Forming Nonelectrolytic Coating Before Forming Nonmetal Electrolytic Coating Patents (Class 205/188)
  • Patent number: 11280015
    Abstract: A fabricating method of a non-enzyme sensor element includes a printing step, a coating step and an electroplating step. In the printing step, a conductive material is printed on a surface of a substrate to form a working electrode, a reference electrode and an auxiliary electrode, and a porous carbon material is printed on the working electrode to form a porous carbon layer. In the coating step, a graphene film material is coated on the porous carbon layer of the working electrode to form a graphene layer. In the electroplating step, a metal is electroplated on the graphene layer by a pulse constant current to form a catalyst layer including a metal oxide.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: March 22, 2022
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventors: Hsiang-Yu Wang, Yi-Yu Chen, Shih-Hao Lin, Yu-Sheng Lin
  • Patent number: 10832872
    Abstract: The present invention provides a method for preparing a polyaniline/RuO2/SnO2 composite electrode material, including: sputtering a SnO2 film onto a tantalum substrate by a magnetron sputtering method, to form a SnO2 layer; preparing porous-structured RuO2 nanoparticles with a uniform pore size distribution (10-15 nm) by a template method; and embedding polyaniline into the RuO2 nanoparticle matrix by a electrodeposition method, to finally obtain a multilayer-structured polyaniline/RuO2/SnO2 composite electrode material with a specific capacitance value of 680-702 F·g?1 and an excellent cycling charge-discharge performance after it is assembled into an electrochemical capacitor.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: November 10, 2020
    Assignee: GUIZHOU INSTITUTE OF TECHNOLOGY
    Inventors: Xiang Li, Yongmei Luo, Fanghai Lu, Yingfen Li
  • Patent number: 10767694
    Abstract: A manufacturing method for a sliding member is a method for manufacturing the sliding member in which a surface of an oxide film covering a metal base material serves as a sliding surface, and includes a dispersion step for dispersing a plurality of hard particles having a higher hardness than the oxide film through a surface layer of the metal base material, an oxide film generation step for generating the oxide film on the surface of the metal base material after the dispersion step, and an exposure step for exposing some of the plurality of hard particles from the surface of the oxide film by partially removing the oxide film.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: September 8, 2020
    Assignee: KYB CORPORATION
    Inventor: Takuya Nakase
  • Patent number: 10217927
    Abstract: A method can be used for producing a fully active stack. A stack has the sides A, B, C and D running along the stacking direction. The method includes combining and temporarily making contact with the internal electrodes that make contact with the respective side on one of the sides B or D, such that the internal electrodes that make contact with the respective side can be electrically driven selectively. The electrically driven internal electrodes are electrochemically coated on the sides A and C. The stack is singulated to form a fully active stack with the electrochemically coated internal electrodes on the sides A? and C?. A method for producing a multilayer component comprising the fully active stack and a fully active multilayer component producible according to the method are furthermore proposed.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: February 26, 2019
    Assignee: EPCOS AG
    Inventors: Dieter Somitsch, Franz Rinner
  • Patent number: 10180292
    Abstract: The invention relates to a method for producing a permanently joined plate heat exchanger comprising a plurality of metal heat exchanger plates having a solidus temperature above 1000° C., provided beside each other and forming a plate package with first plate interspaces for a first medium and second plate interspaces for a second medium, wherein the first and second plate interspaces are provided in an alternating order in the plate package, wherein each heat exchanger plate comprises a heat transfer area and an edge area comprising bent edges which extend around the heat transfer area, wherein a first surface of the plates forms a convex shape and a second surface of the plates forms a concave shape, wherein the heat transfer area comprises a corrugation of elevations and depressions, wherein said corrugation of the plates and the bent edges are provided by pressing the plates. The invention also relates to a plate heat exchanger produced by the method.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: January 15, 2019
    Assignee: ALFA LAVAL CORPORATE AB
    Inventors: Per Sjödin, Kristian Walter
  • Patent number: 9011668
    Abstract: A method for the antimicrobial provision of implant surfaces with silver, in which the method comprises an anodizing of the implant surface with an electrolyte, in which the electrolyte has a silver-yielding substance. Alternatively, the method comprises a silver implantation or a silver PVD deposition.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: April 21, 2015
    Assignee: Stryker Trauma GmbH
    Inventor: Andreas Speitling
  • Publication number: 20150077902
    Abstract: A wet electrolytic capacitor that contains a casing within which is positioned an anode formed from an anodically oxidized sintered porous body and a fluidic working electrolyte is provided. The casing contains a conductive coating disposed on a surface of a metal substrate. The casing contains a metal substrate coated with a conductive coating. The conductive coating contains a conductive polymer layer formed through anodic electrochemical polymerization (“electro-polymerization”) of a colloidal suspension on the surface of the metal substrate. The conductive coating also contains a precoat layer that is discontinuous in nature and contains a plurality of discrete projections of a conductive material that are deposited over the surface of the metal substrate in a spaced-apart fashion so that they form “island-like” structures.
