Treating Electrolytic Or Nonelectrolytic Coating After It Is Formed Patents (Class 205/220)
  • Patent number: 11324912
    Abstract: The principles and embodiments of the present invention relate to methods and systems for safely providing NO to a recipient for inhalation therapy. There are many potential safety issues that may arise from using a reactor cartridge that converts NO2 to NO, including exhaustion of consumable reactants of the cartridge reactor. Accordingly, various embodiments of the present invention provide systems and methods of determining the remaining useful life of a NO2-to-NO reactor cartridge and/or a break-through of NO2, and providing an indication of the remaining useful life and/or break-through.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: May 10, 2022
    Assignee: Mallinckrodt Pharmaceuticals Ireland Limited
    Inventors: Jaron Acker, Muhammad Asif, Craig Flanagan, Douglas Alan Greene, Sarah Jayne Ridley, Frank Kenneth Schweighardt, Lien-Lung Sheu
  • Patent number: 11158843
    Abstract: A method for making nanoporous nickel composite material comprises: providing a cathode plate and a copper-containing anode plate, electroplating a copper material layer a surface of the cathode plate; laying a carbon nanotube layer on the copper material layer, and forming an overlapped structure of the copper material layer and the carbon nanotube laye; the cathode plate and the overlapped structure are used as a cathode, and a nickel-containing anode plate is used as an anode, plating a nickel material layer on the overlapped structure to form sandwich structure; repeating steps S1 to S3 to obtain a carbon nanotube-reinforced copper-nickel alloy; rolling and annealing the carbon nanotube-reinforced copper-nickel alloy; and etching the carbon nanotube-reinforced copper-nickel alloy to form the nanoporous nickel composite material.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: October 26, 2021
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ze-Cheng Hou, Yuan-Feng Liu, Lin Zhu, Wen-Zhen Li
  • Patent number: 10556732
    Abstract: Tabbed sealing members with a robust tab structure having additional support under the tab and at a tab pivot or hinge joint.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: February 11, 2020
    Assignee: Selig Sealing Products, Inc.
    Inventors: Stephen P. Cassidy, Steven A. Brucker, Robert William Thorstensen-Woll, John J. Brown
  • Patent number: 10449321
    Abstract: A gas delivery device includes a nitric oxide generating system. The system has a medium including a source of nitrite ions. A working electrode is in contact with the medium. A Cu(II)-ligand complex is in contact with the working electrode. A reference/counter electrode is, or a reference electrode and a counter electrode are in contact with the medium and separated from the working electrode. An inlet conduit is to deliver nitrogen gas to the medium, and an outlet conduit is to transport a stream of nitrogen gas and nitric oxide from the medium. An inspiratory gas conduit is operatively connected to the outlet conduit to introduce an oxygen-containing gas and form an output gas stream of the gas delivery device.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: October 22, 2019
    Assignee: The Regents of the University of Michigan
    Inventors: Mark E. Meyerhoff, Nicolai Lehnert, Yu Qin, Andrew P. Hunt, Elizabeth J. Brisbois, Hang Ren
  • Patent number: 10407788
    Abstract: This invention concerns a method for galvanic metal deposition of a substrate using an anode and an electrolyte, wherein from each of a plurality of electrolyte nozzles a locally confined electrolyte stream is directed towards a part of a substrate surface which is to be treated, wherein a relative movement is carried out between the substrate and the electrolyte stream during deposition, characterized in that a first movement is carried out along a first path, wherein at least along a part of the first path a second movement is carried out along a second path, wherein the first and the second movement each are relative movements between the electrolyte stream and the substrate. Further, the invention concerns a substrate holder reception apparatus and an electrochemical treatment apparatus.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: September 10, 2019
    Assignee: Atotech Deutschland GmbH
    Inventors: Ray Weinhold, Uwe Kirbach
  • Patent number: 9893220
    Abstract: A method for formulating a CIGS nanoparticle-based ink, which can be processed to form a thin film with a crack-free limit (CFL) of 500 nm or greater, comprises: dissolving or dispersing Cu(In,Ga)S2 and Cu(In,Ga)Se2 nanoparticles; mixing the nanoparticle solutions/dispersions and adding oleic acid to form an ink; depositing the ink on a substrate; annealing to remove the organic components of the ink formulation; forming a film with a CFL ?500 nm; and, repeating the deposition and annealing process to form a CIGS film having a thickness ?1 ?m. The film so produced may be incorporated into a thin film photovoltaic device.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: February 13, 2018
    Assignee: Nanoco Technologies Ltd.
