Coating Is At Least Partially Diffused Or Forms Alloy Patents (Class 205/228)
  • Patent number: 6235406
    Abstract: A structure for enhancing electromigration resistance within a copper film includes impurities laminated within the film and other additives incorporated in the film to form intermetallic compounds. Metal grain boundary growth and metal surface mobility is suppressed within the composite copper film. The present invention provides an alloy seed layer and laminated impurities and provides indium, tin, titanium, their compounds with oxygen, and their complexes with oxygen, carbon, and sulfur, incorporated into other films. Intermetallics are disposed at grain boundaries and reduce copper atom mobility. A further aspect of the present invention is a barrier layer formed by combining additives included in an alloy seed layer with materials otherwise unsuitable for barrier material functions.
    Type: Grant
    Filed: July 13, 2000
    Date of Patent: May 22, 2001
    Assignee: International Business Machines Corporation
    Inventor: Cyprian E. Uzoh
  • Patent number: 6207035
    Abstract: A method for manufacturing a metal composite strip for the production of electrical contact components. A film made of tin or a tin alloy is first applied onto an initial material made of an electrically conductive base material. A film of silver is then deposited thereonto. Copper or a copper alloy is preferably used as the base material. The tin film can be applied in the molten state, and the silver film by electroplating. Furthermore, both the tin film and the silver film can be deposited by electroplating. A further alternative provides for manufacturing the tin film in the molten state and the silver film by cathodic sputtering. The diffusion operations which occur in the coating result in a homogeneous film of a tin-silver alloy. This formation can be assisted by way of a heat treatment of the composite strip.
    Type: Grant
    Filed: November 20, 1998
    Date of Patent: March 27, 2001
    Assignee: Stolberger Metallwerke GmbH & Co. KG
    Inventors: Udo Adler, Klaus Schleicher
  • Patent number: 6183888
    Abstract: A process for producing a coating for protecting superalloy articles against high temperature oxidation and hot corrosion comprises forming, on the surface of the article, a first deposit of an agglomerated powdered alloy containing at least chromium, aluminum and an active element, and filling the open pores of the powder deposit by a second, electrolytically applied, deposit of a precious platinum group metal. An appropriate thermal treatment is then carried out to effect interdiffusion between the powder based deposit and the electrolytic deposit and produce a coating including chromium, an active element such as yttrium, and a precious platinum group metal throughout its thickness.
    Type: Grant
    Filed: December 11, 1997
    Date of Patent: February 6, 2001
    Assignee: Societe Nationale d'Etude et de Construction de Moteurs d'Aviation “SNECMA”
    Inventors: Alexandre Serge Alperine, Jean-Paul Fournes, Louis Jacques Leger
  • Patent number: 6176994
    Abstract: A conductive electrode wire is passed through a molten salt bath maintained at a temperature above the melting point of the salts. A main electrical power supply passes an electric current between the electrode wire and an anode in the molten salt bath so that a metal coating layer is electrolytically deposited onto the core of the electrode wire. The high temperature of the molten salt bath ensures inter-diffusion of the metals of the core and the coating. This enables diverse coating structures to be obtained by choosing electrolysis and diffusion parameters.
    Type: Grant
    Filed: May 4, 1999
    Date of Patent: January 23, 2001
    Assignee: Thermocompact, societe anonyme
    Inventor: Louis Lacourcelle
  • Patent number: 6149790
    Abstract: A method for making an aluminium material which is electroplated on its aluminum or aluminium alloy base with iron or an iron alloy containing 2-20 weight % of chromium, and which can be utilized as a new structural or functional material in various industrial fields. The material is characterized in having an inter-diffusion layer produced between the base and the plating and/or having such fine cracks produced in the plating which can reserve well machine oil, work well for painting it, and be impregnated with a resin for improving its wear resistance and so on.
    Type: Grant
    Filed: June 12, 1998
    Date of Patent: November 21, 2000
    Assignee: Nippon Platec, K.K.