    Type: Application
    Filed: September 16, 2013
    Publication date: March 19, 2015
    Applicant: AVX Corporation
    Inventors: Jan Petrzilek, Martin Biler, Mitchell D. Weaver
  • Publication number: 20150034490
    Abstract: A method for coating an aluminum alloy heat exchanger includes subjecting at least one surface of the heat exchanger to a pre-treatment process including cleaning; conversion coating the at least one surface of the heat exchanger with a trivalent chromium compound; and subjecting the at least one conversion coated surface to an electro-coating in an aqueous solution containing an organic corrosion inhibitor.
    Type: Application
    Filed: March 11, 2013
    Publication date: February 5, 2015
    Inventors: Matthew Patterson, Mark R. Jaworowski, Mary Teresa Lombardo, Stephanie Bealing
  • Patent number: 8888982
    Abstract: A method for creating an oxide layer having a reduced copper concentration over a surface of an object comprising aluminum and copper for use in a semiconductor processing system. The oxide layer produced using a plasma electrolytic oxidation process has a reduced copper peak concentration, which decreases a risk of copper contamination, and includes magnesium oxides that can be converted to magnesium halide upon exposure to an excited halogen-comprising gas or halogen-comprising plasma to increase the erosion/corrosion resistance of the oxide layer.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: November 18, 2014
    Assignee: MKS Instruments Inc.
    Inventors: Xing Chen, Chengxiang Ji, Chiu-Ying Tai
  • Publication number: 20140291160
    Abstract: The present invention refers to a sensor (10) having a layer arrangement (12), wherein the layer arrangement (12) comprises at least a base layer (14), a middle layer (16) and an outer layer (18), wherein the middle layer (16) is arranged at least partly upon and in contact with the base layer (14) and wherein the outer layer (18) is arranged at least partly upon and in contact with the middle layer (16), wherein the base layer (14) comprises a metal, wherein the middle layer (16) comprises a metal oxide, and wherein the outer layer (18) is porous and comprises a material selected from the group comprising electrically conductive carbon compounds such as, more particularly, graphite or carbon nanotubes (CNTs), organic electrical conductors and base metals, and wherein electrical contacts can be formed with the base layer (14) and outer layer (18) for a conductivity measurement and/or a resistance measurement.
    Type: Application
    Filed: October 10, 2012
    Publication date: October 2, 2014
    Inventors: Klaus Schierbaum, Mhamed El Achhab, Christiane Schüle
  • Patent number: 8840768
    Abstract: A preparation method for molecular recognition sensor by electrodeposition is provided. The preparation method is as following: forming molecularly imprinted polymeric micelles by self-assembly of ionic type photosensitive copolymers; forming a film on the surface of an electrode by electrodepositing the molecularly imprinted polymeric micelles at a constant potential; crosslinking the electrodeposited micellar film via ultraviolet light irradiation; extracting the template molecules from the crosslinked film to obtain electrode modified by the molecularly imprinted polymeric micellar film; and connecting the modified electrode with a sensor device and a computer to construct a molecular recognition sensing system capable of specifically detecting the template molecules.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: September 23, 2014
    Assignee: Jiangnan University
    Inventors: Xiaoya Liu, Yiqun Yang, Chenglin Yi, Jing Luo, Haiqiang Wu, Sisi Jiang, Baoqing Wang, Jinqiang Jiang, Ren Liu, Shengwen Zhang, Jing Xu
  • Publication number: 20140268283
    Abstract: Variable-emittance, electrochromic devices utilizing IR-active conducting polymers and methods of preparing the same are disclosed.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: ASHWIN-USHAS CORPORATION, INC.