    Inventors: Zugang Liu, Christopher Newman
  • Patent number: 9255320
    Abstract: A thin film superconducting wire with a copper plating thin film produced on a surface of a laminated structure is inferior in bending properties to a thin film superconducting wire having no copper plating thin film. Therefore, a thin film superconducting wire according to the present invention is a thin film superconducting wire including a laminated structure having a substrate, a buffer layer located on one of main surfaces of the substrate, and a superconducting layer located on a main surface of the buffer layer opposite to a main surface facing the substrate. The thin film superconducting wire further includes a copper plating thin film covering an outer periphery of the laminated structure, a residual stress within the copper plating thin film serving as a compression stress. The laminated structure may have a sputtered silver layer. A silver covering layer covering the outer periphery of the laminated structure may be further provided between the copper plating thin film and the laminated structure.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: February 9, 2016
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takahiro Taneda, Tatsuoki Nagaishi
  • Patent number: 9040167
    Abstract: A flat steel product having a base layer of a steel material and a multilayer coating applied thereto, and a method for producing the flat steel product. The method having the following steps: providing a steel base layer; applying a zinc layer to the base layer by electrolytic coating; applying an aluminum layer to the surface of the zinc layer, wherein no treatment is made to the surface of the zinc layer in regard to the oxides and sulfides present thereon at the end of the electrolytic zinc coating step or occurring during the course of the aluminum coating step; applying a magnesium layer to the aluminum layer; and subsequently heat treating the flat steel product in such a way that an MgZn2 layer forms in the coating above the Al layer.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: May 26, 2015
    Assignee: ThyssenKrupp Steel Europe AG
    Inventors: Bernd Schuhmacher, Christian Schwerdt, Nicole Weiher, Richard Weinhold
  • Publication number: 20150047784
    Abstract: A method for applying a temporary bonding layer to a carrier wafer for temporary joining to a product wafer by fusion bonding or anodic bonding, said method comprising: applying a temporary bonding layer which is suitable for fusion bonding or anodic bonding to the carrier wafer and modifying the temporary bonding layer during and/or after application such that the temporary connection of the temporary bonding layer can be broken.
    Type: Application
    Filed: December 16, 2013
    Publication date: February 19, 2015
    Applicant: EV GROUP E. THALLNER GMBH
    Inventor: Jurgen Burggraf
  • Publication number: 20150017554
    Abstract: A process for producing oxygen-consuming electrodes, in particular for use in chloralkali electrolysis, which display good transport capability and storage capability. In the process, a silver oxide-containing sheet-like structure as intermediate is electrochemically reduced. Also disclosed are methods of using these electrodes in chloralkali electrolysis or fuel cell technology or in metal-air batteries, and the fuel cells and metal-air batteries produced.
    Type: Application
    Filed: July 10, 2014
    Publication date: January 15, 2015
    Applicant: BAYER MATERIALSCIENCE AG
    Inventors: Andreas BULAN, Rainer WEBER, Michael STELTER, Hartmund BOMBACH, Katja PALM
  • Publication number: 20140345130
    Abstract: The invention relates to an electrochemical sensor for the determination of a concentration of at least one analyte in a medium, in particular a body tissue and/or a body fluid, to an apparatus that includes the electrochemical sensor, and to a use of the electrochemical sensor, and finally to a method for producing it. The electrochemical sensor has an isolation element and at least two electrodes. The at least two electrodes comprise at least one working electrode and at least one further electrode, in particular at least one counter electrode and/or at least one reference electrode. The at least two electrodes run parallel to one another and form an electrochemical measuring cell of the electrochemical sensor.
    Type: Application
    Filed: August 6, 2014
    Publication date: November 27, 2014
    Inventors: Michael Marquant, Gregor Bainczyk
  • Patent number: 8888982
    Abstract: A method for creating an oxide layer having a reduced copper concentration over a surface of an object comprising aluminum and copper for use in a semiconductor processing system. The oxide layer produced using a plasma electrolytic oxidation process has a reduced copper peak concentration, which decreases a risk of copper contamination, and includes magnesium oxides that can be converted to magnesium halide upon exposure to an excited halogen-comprising gas or halogen-comprising plasma to increase the erosion/corrosion resistance of the oxide layer.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: November 18, 2014
    Assignee: MKS Instruments Inc.
    Inventors: Xing Chen, Chengxiang Ji, Chiu-Ying Tai
  • Publication number: 20140321032
    Abstract: Embodiments of the present invention are directed to electrical devices and methods for fabricating electrical devices using an oxidation process. According to one embodiment, a method of forming an electrical device using an oxidation process includes forming a metallic element which is to become an electrically insulating or resistive element in an electrical device; forming an electrically conductive element connected to the metallic element, wherein the metallic element and the electrically conductive element have different oxidation behavior when subjected to the oxidation process; and subjecting the elements forming the electrically insulating or resistive element and the electrically conductive element to the oxidation process.