    Inventors: Wataru Oikawa, Eiichi Takeuchi
  • Patent number: 6126806
    Abstract: A process and structure for enhancing electromigration resistance within a copper film using impurity lamination and other additives to form intermetallic compounds to suppress metal grain boundary growth and metal surface mobility of a composite copper film. The present invention provides an alloy seed layer and laminated impurities to incorporate indium, tin, titanium, their compounds with oxygen, and their complexes with oxygen, carbon, and sulfur into other films. The intermetallics form and segregate to grain boundaries during an annealing process to reduce copper atom mobility. A further aspect of the present invention is the use of high-temperature, inter-diffusion of additives included in an alloy seed layer to form a barrier layer by combining with materials otherwise unsuitable for barrier material functions.
    Type: Grant
    Filed: December 2, 1998
    Date of Patent: October 3, 2000
    Assignee: International Business Machines Corporation
    Inventor: Cyprian E. Uzoh
  • Patent number: 6093303
    Abstract: A method for case hardening a chromium bearing nickel or ferrous based alloy, for example stainless steel, article, the method including the steps of activating the surface of the article; and carburizing the activated surface at a temperature below that temperature which would promote the formation of carbides. In one embodiment the surface is activated by disposing a layer of iron over the surface of the article.
    Type: Grant
    Filed: August 12, 1998
    Date of Patent: July 25, 2000
    Assignee: Swagelok Company
    Inventors: Peter C. Williams, Steven V. Marx
  • Patent number: 6063141
    Abstract: A method for manufacturing a cathode for a molten carbonate fuel cell includes oxidation of a porous precursor electrode and contact with molten carbonate. Following assembly of a layered arrangement containing the precursor electrode, a matrix layer made of molten carbonate, and a porous anode, the precursor electrode is anodically oxidized with a preset curve for the current density, and doped by contact with molten carbonate.
    Type: Grant
    Filed: December 18, 1998
    Date of Patent: May 16, 2000
    Assignee: MTU Motoren-Und Turbinen-Union Friedrichshafen GmbH
    Inventors: Hartmut Wendt, Hans-Juergen Salge, Manfred Bischoff
  • Patent number: 6017777
    Abstract: A method for forming a plating layer of a lead frame having excellent anti-corrosion properties is provided. At least a portion of a lead frame is plated, then a first heating of the plated portion of the lead frame to a first temperature is performed, and finally a second heating of the first heated plated portion of the lead frame to a second temperature higher than the first temperature is performed. The lead frame manufactured by this method has excellent anti-corrosion properties, such that deterioration of the plating layer, by cracking and inferior solderability, is not observed.
    Type: Grant
    Filed: October 17, 1997
    Date of Patent: January 25, 2000
    Assignee: Samsung Aerospace Industries, Ltd.
    Inventors: Joong-do Kim, Young-ho Baek, Kyoung-soon Bok
  • Patent number: 6013169
    Abstract: A method of reforming a tungsten probe tip includes forming a non-oxidizing metallic film on the surface of the tungsten probe tip, heating the film in a non-oxidizing atmosphere or vacuum, and diffusing the film into the tungsten probe tip. The non-oxidizing metallic film can be formed from a metal such as gold, platinum, rhodium, palladium, and iridium. The reformed tungsten probe tip can be used in low voltage and low current testing, and has excellent abrasion resistance, conductivity and oxidation resistance.
    Type: Grant
    Filed: March 9, 1998
    Date of Patent: January 11, 2000
    Assignee: Japan Electronic Materials Corp.
    Inventors: Masao Okubo, Kazumasa Okubo, Hiroshi Iwata
  • Patent number: 5935407
    Abstract: A process is provided for producing an abrasive coating on a substrate surface by applying a bond coat by low pressure plasma spraying and anchoring to the bond coat abrasive particles by electroplating and embedding the particles into an oxidation resistant matrix by entrapment plating.
