anode and then soaking the anode in a solvent to impregnate an inner portion thereof with the solvent. The solvent is removed from surface areas desired to be coated by a further dielectric layer and thereafter again anodized whereby additional dielectric build-up is limited to the solvent free areas. The solvent is driven off resulting in a capacitor preform which is reinforced by thickened dielectric without capacitance loss which would result from depositing additional dielectric interiorly in the areas insulated from build-up by the solvent.
    Type: Grant
    Filed: July 13, 1995
    Date of Patent: July 1, 1997
    Assignee: AVX Corporation
    Inventor: Yong-Jian Qiu
  • Patent number: 5545306
    Abstract: The present invention relates to a method of producing an electrolytic electrode containing the following steps: forming a lead plating layer on the surface of a metallic core material by using a lead electrolytic plating bath, where the metallic core material is the cathode; forming an .alpha.-lead dioxide layer on the lead plating layer by electrolysis using an alkaline bath containing a lead ion and using the core material as the anode; and forming a .beta.-lead dioxide layer on the .alpha.-lead dioxide layer by electrolysis using an aqueous lead nitrate solution and using the core material as the anode. The electrolytic electrode produced by the foregoing method is capable of electrolysis in an aqueous solution, in particular, in an aqueous corrosive solution containing fluorine ions.
    Type: Grant
    Filed: December 6, 1994
    Date of Patent: August 13, 1996
    Assignee: Permelec Electrode Co. Ltd.
    Inventors: Takayuki Shimamune, Yasuo Nakajima
  • Patent number: 5482614
    Abstract: An EL lamp having a higher luminescence efficiency and a process for manufacturing the same are provided. The EL element includes an aluminum foil having at least one specularly polished surface, an anodized oxide film formed on the specularly polished surface of the aluminum foil, a light emitting EL layer formed directly on the film, and a transparent electrode formed on the light emitting EL layer. The process for manufacturing an EL lamp includes the steps of polishing specularly at least one of the surfaces of an aluminum foil, forming an anodized oxide film on the specularly polished surface of the aluminum foil, and forming directly on the aluminum oxide film a light emitting EL layer and a transparent electrode.
    Type: Grant
    Filed: August 1, 1994
    Date of Patent: January 9, 1996
    Assignees: Stanley Electric Co., Ltd., Japan Metals & Chemicals Co., Ltd.
    Inventors: Kenichi Kondo, Takahiro Saida, Shuichi Taya, Toyoshi Iida, Takeshi Sotomura, Yuko Fujii, Keiji Sato, Mamoru Takahashi, Sadayasu Yamakawa, Shunichi Osawa
  • Patent number: 5470636
    Abstract: A magnetic recording medium having a substrate made of aluminum or aluminum alloy and an anodic-oxide film, e.g., alumite film, formed by effecting the anodic oxidation process, wherein the surface of the alumite film has protruding portions formed in addition to micro-irregularities which are formed in response to the cell-pore structure of the alumite film and height of the protruding portions is higher than that of the micro-irregularity, and density of the protruding portions is ranging from 10.sup.2 to 10.sup.7 per one square millimeter, these protruding portions are formed by processing the alumite film in the fluorine-contained solution (e.g., hydrofluoric acid) or in solution containing one of the acid (HCl), base (NaOH) and strong-acid salt ((NH.sub.4)SO.sub.4), Cr film and magnetic film are sequentially formed on the alumite film by the sputtering process.
    Type: Grant
    Filed: March 13, 1992
    Date of Patent: November 28, 1995
    Assignee: Yamaha Corporation
    Inventors: Yukio Wakui, Yoshiki Nishitani, Kenichi Miyazawa
  • Patent number: 5466358
    Abstract: A method of forming a fluorescent screen for a field emission display by electrodeposition comprises: forming a transparent solid electrode or transparent stripe or dot electrodes (1) in an effective area and a guard electrode (3, 8) in an ineffective area surrounding the effective area on the inner surface of a screen panel (13), immersing the screen panel (13) in an electrodeposition solution (12G, 12B, 12R, 12M) containing dispersed particles of a fluorescent material and contained in an electrodeposition tank (11), applying a voltage to the transparent solid electrode or the transparent stripe or dot electrodes, and a reverse bias voltage to the guard electrode (3, 8) to deposit particles of the fluorescent material only on the transparent solid electrode or the transparent stripe or dot electrodes to which the voltage is applied. The guard electrode (3, 8) prevents the deposition of particles of the fluorescent material in the ineffective area.