    Inventor: Prasanna Chandrasekhar
  • Patent number: 8821831
    Abstract: The invention concerns a method for producing a crystalline titanium oxide film useful as a photocatalyst, a photovoltaic element, etc. The crystalline titanium oxide film is produced by steps (a-1) and (b): (a-1) a step of heating titanium or titanium alloy under conditions (1) or (2) to form titanium nitride on the surface of the titanium or titanium alloy; (1) in an atmosphere of nitrogen and/or ammonia gas in the presence of a carbon material acting as an oxygen trapping agent; or (2) in an atmosphere where a pressure is reduced to discharge atmospheric gas, and then nitrogen and/or ammonia gas are/is introduced in the presence of a carbon material acting as an oxygen trapping agent; and (b) a step of immersing the titanium or titanium alloy obtained in step (a-1) above in an electrolyte containing an inorganic acid and/or organic acid, and applying voltage for anodization.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: September 2, 2014
    Assignee: Showa Co., Ltd.
    Inventors: Teruki Takayasu, Kinji Onoda
  • Patent number: 8808523
    Abstract: A method for forming a ZrO2 oxide film by plasma electrolytic oxidation includes a first step of placing an anode, which is a substrate with a ZrN film, and a cathode into an electrolyte of which the temperature range is from 65° C. to 75° C. Said electrolyte contains barium acetate or barium hydroxide ranging from 0.3 M to 0.7 M and sodium hydroxide or potassium hydroxide ranging from 1.5 M to 2.5 M. The method includes a second step of applying a voltage ranging from 50 V to 1000 V to the anode and cathode to finally form a ZrO2 film on a surface of the ZrN film of the anode. A DC power supply, an AC power supply, unipolar pulse power supply or bipolar pulse power supply is applied to said anode and cathode in constant-voltage mode or constant-current mode. The oxide film can be formed more rapidly than the prior art and has excellent crystallinity.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: August 19, 2014
    Assignee: National Chung Hsing University
    Inventors: Fu-Hsing Lu, Jhu-Ling Zeng, Huan-Ping Teng
  • Patent number: 8808522
    Abstract: A method for forming an oxide film by plasma electrolytic oxidation includes a first step of placing an anode, which is a substrate with a conductive nitride film, and a cathode into an electrolyte of which the temperature range is from 20° C. to 100° C., and a second step of applying a voltage ranging from 50 V to 1000 V to the anode and cathode to finally form an oxide film on a surface of the conductive nitride film of the anode. The oxide film can be formed more rapidly than the prior art and has excellent crystallinity.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: August 19, 2014
    Assignee: National Chung Hsing University
    Inventors: Fu-Hsing Lu, Jhu-Ling Zeng, Huan-Ping Teng
  • Patent number: 8801908
    Abstract: A composite insulating layer and a manufacturing method thereof. The composite insulating layer includes a socket substrate, a connection layer disposed on the socket substrate, a conductive metal layer disposed on the connection layer, an insulating metal layer disposed on the conductive metal layer, an insulating ceramic layer disposed on the insulating metal layer, and a electrodeposition layer disposed on the insulating ceramic layer. The composite insulating layer of the present invention can avoid the electromagnetic interference generated from the pins of the CPU and increase the stability of the CPU.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: August 12, 2014
    Assignee: Chenming Mold Ind. Corp.
    Inventors: Chuan-Li Cheng, Chao-Lun Liu, Chih-Feng Hsu
  • Publication number: 20140144783
    Abstract: Disclosed herein is a method for treating the surface of a metal product, the method comprising the steps of: degreasing the surface of the metal product, and removing a material used to degrease the surface, followed by neutralization and washing; spraying either a mixture of ethanol (C2H5OH), acetone (CH3COCH3) and water or alcohol onto the surface of the washed metal product; and forming an oxide layer on the surface of the metal product by firing or heat-treating the metal product resulting from the step of spraying.
    Type: Application
    Filed: March 18, 2013
    Publication date: May 29, 2014
    Applicant: WISCOHITEC CO., LTD.
    Inventors: Joo-Sik YOON, Jae In YU
  • Publication number: 20140139304
    Abstract: A neodymium magnet (Nd—Fe—B) is protected by a self-healing, corrosion-resistant coating of (a) a sacrificial metal layer; (b) optionally, a metal pretreatment layer on the sacrificial metal layer; and (c) an electrocoat coating layer.
    Type: Application
    Filed: November 20, 2012
    Publication date: May 22, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Yar-Ming WANG
  • Publication number: 20140116944
    Abstract: Superhydrophobic membrane structures having a beneficial combination of throughput and a selectivity. Methods of making and using the membrane structures.