    Type: Grant
    Filed: November 6, 1997
    Date of Patent: August 10, 1999
    Assignee: Chromalloy Gas Turbine Corporation
    Inventors: Krassimir P. Nenov, Richard Fenton, Joseph A. Fuggini, Peter Howard
  • Patent number: 5833829
    Abstract: A method of producing a coating on a substrate by electrolytically co-depositing a metal matrix M.sub.1 and particles of CrAlM.sub.2, where M.sub.1 is Ni, Co or Fe or two or all of these elements and M.sub.2 is Y, Si, Ti, Hf, Ga, Nb, Mn, Pt, a rare earth element or two or more of these elements. The co-deposition is carried out at a current density of less than 5mA per square centimeter. Preferably, the co-deposition forms a layer less than 50 microns thick, and occurs at a bath loading of less than 40 grams per liter of the particles. In a preferred embodiment, the particle size distribution in the plating bath is 25 percent between 15 and 12 microns, 45 percent between 12 and 10 microns and 30 percent less than 10 microns. The method is particularly useful for coating a gas turbine part.
    Type: Grant
    Filed: July 16, 1996
    Date of Patent: November 10, 1998
    Assignee: Praxair S.T. Technology, Inc.
    Inventor: John Foster
  • Patent number: 5824205
    Abstract: A method producing a coating on a substrate by aluminizing, chromizing or siliconizing the substrate, and depositing on the coated substrate by electrolytic or electroless deposition a metal matrix M.sub.1 from a bath containing particles of CrAlM.sub.2 to co-deposit the particles with the matrix as M.sub.1 CrAlM.sub.2, where M.sub.1 is Ni, Co or Fe or two or all of these elements and M.sub.2 is Y, Si, Ti, Hf, Ga, Nb, Mn, Pt, a rare earth element or two or more of these elements. Preferably, the method includes platinum aluminizing of the substrate. Heat treatments may be incorporated before and after deposition of the M.sub.1 CrAlM.sub.2. The deposition of the M.sub.1 CrAlM.sub.2 is carried out at a current density of less than 5 mA per square centimeter. Preferably, the deposition forms a M.sub.1 CrAlM.sub.2 layer less than 50 microns thick, and occurs at a bath loading of less than 40 grams per liter of the particles.
    Type: Grant
    Filed: May 16, 1996
    Date of Patent: October 20, 1998
    Assignee: Praxair S.T. Technology, Inc.
    Inventor: John Foster
  • Patent number: 5788823
    Abstract: A method of improving oxidation resistance of a platinum modified aluminide diffusion coating on a substrate involves electroplating the substrate with a platinum layer from an aqueous hydroxide based electroplating solution and aluminizing the substrate to grow the platinum modified aluminide diffusion coating on said layer. The electroplating solution preferably includes an alkali element and/or alkaline earth element that is incorporated in the platinum layer and in the aluminide diffusion coating formed thereon to significantly improve oxidation resistance of the coating.
    Type: Grant
    Filed: July 23, 1996
    Date of Patent: August 4, 1998
    Assignee: Howmet Research Corporation
    Inventors: Bruce M. Warnes, Thomas A. Legard, Nick S. DuShane, Jack E. Cockerill, Robert W. Beck
  • Patent number: 5771109
    Abstract: The present invention is a method and apparatus for digitizing film frames. The invention utilizes different colored strobe lights housed in an integrating sphere, instead of the prior art filter and shutter mechanism. The invention's control system flashes each strobe light in sequence for a predetermined time to expose a film frame to various color components. The various color components of the film frame are projected onto a CCD array with the aid of a lens. Each strobe light is flashed at a desired frequency and for the predetermined time in order to saturate the CCD array with the component of light corresponding to that strobe light. The color data corresponding to each color component are passed to digital signal processors for processing and storage. In one embodiment of the invention, the strobe lights are red, green, and blue strobe lights.