    Type: Grant
    Filed: August 15, 1994
    Date of Patent: November 14, 1995
    Assignee: Sony Corporation
    Inventors: Tadashi Kiyomiya, Toshio Ohoshi, Masami Okita
  • Patent number: 5455224
    Abstract: A method for producing a compound oxide superconducting thin film, comprising forming an oxide thin film on the surface of a substrate of a first metal element having a redox charge by oxidizing the metal, using the oxide thin film thus formed as an electrode for oxidation reaction of a second metal element contained in an electrolyte solution or molten salt to incorporate the second metal element in the oxide thin film, using the compound oxide thin film thus formed as an electrode to obtain a cyclic voltammogram, and electrochemically processing the compound oxide thin film at an electrolytic potential that is determined based on the cyclic voltammogram.
    Type: Grant
    Filed: March 24, 1994
    Date of Patent: October 3, 1995
    Assignees: Agency of Industrial Science & Technology, Ministry of International Trade & Industry
    Inventors: Hiroko Kaneko, Keiji Kaneko, Hideo Ihara, Akira Negishi, Shoji Ishibashi
  • Patent number: 5401382
    Abstract: A method is provided for forming a tough, electrical insulating layer on a surface of a copper material. The copper material is made of copper of a copper-based alloy at least in the surface thereof. According to the method, the copper material is anodized first in an alkaline electrolyte bath of a caustic alkali to form a thin film layer of cupric oxide on the surface of the copper material, and next in an acidic electrolytic bath of a hexacyanoiron complex.
    Type: Grant
    Filed: March 7, 1994
    Date of Patent: March 28, 1995
    Assignee: Usui Kokusai Sangyo Kabushiki Kaisha, Ltd.
    Inventor: Kunio Katsuma
  • Patent number: 5382347
    Abstract: A method for producing protecting layers on a metal selected from aluminum, titanium and zirconium, or alloys thereof, involves at least two anodic oxidation steps producing oxide layers and a thermal treatment which is carried out before or simultaneously with last anodic oxidation step. The treated metal according to the invention is protected even at high temperatures and under conditions of thermal cycling.
    Type: Grant
    Filed: October 26, 1992
    Date of Patent: January 17, 1995
    Inventor: Joseph Yahalom
  • Patent number: 5320736
    Abstract: A method to electrochemically deposit semiconductors and for the electrochemical formation of epitaxial thin-film, single-crystalline compound semiconductors comprising alternating electrodeposition of atomic layers of selected pairs of elements using underpotential deposition.
    Type: Grant
    Filed: May 6, 1991
    Date of Patent: June 14, 1994
    Assignee: University of Georgia Research Foundation
    Inventors: John L. Stickney, Brian W. Gregory, Ignacio Villegas
  • Patent number: 5215606
    Abstract: A method for preparing decorative lacquered Ti-based articles is disclosed, which method comprises the steps of: (a) heating to 900.degree. to 1300.degree. in vacuum a base of titanium or its alloy whose surface serves as a base material, to grow the crystal grains on the surface of the base while simultaneously thermally etching the surface, so as to make the base surface uneven; (b) cooling the base; (c) etching the surface of the base with an etchant to enlarge the unevenness of the surface; (d) anodizing the base; (e) applying an undercoat onto the surface of the base; (f) optionally heating the undercoat to cure the same; and (g) further applying a coating onto the undercoat and then drying it. The method makes it possible to prepare decorative lacquered Ti-based articles having a Raden-, Hyomon- or Heidatsu, Kyushitsu- or Makie-like appearance utilizing titanium or its alloy as a base material.
    Type: Grant
    Filed: December 21, 1990
    Date of Patent: June 1, 1993
    Assignee: Zivaco, Co., Ltd.