    Type: Application
    Filed: November 1, 2012
    Publication date: May 1, 2014
    Applicant: UT-BATTELLE, LLC
    Inventors: Michael Z. HU, John T. SIMPSON, Tolga AYTUG, Mariappan Parans PARANTHAMAN, Matthew R. STURGEON
  • Publication number: 20140116883
    Abstract: A surface treatment process for aluminum alloy includes the steps of: providing an aluminum alloy substrate containing silicon element; evenly distributing the silicon element in the substrate by solution treating the substrate; removing the silicon element at/near the surface of the substrate by acid treating the substrate; forming a porous aluminum oxide film on the substrate by anodizing the substrate; and staining the aluminum oxide film. An aluminum alloy article treated by the process is also described.
    Type: Application
    Filed: April 18, 2013
    Publication date: May 1, 2014
    Applicants: FIH (Hong Kong) Limited, SHENZHEN FUTAIHONG PRECISION INDUSTRY CO., LTD.
    Inventors: Cheng-Yang XIONG, Shu-Xiang ZHOU, Kai-Rong LIAO
  • Patent number: 8702877
    Abstract: A cathodic member for electrochemical cells used in hypochlorite production comprises a zirconium plate coated with a zirconium oxide layer, which is particularly suitable for minimising the decomposition of the hypochlorite product while ensuring a prolonged lifetime. The coated zirconium plate can be used as the cathodic plate in a monopolar cell, or can be welded to a titanium plate for use in a bipolar configuration.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: April 22, 2014
    Assignee: Industrie de Nora S.p.A.
    Inventors: Carl W. Brown, Jr., Richard C. Carlson, Kenneth L. Hardee
  • Publication number: 20140079886
    Abstract: A method of producing a tinned steel sheet that includes forming an Sn-containing plating layer on at least one surface of a steel sheet with a mass per unit area of Sn is 0.05 to 20 g/m2; immersing the steel sheet in a chemical conversion solution containing 60 g/L or more and 200 g/L or less of aluminum phosphate monobasic and which has a pH of 1.5 to 2.4 or cathodically electrolyzing the steel sheet at a current density of 10 A/dm2 or less in the chemical conversion solution; and drying the steel sheet to form a chemical conversion coating.
    Type: Application
    Filed: November 21, 2013
    Publication date: March 20, 2014
    Applicant: JFE Steel Corporation
    Inventors: Takeshi Suzuki, Norihiko Nakamura, Hiroki Iwasa
  • Patent number: 8652318
    Abstract: A process for fabricating oleophobic surface coatings to be deposited on a metal surface, such as the front-face or aperture plate of piezoelectric print heads and transfix rolls. The surface coatings are applied to the surface by electrochemical polymerization.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: February 18, 2014
    Assignee: Xerox Corporation
    Inventors: Nan-Xing Hu, Yu Qi, Peter G. Odell, Raymond Wong
  • Publication number: 20140044938
    Abstract: Disclosed is process for producing a protective layer for protecting a component against high temperatures and aggressive media. The process comprises forming a surface layer comprising aluminum and chromium on a surface of the component to be provided with the protective layer by chromizing and alitizing. The chromizing and/or the alitizing in different regions of the component surface to be protected is carried out simultaneously but differently to result in a protective layer that has different regions.
    Type: Application
    Filed: August 8, 2013
    Publication date: February 13, 2014
    Applicant: MTU AERO ENGINES AG
    Inventors: Horst PILLHOEFER, Erwin BAYER, Thomas DAUTL, Stefan MUELLER
  • Patent number: 8636891
    Abstract: A coated article includes a substrate, and a coating deposited on the substrate by magnetron sputtering. The coating includes micropores, and each micropore is sealed by a sealing element.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: January 28, 2014
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd, Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Cheng Zhang
  • Publication number: 20140005763
    Abstract: The present disclosure provides a regenerative peripheral nerve interface (RPNI) for a subject comprising an insulating substrate, at least one metallic electrode deposited onto the insulating substrate forming a thin-film array; a portion of the at least one metallic electrode surface having a layer of a first conductive polymer and a layer of decellularized small intestinal submucosa (SIS) coating a portion of the electrode, wherein a second conductive polymer is electrochemically polymerized through the SIS to form the regenerative peripheral nerve interface. The present disclosure also provides that a layer of muscle tissue contacts the regenerative peripheral nerve interface.