    Type: Grant
    Filed: May 17, 1996
    Date of Patent: June 23, 1998
    Assignee: Pixar
    Inventor: David DiFrancesco
  • Patent number: 5759380
    Abstract: A method of forming a protective coating of a CrRuAl alloy is provided. The substrate to be coated is first plated with a combination of chromium and ruthenium. Next, the coated substrate is aluminized with fine aluminum powder in an aluminum oxide pack at about 1150.degree. C. The coating formed is resistant to atmospheric attack and protects the substrate.
    Type: Grant
    Filed: April 4, 1989
    Date of Patent: June 2, 1998
    Assignee: General Electric Company
    Inventor: Melvin Robert Jackson
  • Patent number: 5679181
    Abstract: According to the present invention, there is provided a method of forming a corrosion-resistant nickel plated steel sheet or strip comprising a base sheet made of a cold rolled steel sheet or strip. A nickel layer is electroplated on at least one side thereof. A part or all of the nickel plated layer forms Fe-Ni diffusion layer. Moreover, the exposure rate of iron on the surface of the nickel plated layer is 4-30%.
    Type: Grant
    Filed: January 25, 1996
    Date of Patent: October 21, 1997
    Assignee: Toyo Kohan Co., Ltd.
    Inventors: Hitoshi Ohmura, Yasuhiro Koyakumaru, Satoshi Iketaka
  • Patent number: 5672261
    Abstract: A method for preparing a Ni base superalloy inner wall surface of a body open end, such as an end of a turbomachinery blade, and an end plate, such as a blade tip cap, for brazing together at a rim of the end plate includes electrochemically removing oxides from the inner wall surface. The end plate is prepared, at least at its rim, by first removing surface and subsurface oxides, for example by mechanical abrading or a combination of such abrading and acid cleaning. Then at least the rim is electroplated with Ni which is heated to diffuse the Ni into the rim substrate. This provides an improved combination of surfaces for brazing for example with a Ni base brazing alloy. After brazing the rim to the inner wall, there is provided an article with an improved relatively low oxide brazed joint, including less than about 20 volume % oxides, and a plate rim of substantially Ni along with elements diffused from the brazing alloy and the rim.
    Type: Grant
    Filed: August 9, 1996
    Date of Patent: September 30, 1997
    Assignee: General Electric Company
    Inventors: Gary E. Wheat, Robert E. McCracken, Nicholas C. Palmer
  • Patent number: 5667663
    Abstract: A ceramic thermal barrier coating layer for a superalloy article is caused to adhere to the superalloy article by applying platinum to the superalloy article and heat treating at a temperature of 1100.degree. C. to 1200.degree. C. for one hour. This causes aluminum to diffuse from the superalloy article into the platinum to form a platinum enriched outer layer which generally includes a platinum enriched gamma phase and a platinum enriched gamma prime phase. An alumina layer is formed between the platinum enriched outer layer and a ceramic coating. The platinum enriched gamma phase and the platinum enriched gamma prime phase in the outer layer reduces the migration of transition metal elements to the ceramic coating to enable a very pure alumina layer to be formed.
    Type: Grant
    Filed: December 19, 1995
    Date of Patent: September 16, 1997
    Assignees: Chromalloy United Kingdom Limited, Rolls-Royce plc
    Inventors: David S. Rickerby, Stanley R. Bell, Rodney G. Wing
  • Patent number: 5660320
    Abstract: A metallic alloy part having a bonded coating that includes dispersed hard-material particles embedded in a metal matrix, composed of a eutectic solder whose alloy elements include at least the base metal of the metallic alloy part. The solder is formed by fusion bonding on the metallic alloy part, a precoating composed of sequential layers of the elemental components of the solder applied on the metal part or on the hard-material particles. The composition and disposition of the various layers are graduated such that the melting points of the elemental solder components increase towards the outermost layer.
    Type: Grant
    Filed: November 9, 1995
    Date of Patent: August 26, 1997
    Assignee: MTU Motoren-Und Turbinen-Union Munchen GmbH
    Inventors: Wilhelm Hoffmuller, Josef Eichner, Robert Sigl, Thomas Uihlein
  • Patent number: 5558758
    Abstract: An electrodeposited composite coating comprises, as deposited, a matrix of cobalt and particles of chromium carbide, at least 50% and preferably at least 80% or 90% by weight of the particles lying within the size range of 4 .mu.m to 8 .mu.m.