    Type: Application
    Filed: April 25, 2013
    Publication date: October 30, 2014
    Inventors: Nathan S. Lazarus, Christopher D. Meyer, Sarah S. Bedair
  • Patent number: 8828151
    Abstract: Disclosed is an easily handleable composition for metal surface treatment which enables to achieve foundation surface concealment, coating adhesion and corrosion resistance equal to or higher than those obtained by the conventional metal surface treatment compositions. This composition for metal surface treatment places no burden on the environment. Also disclosed are a method for treating the surface of a metal material wherein such a composition for metal surface treatment is used, and a metal material treated by such a metal surface treatment method. Specifically disclosed is a metal surface treatment composition used for a treatment of a metal surface, which composition contains a zirconium compound and/or titanium compound substantially not containing fluorine, and an inorganic acid and/or a salt thereof. This metal surface treatment composition has a pH of not less than 1.5 but not more than 6.5.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: September 9, 2014
    Assignee: Chemetall GmbH
    Inventors: Toshio Inbe, Thomas Kolberg
  • Patent number: 8821708
    Abstract: A surface treatment method of cladding a Sn or Sn alloy coating with one or more metals selected from among Mn, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, In, Ti, Ge, Pb, Sb and Bi continuously or discontinuously in such a way as to make the Sn or Sn alloy coating partially exposed, which method makes it possible to inhibit the generation of whiskers in an Sn or Sn alloy coating formed on the surface of a substrate to which other member is pressure-welded or the joint surface to be soldered. Cladding an Sn or Sn alloy coating with a prescribed metal continuously or discontinuously in such a way as to make the coating partially exposed inhibits the generation of whiskers by contact pressure in pressure welding, and further inhibits the generation of whiskers without impairing the solder wettability of the coating even when the cladding is not followed by heat treatment or reflowing.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: September 2, 2014
    Assignees: C. Uyemura & Co., Ltd., Osaka University
    Inventors: Masanobu Tsujimoto, Isamu Yanada, Katsuaki Suganuma, Keunsoo Kim
  • Patent number: 8778163
    Abstract: A method for electroplating aluminum metal on a magnesium alloy includes providing an Lewis acidic ionic liquid having dissolved species of an aluminum metal salt; pre-treating a surface of the magnesium alloy including subjecting the surface of the magnesium alloy to a reverse current etching in the ionic liquid; electroplating the aluminum metal on the surface using the ionic liquid as the electrolyte; and subjecting the surface of the magnesium alloy to a post-treatment including neutralization rinsing in a rinsing solvent solution.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: July 15, 2014
    Assignee: Sikorsky Aircraft Corporation
    Inventors: Xiaomei Yu, Mark R. Jaworowski, Daniel V. Viens, Joseph J. Sangiovanni
  • Patent number: 8747642
    Abstract: Processes are provided herein for the fabrication of MEMS utilizing both a primary metal that is integrated into the final MEMS structure and a sacrificial secondary metal that provides structural support for the primary metal component during machining. More specifically, techniques are disclosed to increase the rate of secondary metal deposition between primary metal features in order to prevent voiding in the sacrificial secondary metal and thus enhance structural support of the primary metal during machining.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: June 10, 2014
    Assignee: Advantest America, Inc.
    Inventor: Montray Leavy
  • Publication number: 20140132376
    Abstract: Materials, techniques, systems, and devices are disclosed for fabricating and implementing high-strength permanent magnets. In one aspect, a method of fabricating a magnet includes distributing particles of a first magnetic material such that the particles are substantially separated, in which the particles include a surface substantially free of oxygen. The method includes forming a coating of a second magnetic material over each of the particles, in which the coating forms an interface at the surface that facilitates magnetic exchange coupling between the first and second magnetic materials. The method includes consolidating the coated particles to produce a magnet that is magnetically stronger than each of the first and second magnetic materials.
    Type: Application
    Filed: May 18, 2012
    Publication date: May 15, 2014
    Applicant: The Regents of the University of California
    Inventor: Sungho Jin
  • Publication number: 20140110265
    Abstract: An electrode for forming an electrochemical cell with a substrate and a method of forming said electrode. The electrode comprises a carrier provided with an insulating layer which is patterned at a front side. Conducting material in an electrode layer is applied in the cavities of the patterned insulating layer and in contact with the carrier. A connection layer is applied at the backside of the carrier and in contact with the carrier. The periphery of the electrode is covered by the insulating material.