    Type: Application
    Filed: January 13, 2012
    Publication date: January 2, 2014
    Applicants: UNIVERSITY OF DELAWARE, THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Paul S. Cederna, Melanie G. Urbanchek, David C. Martin
  • Publication number: 20130333611
    Abstract: A lattice matching layer for use in a multilayer substrate structure comprises a lattice matching layer. The lattice matching layer includes a first chemical element and a second chemical element. Each of the first and second chemical elements has a hexagonal close-packed structure at room temperature that transforms to a body-centered cubic structure at an ?-? phase transition temperature higher than the room temperature. The hexagonal close-packed structure of the first chemical element has a first lattice parameter. The hexagonal close-packed structure of the second chemical element has a second lattice parameter. The second chemical element is miscible with the first chemical element to form an alloy with a hexagonal close-packed structure at the room temperature. A lattice constant of the alloy is approximately equal to a lattice constant of a member of group III-V compound semiconductors.
    Type: Application
    Filed: March 11, 2013
    Publication date: December 19, 2013
    Applicant: Tivra Corporation
    Inventors: Indranil De, Francisco Machuca
  • Publication number: 20130327435
    Abstract: The present invention provides a method for producing a coated stainless steel member, comprising: performing Wood's strike nickel plating on a stainless steel substrate, and then performing cationic electrodeposition on a formed Wood's strike nickel plating layer.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 12, 2013
    Inventors: Mitsutada Kaneta, Yasuhiro Arai, Manabu Inoue, Tsutomu Miyadera
  • Patent number: 8591680
    Abstract: Certain example embodiments of this invention relate to the use of graphene as a transparent conductive coating (TCC). In certain example embodiments, graphene thin films grown on large areas hetero-epitaxially, e.g., on a catalyst thin film, from a hydrocarbon gas (such as, for example, C2H2, CH4, or the like). The graphene thin films of certain example embodiments may be doped or undoped. In certain example embodiments, graphene thin films, once formed, may be lifted off of their carrier substrates and transferred to receiving substrates, e.g., for inclusion in an intermediate or final product. Graphene grown, lifted, and transferred in this way may exhibit low sheet resistances (e.g., less than 150 ohms/square and lower when doped) and high transmission values (e.g., at least in the visible and infrared spectra).
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: November 26, 2013
    Assignee: Guardian Industries Corp.
    Inventor: Vijayen S. Veerasamy
  • Publication number: 20130304134
    Abstract: The present invention can suitably be used even in a site where hydrogen gas is metabolized slowly, such as the osseous tissue. Provided is a biodegradable implant including a biodegradable magnesium member formed of a magnesium alloy and coating layers that coat the biodegradable magnesium member, thereby reducing the degradation rate thereof in a living organism, wherein a depression to be infiltrated by an osteoblast is formed in a surface of the biodegradable magnesium member.
    Type: Application
    Filed: July 17, 2013
    Publication date: November 14, 2013
    Inventors: Masato TAMAI, Takamitsu SAKAMOTO
  • Publication number: 20130256144
    Abstract: Described are devices and methods for forming one or more nanomembranes including electroactive nanomembranes within a nanowell or nanotube, or combinations thereof, in a support material. Nanopores/nanochannels can be formed by the electroactive nanomembrane within corresponding nanowells. The electroactive nanomembrane is capable of controllably altering a dimension, a composition, and/or a variety of properties in response to electrical stimuli. Various embodiments also include devices/systems and methods for using the nanomembrane-containing devices for molecular separation, purification, sensing, etc.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 3, 2013
    Applicant: LUX BIO GROUP, INC.
    Inventor: Gordon HOLT
  • Publication number: 20130256143
    Abstract: A method comprising providing an insert having a portion capable of being oxidized and electrochemically anodizing the portion capable of being oxidized to provide a layer comprising an oxidized material thereon.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: James G. Schroth, Mark W. Verbrugge
  • Publication number: 20130224517
    Abstract: Provided are a Cr-free surface-treated steel sheet that has excellent humid resin adhesion and corrosion resistance and that exhibits no streak-like surface defects, a method for manufacturing such a surface-treated steel sheet, and a resin-covered steel sheet using such a surface-treated steel sheet. A surface-treated steel sheet includes a steel sheet; a corrosion-resistant coating, on at least one side thereof, that is composed of at least one layer selected from a Ni layer, a Sn layer, an Fe—Ni alloy layer, an Fe—Sn alloy layer, and an Fe—Ni—Sn alloy layer; and an adherent coating, on the corrosion-resistant coating, that contains Zr and at least one species selected from P derived from a phosphoric acid and C derived from a phenolic resin in a total mass ratio to Zr of 0.01 to 10.