    Inventor: Shoji Tsukamoto
  • Patent number: 5186813
    Abstract: A uniform, topographically planar layer of an electroactive polymer is electrodeposited onto a conductive substrate by first electrodepositing onto the conductive substrate a thin initiating layer of a different electroactive polymer prepared from monomer having a lower oxidation potential.
    Type: Grant
    Filed: April 6, 1992
    Date of Patent: February 16, 1993
    Assignee: Ford Motor Company
    Inventor: Jeffrey H. Helms
  • Patent number: 5178967
    Abstract: A bilayer oxide film which comprises a preferably porous layer containing aluminum oxide and a non-porous layer comprising an oxide of a valve metal, e.g. tantalum. The layers are integral. The film is produced by forming a coating of aluminium or an anodizable aluminum alloy on a valve metal (or alloy), anodizing the resulting structure in an electrolyte (preferably one capable of converting the aluminum (or alloy) to a porous oxide film) in the presence of an adhesion-reducing agent (e.g. fluoride ions) that makes the resulting anodized bilayer film easily detachable from the remaining valve metal. The bilayer film is then detached from the valve metal, e.g. by adhering a flexible plastic film to the bilayer and using the film to peel off the bilayer from the valve metal. The resulting bilayer can be used for a variety of purposes, e.g. as a vapor or oxygen barrier useful for packaging, or as a coating containing magnetic particles used to make a magnetic recording medium.
    Type: Grant
    Filed: February 8, 1990
    Date of Patent: January 12, 1993
    Assignee: Alcan International Limited
    Inventors: Aron M. Rosenfeld, Paul Smits
  • Patent number: 5160599
    Abstract: The present invention provides a process for coloring titanium, or its alloys which comprises the steps of anodizing titanium metal, or its alloy in an electrolytic solution until the voltage reaches a predetermined voltage at a constant current temporarily cutting off the current supply to interrupt the anodizing; and then supplying a direct current again at a predetermined current density to continue anodizing, wherein the color tone of the anodic oxide film formed on the titanium or its alloy is adjusted by controlling the supplied amount of current, without causing an increase in voltage. By the coloring process of the present invention, the color of titanium metal or its alloys can be changed to various color tones at low voltages.
    Type: Grant
    Filed: June 19, 1990
    Date of Patent: November 3, 1992
    Assignees: Kenzo Kobayashi, Kenichi Shimizu, Yoshida Kogyo K.K.
    Inventors: Kenzo Kobayashi, Kenichi Shimizu, Hideaki Yoshioka
  • Patent number: 5158663
    Abstract: A method for producing protecting layers on a metal selected from aluminum, titanium and zirconium, or alloys thereof, involves at least two anodic oxidation steps producing oxide layers and a thermal treatment which is carried out before the last anodic oxidation step. The treated metal according to the invention is protected even at high temperatures and under conditions of thermal cycling.
    Type: Grant
    Filed: October 25, 1991
    Date of Patent: October 27, 1992
    Inventor: Joseph Yahalom
  • Patent number: 5135618
    Abstract: A process for manufacturing a solid state electrolytic capacitor having on an anode a dielectric coating layer and a solid state electrolytic layer, comprises the steps of forming a conductive polymer compound layer as the solid state electrolytic layer, and subsequently forming the dielectric coating layer by anodizing.
    Type: Grant
    Filed: September 3, 1991
    Date of Patent: August 4, 1992
    Assignee: NEC Corporation
    Inventors: Yoshihiko Saiki, Eishun Tsuchida, Kimihisa Yamamoto, Shinji Takeoka
  • Patent number: 5104507
    Abstract: An electrodeposition method wherein a conductive substrate such as, for example, a metal fastener is first coated by means of an anodic electrodeposition process, then subjected to thermal curing, and then subjected to a cathodic electrodeposition process. The anodic electrodeposition process is carried out until the coating insulates the substrate at which point the coating process stops. The curing step lowers the dielectric strength of the anodically deposited coating, thereby allowing the substrate to accept a cathodically deposited top coat. The resultant coated substrate demonstrates superior corrosion resistance properties and improved cosmetic appeal.
    Type: Grant
    Filed: October 2, 1989
    Date of Patent: April 14, 1992
    Assignee: Illinois Tool Works Inc.
    Inventor: Mark J. Offenburger