    Type: Application
    Filed: December 20, 2013
    Publication date: April 24, 2014
    Applicant: CENTRE DE RECHERCHE PUBLIC - GABRIEL LIPPMANN
    Inventors: Mikael Fredenberg, Patrik Möller, Peter Wiwen-N ilsson, Cecilia Aronsson, Matteo Dainese
  • Publication number: 20140103330
    Abstract: A gas sensor operable at ambient conditions, the sensor includes functionalized feather-like tellurium (Te) nanostructures on single-walled carbon nanotube (SWNTs) networks.
    Type: Application
    Filed: October 10, 2013
    Publication date: April 17, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Nosang V. MYUNG, Miluo Zhang
  • Publication number: 20130330540
    Abstract: The invention relates to a method for forming a protective coating against high-temperature oxidation on a surface of a refractory composite material based on silicon and niobium, wherein chromium present on the surface to be protected is reacted with a reactive gas which contains silicon and oxygen in order to produce a composite coating having two phases, a first phase of which is an oxide phase based on silica which has viscoplastic properties and a second phase of which is based on silicon, chromium and oxygen, and wherein the first phase and second phase are coalesced at high temperature, which allows a protective coating to be formed in which the second phase acts as a reservoir to reform, during operation, the first phase by means of reaction with an oxidising gas. The invention is preferably used in the field of aeronautical engines.
    Type: Application
    Filed: June 20, 2013
    Publication date: December 12, 2013
    Inventors: Marie-Pierre BACOS, Pierre JOSSO
  • Patent number: 8591716
    Abstract: A semiconductor substrate with anode pattern is anodized to be shaped into an optical lens. The anodization utilizes an electrolytic solution which etches out oxidized portion as soon as it is formed as a result of the anodization, to thereby develop a porous layer in a pattern in match with the anode pattern. After being removed of the porous layer, the substrate is treated to smooth out minute projections remaining in the top surface of the substrate, thereby obtaining the lens of good transmissivity.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: November 26, 2013
    Assignee: Panasonic Corporation
    Inventors: Yoshiaki Honda, Takayuki Nishikawa, Tomohiro Kamitsu
  • Publication number: 20130302718
    Abstract: A stainless steel for use in a fuel cell separator is produced by subjecting stainless steel containing 16 mass % or more of Cr to electrolytic treatment and thereafter to immersion treatment in a solution containing fluorine. The electrolytic treatment is carried out by anodic electrolyzation or by a combination of anodic electrolyzation and cathodic electrolyzation, and an anodic electrolytic quantity Qa and a cathodic electrolytic quantity Qc preferably satisfy Qa?Qc. The solution containing fluorine preferably has a temperature of 40° C. or higher, and hydrofluoric acid concentration [HF] (mass %) and nitric acid concentration [HNO3] (mass %) satisfying [HF]?0.8×[HNO3].
    Type: Application
    Filed: January 19, 2011
    Publication date: November 14, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Shinsuke Ide, Tomohiro Ishii, Shin Ishikawa, Yasushi Kato
  • Patent number: 8580371
    Abstract: A superhydrophobic structure that may have a titanium substrate and nanoporous titanium oxide layer grown on the titanium substrate by anodization. The titanium oxide layer may have a plurality of nano-tube structures that create a microscopically rough surface on the titanium substrate. A hydrophobic coating may be deposited over the titanium oxide layer to create a superhydrophobic surface on the titanium substrate. The titanium oxide layer may provide a photocatalytic reaction with oxygen in surrounding air to oxidize organic contaminants on the superhydrophobic surface.
    Type: Grant
    Filed: January 18, 2010
    Date of Patent: November 12, 2013
    Assignee: The Boeing Company
    Inventor: Dennis R. Strauss
  • Patent number: 8574420
    Abstract: Multilayered films, particularly ultrathin multilayered films comprising cationic polymers which are useful for controlled release of anionic species, particularly for controlled release of nucleic acids. The multilayer films herein are useful for temporal controlled released of anionic species, particularly one or more anionic peptides, proteins, nucleic acids or other anionic biological agents. In one aspect, the invention relates to multilayer films which release anionic species (anions) with separate and/or distinct release profiles, particularly wherein the anions are one or more anionic peptides, proteins or nucleic acids or other anionic biological agents.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: November 5, 2013
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: David M. Lynn, Jingtao Zhang, Xianghui Liu
  • Patent number: 8541349
    Abstract: Lubricant-hard-ductile composite coating compositions and methods of making the same are provided. In embodiment, a composite coating composition comprises: a lubricant phase for providing lubrication to a surface; a hard ceramic phase for providing structural integrity and wear resistance to the surface; and a ductile metal phase for providing ductility to the surface.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: September 24, 2013
    Assignee: Inframat Corporation
    Inventors: T. Danny Xiao, John Broadhead, Xinqing Ma
  • Publication number: 20130244026
    Abstract: A metal material is contacted with a treatment solution containing zirconium and/or titanium compound, and a polyamine compound having a number average molecular weight from 150 to 500,000 and containing from 0.1 mmol to 17 mmol of primary and/or secondary amino group per 1 g of solid content and at least one siloxane unit. Concentration of zirconium and/or titanium compound in the metal surface treatment composition is from 10 ppm to 10,000 ppm with respect to the metal element, and mass ratio of the zirconium and/or titanium element is from 0.1 to 100 with respect to the polyamine compound. The metal material is washed with water after contacted by the treatment solution.