    Type: Application
    Filed: September 14, 2011
    Publication date: August 29, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Yuka Miyamoto, Takeshi Suzuki, Norihiko Nakamura, Yoichi Tobiyama
  • Publication number: 20130167390
    Abstract: A process for producing a beam element of a co-ordinate measuring machine, comprising the steps of applying a machinable metal coating by spraying on a structural substrate made of ceramic material, impregnating the coating with a resin, and executing on the coating a surface-finishing machining operation and a treatment of surface hardening.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 4, 2013
    Applicant: HEXAGON METROLOGY S.P.A.
    Inventor: Hexagon Metrology S.p.A.
  • Publication number: 20130171464
    Abstract: A composite insulating layer and a manufacturing method thereof. The composite insulating layer includes a socket substrate, a connection layer disposed on the socket substrate, a conductive metal layer disposed on the connection layer, an insulating metal layer disposed on the conductive metal layer, an insulating ceramic layer disposed on the insulating metal layer, and a electrodeposition layer disposed on the insulating ceramic layer. The composite insulating layer of the present invention can avoid the electromagnetic interference generated from the pins of the CPU and increase the stability of the CPU.
    Type: Application
    Filed: June 15, 2012
    Publication date: July 4, 2013
    Applicant: CHENMING MOLD IND. CORP.
    Inventors: Chuan-Li Cheng, Chao-Lun Liu, Chih-Feng Hsu
  • Publication number: 20130098768
    Abstract: Provided is a method of forming a uniform graphene layer on a substrate (metal- or conductive-polymer-coated, ITO) by doping expanded graphite using various kinds of dopants (Lewis acid) to grant a positive charge thereto, dispersing the doped expanded graphite in an organic solvent using ultrasonic waves to obtain a solution in which the graphene is dispersed in the organic solvent, and electrically applying a negative voltage to the solution.
    Type: Application
    Filed: July 11, 2012
    Publication date: April 25, 2013
    Applicant: RESEARCH & BUSINESS FOUNDATION SUNGKYUNKWAN UNIVERSITY
    Inventors: Young Kwan LEE, Mi Suk CHO, Su Jeong LEE
  • Patent number: 8425793
    Abstract: A simple process is disclosed for treating substrates having pre-structured zinc oxide layers on rigid or flexible supports. The ZnO is treated with an etching medium then with a cleaning liquid. The treatment with the etching and cleaning liquids is carried out while the substrate is conveyed through a device. The process is technically simple to implement and makes it possible to regularly and homogeneously roughen and texturize ZnO layers of up to 1 m2. The device for treating substrates having pre-structured zinc oxide layers on rigid or flexible supports has for that purpose a first means for treating the substrate with an etching liquid, a second means for treating the substrate with a cleaning liquid, and another means, in particular transport rollers, for conveying the substrate from the first to the second means.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: April 23, 2013
    Inventors: Joachim Müller, Gunnar Schöpe, Hildegard Siekmann, Bernd Rech, Tobias Repmann, Wolfgang Apenzeller, Brigitte Sehrbrock
  • Publication number: 20130056360
    Abstract: A method for forming an oxide film by plasma electrolytic oxidation includes a first step of placing an anode, which is a substrate with a conductive nitride film, and a cathode into an electrolyte of which the temperature range is from 20° C. to 100° C., and a second step of applying a voltage ranging from 50 V to 1000 V to the anode and cathode to finally form an oxide film on a surface of the conductive nitride film of the anode. The oxide film can be formed more rapidly than the prior art and has excellent crystallinity.
    Type: Application
    Filed: September 7, 2011
    Publication date: March 7, 2013
    Inventors: Fu-Hsing LU, Jhu-Ling Zeng, Huan-Ping Teng
  • Publication number: 20120312693
    Abstract: Certain example embodiments of this invention relate to the use of graphene as a transparent conductive coating (TCC). In certain example embodiments, graphene thin films grown on large areas hetero-epitaxially, e.g., on a catalyst thin film, from a hydrocarbon gas (such as, for example, C2H2, CH4, or the like). The graphene thin films of certain example embodiments may be doped or undoped. In certain example embodiments, graphene thin films, once formed, may be lifted off of their carrier substrates and transferred to receiving substrates, e.g., for inclusion in an intermediate or final product. Graphene grown, lifted, and transferred in this way may exhibit low sheet resistances (e.g., less than 150 ohms/square and lower when doped) and high transmission values (e.g., at least in the visible and infrared spectra).