    Type: Grant
    Filed: August 31, 1994
    Date of Patent: September 24, 1996
    Assignee: Praxair S.T. Technology, Inc.
    Inventor: John Foster
  • Patent number: 5547557
    Abstract: A process for forming an electroconductive thin-film coil element uses an InNi alloy film which is heated to a temperature above its melting point and melted off together with an electrode used for electroplating.
    Type: Grant
    Filed: October 20, 1994
    Date of Patent: August 20, 1996
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hiroki Asai, Yuji Omata
  • Patent number: 5501786
    Abstract: A method of making the compound CuInSe.sub.2 (CIS) by depositing a precursor of the compound at least partly electrolytically on a substrate and forming CuInSe.sub.2 by thermal reaction.
    Type: Grant
    Filed: February 3, 1995
    Date of Patent: March 26, 1996
    Assignee: Yazaki Corp.
    Inventors: Francois Gremion, Jean-Paul Issartel, Klaus Mueller
  • Patent number: 5489372
    Abstract: A process for producing a light absorption layer of a solar cell is disclosed, in which prior to heat-treatment, at least two of the following steps are performed in combination: (1) electrodeposition of a copper layer including selenium particles, (2) electrodeposition of an indium layer including selenium particles, (3) electrodeposition of a copper layer not including selenium, and (4) electrodeposition of an indium layer not including selenium. Control of copper, indium, and selenium contents becomes easier with this process.
    Type: Grant
    Filed: September 12, 1994
    Date of Patent: February 6, 1996
    Assignee: Fujitsu Limited
    Inventor: Tomio Hirano
  • Patent number: 5476837
    Abstract: A process for preparing a superconducting film, such as a thallium-barium-calcium-copper oxide superconducting film, having substantially uniform phase development. The process comprises providing an electrodeposition bath having one or more soluble salts of one or more respective potentially superconducting metals in respective amounts adequate to yield a superconducting film upon subsequent appropriate treatment. Should all of the metals required for producing a superconducting film not be made available in the bath, such metals can be a part of the ambient during a subsequent annealing process. A soluble silver salt in an amount between about 0.1% and about 4.0% by weight of the provided other salts is also provided to the bath, and the bath is electrically energized to thereby form a plated film. The film is annealed in ambient conditions suitable to cause formation of a superconductor film.
    Type: Grant
    Filed: March 14, 1994
    Date of Patent: December 19, 1995
    Assignee: Midwest Research Institute
    Inventors: Raghuthan Bharacharya, Philip A. Parilla, Richard D. Blaugher
  • Patent number: 5455079
    Abstract: A process for forming a hard surface coating on titanium alloys includes providing a piece of material containing titanium having at least a portion of one surface to be hardened. The piece having a portion of a surface to be hardened is contacted on the backside by a suitable heat sink such that the melting depth of said surface to be hardened may be controlled. A hardening material is then deposited as a slurry. Alternate methods of deposition include flame, arc, or plasma spraying, electrodeposition, vapor deposition, or any other deposition method known by those skilled in the art. The surface to be hardened is then selectively melted to the desired depth, dependent on the desired coating thickness, such that a molten pool is formed of the piece surface and the deposited hardening material. Upon cooling a hardened surface is formed.