    Type: Application
    Filed: September 13, 2012
    Publication date: September 19, 2013
    Applicants: Chemetall GmbH, NIPPON PAINT CO., LTD.
    Inventors: Toshio Inbe, Thomas Kolberg
  • Patent number: 8419919
    Abstract: A method may include the steps of supplying current to the electrodes of an electrochemical cell according to a first charging profile, wherein the electrochemical cell has an anode, cathode, and electrolytic solution; maintaining a generally constant current between the electrodes; exposing the cell to an external field either during or after the termination of the deposition of deuterium absorbing metal on the cathode; and supplying current to the electrodes according to a second charging profile during the exposure of the cell to the external field. The electrolytic solution may include a metallic salt including palladium, and a supporting electrolyte, each dissolved in heavy water. The cathode may comprise a second metal that does not substantially absorb deuterium, such as gold. The external field may be a magnetic field.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: April 16, 2013
    Assignees: JWK International Corporation, The United States of America as represented by the Secretary of the Navy
    Inventors: Pamela A. Boss, Frank E. Gordon, Stanislaw Szpak, Lawrence Parker Galloway Forsley
  • Publication number: 20130089751
    Abstract: The present invention provides a steel sheet for a container including a cold-rolled steel sheet and a composite film formed on the cold-rolled steel sheet through an electrolysis process in a solution containing: at least one metal ion of an Sn ion, an Fe ion, and an Ni ion; Zr ion; a nitric acid ion: and an ammonium ion, in which the composite film contains at least one element of: Zr of 0.1 to 100 mg/m2 in equivalent units of metal Zr; Sn of 0.3 to 20 g/m2 in equivalent units of metal Sn; Fe of 5 to 2000 mg/m2 in equivalent units of metal Fe; and Ni of 5 to 2000 mg/m2 in equivalent units of metal Ni.
    Type: Application
    Filed: June 28, 2011
    Publication date: April 11, 2013
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Shigeru Hirano, Akira Tachiki, Hirokazu Yokoya, Morio Yanagihara, Makoto Kawabata
  • Patent number: 8414757
    Abstract: The disclosure relates to processes for the electrochemical modification of electron emitting materials such as carbon nanotubes. The processes improve the oxidation resistance of the electron emitting materials when they are fired in an oxygen-containing atmosphere such as air. The disclosure also relates to the preparation of cathodes or cathode assemblies, for use in a field emission device, wherein are contained an electron field emitter made from such electron emitting material.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: April 9, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Steven Dale Ittel, Gillian Althea Maria Reynolds, Ming Zheng
  • Patent number: 8409418
    Abstract: The present invention provides a method and precursor structure to form a Group IBIIIAIVA solar cell absorber layer. The method includes forming a Group IBIIIAVIA compound layer on a base by forming a precursor layer on the base through electrodepositing three different films, and then reacting the precursor layer with selenium to form the Group IBIIIAVIA compound layer on the base. The three films, described by the precursor layer, include in one embodiment a first alloy film comprising copper, indium and gallium, a second alloy film comprising copper and selenium formed on the first alloy film; and a selenium film formed on the second alloy film.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: April 2, 2013
    Assignee: SoloPower, Inc.
    Inventors: Serdar Aksu, Jiaxiong Wang, Mustafa Pinarbasi
  • Publication number: 20130078382
    Abstract: The invention relates to a process for producing a corrosion-inhibiting coating for substrates having a surface consisting of zinc, magnesium, aluminium or one of their alloys, wherein the surface to be treated is brought into contact in direct succession with two aqueous treatment solutions containing chromium(III) ions, metal ions of the substrate surface to be treated and at least one complexing agent. The first treatment solution has a pH in the range from 1.0 to 4.0, while the second treatment solution has a pH of from 3.0 to 12.0. The process of the invention produces a smaller amount of wastewater polluted with heavy metals.