    Type: Application
    Filed: July 11, 2012
    Publication date: December 13, 2012
    Applicant: Guardian Industries Corp.,
    Inventor: Vijayen S. VEERASAMY
  • Publication number: 20120308844
    Abstract: The present invention relates generally to methods for producing a coated jewelry article or a coated component of a jewelry article, comprising a jewelry article or a component of a jewelry article, a first metallic coating, and a second metallic coating.
    Type: Application
    Filed: June 1, 2012
    Publication date: December 6, 2012
    Applicant: FREDERICK GOLDMAN INC.
    Inventor: Andrew Derrig
  • Publication number: 20120301739
    Abstract: A pretreatment composition for metal that provides enhanced corrosion resistance, enhanced paint adhesion and reduced chip damage to a wide variety of metal substrates. The pretreatment is also cleaner because it is based on zirconium rather than zinc phosphates. The pretreatment coating composition in use preferably comprises 50 to 300 parts per million (ppm) zirconium, 0 to 100 ppm of SiO2, 150-2000 ppm of total fluorine and 10-100 ppm of free fluorine, 150 to 10000 ppm of zinc and 10 to 10000 ppm of an oxidizing agent and has a pH of 3.0 to 5.0, preferably about 4.0. The coating composition can optionally include 0 to 50 ppm of copper. The suitable oxidizing agents can be selected from a large group.
    Type: Application
    Filed: June 25, 2012
    Publication date: November 29, 2012
    Applicant: Henkel AG & Co. KGaA
    Inventors: Donald VONK, Edis KAPIC, Bruce GOODREAU, Alvaro BOBADILLA
  • Publication number: 20120261162
    Abstract: Provided are an electrode structure capable of suppressing a leakage current, having a high capacitance, allowing an electrical short circuit caused through contact with an electrolyte to be suppressed, and operable to be applied as an anode of a capacitor; a method for manufacturing the electrode structure; and a capacitor including the electrode structure. The method for manufacturing the electrode structure includes: a covering layer formation step of forming on a surface of an aluminum material a covering layer of a dielectric precursor including valve metal; and a reduction heating step of heating in a reducing atmosphere including no carbon the aluminum material having the covering layer formed thereon.
    Type: Application
    Filed: March 30, 2011
    Publication date: October 18, 2012
    Applicant: Toyo Aluminium Kabushiki Kaisha
    Inventors: Kunihiko Nakayama, Zenya Ashitaka, Hidetoshi Inoue, Miho Suzuki
  • Publication number: 20120263922
    Abstract: Novel coatings are disclosed prepared from electropolymerization of electropolymerizable monomers-analyte complexes onto a conducting layer or non-conducting of a substrate, where the analyte is removed by electrochemically mediated washing permitting linear molecular sensing of the analyte over a wide concentration range. The coating may also include templating particles deposited on the electrode substrate prior to electropolymerization, where the particles can be removed to form a submicron structured coating. Methods for making and using the coatings are also disclosed.
    Type: Application
    Filed: July 9, 2011
    Publication date: October 18, 2012
    Applicant: THE UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Rigoberto Advincula, Roderick B. Pernites
  • Publication number: 20120205142
    Abstract: A wiring substrate is configured such that each of laminate portions provided above and below a substrate core includes insulating layers and conductor layers stacked alternately. Of the conductor layers of the laminate portions, signal line layers are treated with a silane coupling treatment, which is a surface modification treatment, so that each signal line comprises a flat surface. A roughening treatment is performed on the remaining conductor layers of the laminate portions such that the surfaces of these layers are roughened. This structure provides an advantage when high-frequency signals are transmitted through the signal line layers. That is, when each signal line comprises a flat surface, an increase in conductor loss due to the skin effect can be prevented. In addition, by means of chemical bonding attained through the silane coupling treatment, the reliability of adhesion between the signal line layers and the insulating layer is sufficiently attained.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 16, 2012
    Applicant: NGK Spark Plug Co., Ltd.