    Type: Grant
    Filed: January 31, 1995
    Date of Patent: October 3, 1995
    Assignee: The United States of America as represented by the Secretary of the Interior
    Inventors: Laurance L. Oden, Paul C. Turner
  • Patent number: 5447802
    Abstract: In connection with a process of implementing galvanizing and galvannealing on steel strips containing highly oxidizable elements such as Si, Mn, P, Ti, Nb, Al, Ni, Cu, Mo, V, Cr, and B, after annealing in a continuous line or implementing electroplating after annealing, the present invention provides a method for restraining non-plating at low cost in a stable manner and a surface treated steel strip having minimal non-plating. By applying on at least one surface of a steel strip a Fe plating having a coating weight of 0.1-10 g/m.sup.2 and an oxygen content of 0.1-10 wt %, followed by annealing and then zinc or zinc alloy plating, there is obtained a surface treated steel strip having minimal plating defects which includes a Fe plating layer immediately below a zinc or zinc alloy plating layer and a steel alloying element concentrated stratum immediately below the Fe plating layer. The Fe plating may be formed using an electroplating bath which contains 0.1-10 g/l of Fe.sup.
    Type: Grant
    Filed: April 12, 1994
    Date of Patent: September 5, 1995
    Assignee: Kawasaki Steel Corporation
    Inventors: Yoichi Tobiyama, Chiaki Kato, Nobuyuki Morito, Shigeru Umino
  • Patent number: 5433839
    Abstract: This sheet metal comprises a substrate (12) made of stainless steel containing more than 16% of chromium in its weight composition, coated with a metal layer (16) containing chiefly tin. Between the metal layer (16) and the substrate (12) the sheet metal comprises a layer (14) of an intermetallic compound containing at least iron, chromium and tin. To manufacture this sheet metal, a layer (16) of metallic coating containing chiefly tin is deposited by an electrolytic route on a sheet (12) made of stainless steel. The coated sheet metal is heated to a temperature above the melting temperature of the coating layer (16) to permit the formation of the intermetallic compound. The heating is maintained for a sufficient period for the surface of the coating layer (16) to have a matt appearance.
    Type: Grant
    Filed: June 11, 1993
    Date of Patent: July 18, 1995
    Assignee: Ugine S.A.
    Inventors: Pascal Amelot, Jean-Claude Bavay
  • Patent number: 5320719
    Abstract: A process for the production of a composition modulated alloy having a predetermined concentration is disclosed, in which alternating layers of at least two metals are successively deposited upon a substrate by electrodeposition, vacuum deposition, vapor deposition, or sputtering. The individual thicknesses of at least one metal's layers are varied in a predetermined manner. Pulsed galvanostatic electrodeposition using a tailored waveform is preferred. A copper-nickel concentration graded alloy is disclosed. Concentration graded alloys of predetermined concentration having at least one region of local homogeneity are also disclosed. The region of local homogeneity has a thickness corresponding to the thickness of two adjacent layers of different metals which have been diffusion annealed together. A pulsed electrodeposition/diffusion anneal process for production of such alloys is also disclosed.
    Type: Grant
    Filed: November 17, 1992
    Date of Patent: June 14, 1994
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: David S. Lasbmore, Moshe P. Dariel
  • Patent number: 5226975
    Abstract: A method of forming a wear-resistant coating for internal combustion engine component parts which allows the part to remain dimensionally stable under severe engine operating conditions is provided. The coating is formed by a two step method. First, the engine part is coated with chromium to form a chromium base layer. Second, the chromium coated part is subjected to a reactive gas plasma in a reaction chamber at an elevated temperature and under an applied electrical potential. The gas of the plasma reacts with the chromium to form the wear-resistant layer. Preferably, the reactive gas is nitrogen which reacts with the chromium to form a chromium nitride surface layer on the chromium base layer.
    Type: Grant
    Filed: March 20, 1991
    Date of Patent: July 13, 1993
    Assignee: Cummins Engine Company, Inc.
    Inventors: James E. Denton, Buel D. Napier
  • Patent number: 5194137
    Abstract: A method for forming a solder-bumped terminal on a planar dielectric substrate utilizes a terminal of a particular configuration and comprises depositing onto the terminal a thin plate of solder alloy and reflowing the solder alloy to form a bump. The terminal configuration includes an enlarged terminal pad connected to a relatively narrow linear runner section. Preferably, the runner section width is between about 50 and 150 microns, whereas the pad width is between about 1.2 and 2.0 times the runner section width. The terminal is initially fabricated to include a metal layer adjacent the substrate formed, for example, of copper and a thin, outer plate composed of the solder alloy. The solder plate is deposited in a uniform thickness to both the terminal pad and the adjacent runner section. The terminal is then heated to melt the solder plate, whereupon the molten solder is drawn from the runner onto the enlarged pad to form a bump.