    Type: Application
    Filed: May 26, 2010
    Publication date: March 28, 2013
    Applicant: ATOTECH DEUTSCHLAND GMBH
    Inventors: Udo Hofmann, Volker Krenzel
  • Patent number: 8389696
    Abstract: Polymerizable diazonium salts having redox properties and absorption in the visible range, a process for preparing them and uses thereof are disclosed. The salts have the general formula: [XX+LnDdEm(N2+)p][(B?)p+x] in which: X is chosen from transition metals, preferably X is chosen from ruthenium (Ru), osmium (Os), iron (Fe), cobalt (Co) and iridium (Ir), x is an integer ranging from 1 to 5 inclusive, L is a ligand chosen from pyridine, bipyridine, terpyridine, phenanthroline and phenylpyridine groups, and mixtures thereof, n is an integer ranging from 1 to 5 inclusive, D is a saturated or unsaturated, C1-C5 alkyl spacer compound, d=0 or 1, E is an aromatic or polyaromatic spacer compound that can contain one or more heteroatoms, m is an integer ranging from 0 to 5 inclusive, p is an integer, and B is a counterion.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: March 5, 2013
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Gérard Bidan, Bruno Jousselme, Rémi De Bettignies
  • Publication number: 20130034745
    Abstract: The present invention provides a steel sheet for a container including: a plated layer containing an adhesion amount of 300 to 1000 mg/m2 of nickel, provided on at least one surface of a steel sheet as metal Ni; and a chemical conversion treatment film formed on the steel sheet by performing immersion or a cathodic electrolytic treatment with a solution containing Zr ions, F ions, and phosphate ions, wherein a metal Zr adhesion amount of the chemical conversion treatment film is 1.0 to 50 mg/m2, an amount of 0.5 to 25 mg/m2 of a phosphate compound is contained in terms of P amount, and an F-atom number density measured by XPS analysis of a plane of 2 nm and a plane of 4 nm in a depth direction obtained by a sputtering treatment is equal to or less than 2 at %.
    Type: Application
    Filed: March 22, 2011
    Publication date: February 7, 2013
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Akira Tachiki, Shigeru Hirano, Hirokazu Yokoya, Masakazu Noda, Hiroshi Nishida, Kazushige Hasegawa
  • Publication number: 20130008798
    Abstract: Photovoltaic devices and methods for preparing a p-type semiconductor generally include electroplating a layer of gallium or a gallium alloy onto a conductive layer by contacting the conductive layer with a plating bath free of complexing agents including a gallium salt, methane sulfonic acid or sodium sulfate and an organic additive comprising at least one nitrogen atom and/or at least one sulfur atom, and a solvent; adjusting a pH of the solution to be less than 2.6 or greater than 12.6. The photovoltaic device includes an impurity in the p-type semiconductor layer selected from the group consisting of arsenic, antimony, bismuth, and mixtures thereof. Various photovoltaic precursor layers for forming CIS, CGS and CIGS p-type semiconductor structures can be formed by electroplating the gallium or gallium alloys in this manner. Also disclosed are processes for forming a thermal interface of gallium or a gallium alloy.
    Type: Application
    Filed: September 5, 2012
    Publication date: January 10, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shafaat Ahmed, Hariklia Deligianni, Qiang Huang, Kathleen B. Reuter, Lubomyr T. Romankiw, Raman Vaidyanathan
  • Patent number: 8349165
    Abstract: Soluble nickel and tin contained in a coating layer are eluted into an aqueous solution by bringing a cathode coated with a nickel-tin alloy into contact with an aqueous solution of an alkali metal hydrogen carbonate such as sodium hydrogen carbonate, thereby reducing the amounts of these metals eluted during electrolysis.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: January 8, 2013
    Assignee: Tokuyama Corporation
    Inventors: Yasuyuki Tanaka, Kenji Aoki
  • Publication number: 20120312687
    Abstract: Functionalized membranes for use in applications, such as electrodeionization, can be prepared simply and efficiently by coating a conductive carbon nanotube and polymer membrane with a metal layer; and contacting the coated membrane with a solution comprises at least one electrochemically active and functional compound under conditions suitable for electrochemically depositing the electrochemically active and function compound on a surface of the metal-coated membrane. Such membranes may be reversible modified by chemically or electrochemically oxidizing the metal layer from the polymer membrane surface, thereby, providing a fresh surface which may be re-modified according to the preceding methods.