    Inventors: Kazunaga HIGO, Hidemasa IGARASHI, Masatsune ARAKAWA, Erina YAMADA, Kenji SUZUKI, Tomohito ANDO, Hironori SATO, Takuya TORII
  • Patent number: 8236118
    Abstract: Certain example embodiments of this invention relate to the use of graphene as a transparent conductive coating (TCC). In certain example embodiments, graphene thin films grown on large areas hetero-epitaxially, e.g., on a catalyst thin film, from a hydrocarbon gas (such as, for example, C2H2, CH4, or the like). The graphene thin films of certain example embodiments may be doped or undoped. In certain example embodiments, graphene thin films, once formed, may be lifted off of their carrier substrates and transferred to receiving substrates, e.g., for inclusion in an intermediate or final product. Graphene grown, lifted, and transferred in this way may exhibit low sheet resistances (e.g., less than 150 ohms/square and lower when doped) and high transmission values (e.g., at least in the visible and infrared spectra).
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: August 7, 2012
    Assignee: Guardian Industries Corp.
    Inventor: Vijayen S. Veerasamy
  • Publication number: 20120177946
    Abstract: The invention relates to an aqueous composition and to a method for the anticorrosion conversion treatment of metallic surfaces, particularly metallic materials which are assembled into composite structures, comprising steel or galvanized or alloy-galvanized steel and any combinations thereof, the composite structure being composed at least in part of aluminum or the alloys thereof. The aqueous composition according to the invention is based on a phosphating solution and contains, in addition to water-soluble compounds of zirconium and titanium, a quantity of free fluoride in a ratio that both permits phosphating of the steel and galvanized and/or alloy-galvanized steel surfaces and determines low pickling rates of the aluminum substrate with simultaneous passivation of the aluminum.
    Type: Application
    Filed: March 19, 2012
    Publication date: July 12, 2012
    Applicant: Henkel AG & Co. KGaA
    Inventors: Jan-Willem BROUWER, Jens Krömer, Matthias Hamacher, Stephan Winkels, Frank-Oliver Pilarek, Marc Balzer
  • Publication number: 20120152748
    Abstract: A part, a timepiece, and a manufacturing method of the part capable of avoiding the limitations on the member which is used, expanding variation in the design, being easily manufactured, and improving the aesthetic appearance are provided. In an oscillating weight in which a body of the oscillating weight to which anodizing can be applied and a conductive weight are fixed to each other, an insulating layer is interposed between the body of the oscillating weight and the weight.
    Type: Application
    Filed: December 13, 2011
    Publication date: June 21, 2012
    Inventors: Akiko Araki, Takuya Murazumi, Takashi Niwa, Matsuo Kishi
  • Patent number: 8202576
    Abstract: A method of forming a metal film, the method including: (a) forming a primer layer on a substrate by applying a first polymer including a unit having a cyano group in a side chain; (b) forming a polymer layer on the surface of the primer layer by applying a second polymer, the second polymer having a functional group that interacts with an electroless plating catalyst or a precursor thereof and a polymerizable group; (c) applying the electroless plating catalyst or the precursor thereof to the polymer layer; and (d) forming a metal film on the polymer layer by performing electroless plating.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: June 19, 2012
    Assignee: FUJIFILM Corporation
    Inventors: Masaaki Inoue, Tetsunori Matsumoto
  • Publication number: 20120118748
    Abstract: In a method for treating an aluminum article (10), flux is applied to an outer surface of the aluminum article (10). The outer surface of the aluminum article (10) is brazed. An oxide layer (36) is formed on the outer surface of the aluminum article (10) by anodizing the aluminum article (10), where a portion of the oxide layer (36) is formed between the flux and the outer surface of the aluminum article (10).
    Type: Application
    Filed: July 15, 2010
    Publication date: May 17, 2012
    Applicant: CARRIER CORPORATION
    Inventors: Mark R. Jaworowski, Michael F. Taras
  • Publication number: 20120111730
    Abstract: A composite electrode and a method for manufacturing the same are disclosed. By using a composite electrode that includes a porous support made of ceramic or metal and a conductive polymer or a metal oxide formed on a surface of the porous support, a capacitor or secondary cell that provides increased charge/discharge capacity and increased energy/output density, as well as high-temperature stability and high reliability, can be manufactured.
    Type: Application
    Filed: January 10, 2012
    Publication date: May 10, 2012
    Applicant: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Hee-Sung Choi, Young-Kwan Lee