    Type: Grant
    Filed: August 5, 1991
    Date of Patent: March 16, 1993
    Assignee: Motorola Inc.
    Inventors: Kevin D. Moore, John W. Stafford, William M. Beckenbaugh, Ken Cholewczynski
  • Patent number: 5176812
    Abstract: A copper fin material for heat-exchangers is characterized in that, on the surface of Cu or Cu alloy strip, an inner side diffused layer comprising Cu and Zn and a surface side diffused layer provided on the surface side thereof comprising Cu, Zn and elements with a lower diffusion coefficient into Cu than that of Zn is formed. A method of producing the same is characterized in that, after an alloy film comprising Zn and element with a lower diffusion coefficient into Cu than that of Zn is formed on the surface of a Cu or Cu alloy strip, a diffusion treatment is performed under heat so that, on the surface of the Cu or Cu alloy strip, an inner side diffused layer comprising Cu and Zn and a surface side diffused layer provided on the surface side thereof comprising Cu, Zn and elements with a lower diffusion coefficient into Cu than that of Zn are formed. Alternatively, the diffusion treatment under heat is combined with a rolling processing step.
    Type: Grant
    Filed: July 29, 1991
    Date of Patent: January 5, 1993
    Assignees: The Furukawa Electric Co., Ltd., Nippondenso Co., Ltd.
    Inventors: Hideo Suda, Norimasa Sato, Katsuhiko Takada, Sumio Susa, Yasushi Aiyoshizawa, Kenichi Omata
  • Patent number: 5167794
    Abstract: The present invention relates to a lead frame material for a semiconductor, which comprises a copper or copper alloy matrix having a layer obtained by applying an Ag-plating of a thickness of from 0.005 to 0.5 .mu.m on the surface of the matrix and diffusing Ag into the matrix by heat treatment.
    Type: Grant
    Filed: April 5, 1991
    Date of Patent: December 1, 1992
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Hisatosi Ito
  • Patent number: 5162295
    Abstract: The invention provides a method for forming deposits of superconducting ceramics by sequentially electrodepositing layers of metals, of a type and in proportion suitable for forming a superconducting ceramic, to form a precursor metal deposit, followed by oxidizing the precursor deposit to form a superconducting ceramic deposit. Optionally, the electroplating steps are conducted in such a manner that a patterned precursor deposit results, to obtain a patterned superconducting deposit after oxidation.
    Type: Grant
    Filed: August 6, 1990
    Date of Patent: November 10, 1992
    Assignee: Allied-Signal Inc.
    Inventors: Mohammad Behi, MacRae Maxfield, Ray Baughman, Helmut Eckhardt, Zafar Igbal
  • Patent number: 5124006
    Abstract: A method for coating a heat engine part, particularly a turbo-machine part made of a superalloy and adapted for use in aeronautical applications, comprises electrophoretically depositing a metallic structure of cellular form with uniformly disposed cells of predetermined size. The deposition is performed using an electrophoresis bath containing methanol, aluminum chloride as an electrolyte, and a powder containing Cr, Al, Y, Ta and Ni. The cellular metallic structure is consolidated by a sintering treatment, which may be reactive, or metallization, preferably in the vapor phase, and the coating is completed by applying a ceramic material by plasma spraying.
    Type: Grant
    Filed: September 17, 1990
    Date of Patent: June 23, 1992
    Assignees: Societe Nationale d'Etude et de Construction de Moteurs d'Aviation "S.N.E.C.M.A.", Association pour la Recherche et le Developpement des Methodes et Processus Industriels A.R.M.I.N.E.S.
    Inventors: Dominque M. M. Fayeulle, Jean-Paul Henon, Rene J. Morbioli