    Type: Application
    Filed: June 13, 2011
    Publication date: December 13, 2012
    Applicant: EMPIRE TECHNOLOGY DEVELOPMENT LLC
    Inventor: Seth Adrian Miller
  • Patent number: 8317993
    Abstract: A plating apparatus has a steam treatment chamber configured to perform a steam treatment using steam on a surface of a substrate, and a plating chamber configured to plate the surface of the substrate subjected to the steam treatment. The plating apparatus also has an acid treatment chamber configured to bring the surface of the substrate subjected to the steam treatment into contact with an acid liquid. The plating apparatus includes a frame housing the steam treatment chamber, the acid treatment chamber, and the plating chamber.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: November 27, 2012
    Assignee: Ebara Corporation
    Inventors: Fumio Kuriyama, Rei Kiumi, Nobutoshi Saito, Takashi Takemura, Masaaki Kimura, Sachiko Takeda, Yugang Guo
  • Publication number: 20120263922
    Abstract: Novel coatings are disclosed prepared from electropolymerization of electropolymerizable monomers-analyte complexes onto a conducting layer or non-conducting of a substrate, where the analyte is removed by electrochemically mediated washing permitting linear molecular sensing of the analyte over a wide concentration range. The coating may also include templating particles deposited on the electrode substrate prior to electropolymerization, where the particles can be removed to form a submicron structured coating. Methods for making and using the coatings are also disclosed.
    Type: Application
    Filed: July 9, 2011
    Publication date: October 18, 2012
    Applicant: THE UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Rigoberto Advincula, Roderick B. Pernites
  • Patent number: 8268156
    Abstract: Processes are provided herein for the fabrication of MEMS utilizing both a primary metal that is integrated into the final MEMS structure and two or more sacrificial secondary metals that provide structural support for the primary metal component during machining. A first secondary metal is thinly plated around the primary metal and over the entire surface of the substrate without using photolithography. A second secondary metal, is then thickly plated over the deposited first secondary metal without using photolithography. Additionally, techniques are disclosed to increase the deposition rate of the first secondary metal between primary metal features in order to prevent voiding and thus enhance structural support of the primary metal during machining.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: September 18, 2012
    Assignee: Advantest America, Inc.
    Inventor: Montray Leavy
  • Publication number: 20120228830
    Abstract: A labyrinth seal for sealing a sealing region between a rotor and stator of a rotary machine includes, a base, and a plurality of sealing rings. The sealing rings are formed on the base, project into the sealing region and form, between them labyrinth valleys bounded, laterally, by the sealing rings and, in the floor of the valleys, by the base. The sealing rings, in at least one region, include at least one material which is different from that of the base.
    Type: Application
    Filed: November 18, 2010
    Publication date: September 13, 2012
    Inventor: Ralf Bode
  • Patent number: 8262809
    Abstract: An easily handleable composition for metal surface treatment is provided which achieves foundation surface concealment, coating adhesion and corrosion resistance equal to or higher than those obtained by the conventional metal surface treatment compositions. This composition for metal surface treatment places no burden on the environment. A method for treating the surface of a metal material in which such a composition for metal surface treatment is used, and a metal material treated by such a metal surface treatment method, are also provided. Specifically disclosed is a metal surface treatment composition used for a treatment of a metal surface, which composition contains a zirconium compound and/or titanium compound substantially not containing fluorine, and an inorganic acid and/or a salt thereof. This metal surface treatment composition has a pH of not less than 1.5 but not more than 6.5.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: September 11, 2012
    Assignee: Chemetall GmbH
    Inventors: Toshio Inbe, Thomas Kolberg
  • Publication number: 20120114861
    Abstract: Electrochemical fabrication methods for forming single and multilayer mesoscale and microscale structures include the use of diamond machining (e.g. fly cutting or turning) to planarize layers. Some embodiments focus on systems of sacrificial and structural materials which can be diamond machined with minimal tool wear (e.g. Ni—P and Cu, Au and Cu, Cu and Sn, Au and Cu, Au and Sn, and Au and Sn—Pb). Some embodiments provide for reducing tool wear when using difficult-to-machine materials by (1) depositing difficult to machine materials selectively and potentially with little excess plating thickness and/or (2) pre-machining depositions to within a small increment of desired surface level (e.g. using lapping) and then using diamond fly cutting to complete the process, and/or (3) forming structures or portions of structures from thin walled regions of hard-to-machine material as opposed to wide solid regions of structural material.
    Type: Application
    Filed: October 5, 2011
    Publication date: May 10, 2012
    Inventors: Adam L. Cohen, Uri Frodis, Michael S. Lockard, Ananda H. Kumar, Gang Zhang, Dennis R. Smalley
  • Publication number: 20120082857
    Abstract: The invention relates to a method for forming a protective coating against high-temperature oxidation on a surface of a refractory composite material based on silicon and niobium, wherein chromium present on the surface to be protected is reacted with a reactive gas which contains silicon and oxygen in order to produce a composite coating having two phases, a first phase of which is an oxide phase based on silica which has viscoplastic properties and a second phase of which is based on silicon, chromium and oxygen, and wherein the first phase and second phase are coalesced at high temperature, which allows a protective coating to be formed in which the second phase acts as a reservoir to reform, during operation, the first phase by means of reaction with an oxidising gas. The invention is preferably used in the field of aeronautical engines.
    Type: Application
    Filed: September 23, 2011
    Publication date: April 5, 2012
    Inventors: Marie-Pierre Bacos, Pierre Josso
  • Publication number: 20120064369
    Abstract: Steel sheet for container use with excellent canmaking workability and with excellent drawability and ironability, weldability, corrosion resistance, coating adhesion, film adhesion, and wettability characterized in that a surface of the steel sheet has a Zr film which contains, by amount of metal Zr, 1 to 100 mg/m2 of Zr oxides.
    Type: Application
    Filed: June 4, 2010
    Publication date: March 15, 2012
    Inventors: Akira Tachiki, Shigeru Hirano, Hirokazu Yokoya
  • Patent number: 8123927
    Abstract: Exemplary techniques for improving the performance of signals transmitted by conductive circuit traces are disclosed. The techniques may be realized as a method comprising the step of reducing a surface roughness of at least one surface of a conductive circuit trace. Alternatively, the techniques may be realized as a circuit board for transmitting at least one signal, the circuit board comprising at least one conductive circuit trace for carrying at least one signal, the at least one conductive circuit trace having at least one polished surface. Further, the technique may be realized as a conductive circuit trace for carrying a signal, the conductive circuit trace comprising conductive material having a plurality of surfaces substantially parallel with a direction of propagation of the signal, wherein the plurality of surfaces includes at least one polished surface having a reduced surface roughness.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: February 28, 2012
    Assignee: Rockstar Bidco, LP
    Inventors: Robert Sheffield, Eileen Goulet
  • Publication number: 20120021502
    Abstract: A method of fabricating biochip sensor comprising providing a precursor; depositing the precursor on a substrate to form a coating; and rapid melting/quenching treatment of the coating with an energy source to form micro/nanotextured surface with enhanced reflectance for fast chemiluminescence response of E-Coli bacteria.
    Type: Application
    Filed: July 21, 2011
    Publication date: January 26, 2012
    Applicant: MRIDANGAM RESEARCH INTELLECTUAL PROPERTY TRUST
    Inventors: Pravansu S. Mohanty, Ramesh K. Guduru
  • Publication number: 20120013691
    Abstract: Exemplary embodiments provide an aluminum image drum and method of its formation such that the aluminum image drum can have a surface texture to provide desirable surface oil consumption and high print quality for solid ink jet marking systems.
    Type: Application
    Filed: July 13, 2010
    Publication date: January 19, 2012
    Applicant: Xerox Corporation
    Inventors: Sean W. HARRIS, David RUFF, Mark TAFT, Kathereine D. WESTON, Barry Daniel REEVES, Jignesh SHETH, Paul MCCONVILLE, David Alan VANKOUWENBERG, Pinyen LIN, Trevor SNYDER
  • Publication number: 20110297319
    Abstract: A method for creating an oxide layer having a reduced copper concentration over a surface of an object comprising aluminum and copper for use in a semiconductor processing system. The oxide layer produced using a plasma electrolytic oxidation process has a reduced copper peak concentration, which decreases a risk of copper contamination, and includes magnesium oxides that can be converted to magnesium halide upon exposure to an excited halogen-comprising gas or halogen-comprising plasma to increase the erosion/corrosion resistance of the oxide layer.
    Type: Application
    Filed: June 4, 2010
    Publication date: December 8, 2011
    Applicant: MKS Instruments, Inc.
    Inventors: Xing Chen, Chengxiang Ji, Chiu-Ying Tai
  • Publication number: 20110266158
    Abstract: The present invention relates to a process for obtaining a metal, ceramic or composite coating on the surface of a non-conductive material such as plastic, ceramic or wood which comprises: A) preparing a polypyrrole dispersion in aqueous base paint or in an acid type water-soluble pure resin; B) diluting the dispersion resulting from the previous stage with an alcohol in a factor of 1.5; C) applying the dispersion of the conductive polymer resulting from stage B) on the surface to be coated and drying same; and D) obtaining the metal, ceramic or composite coating by means of an electrolytic process or an electrophoretic deposition.
    Type: Application
    Filed: June 19, 2008
    Publication date: November 3, 2011
    Applicant: FUNDACION CIDETEC
    Inventors: Esther Chávez Amado, Jose Antonio Diez Silanes, Sarah Montes Pérez, Estíbaliz Ochoteco Vaquero, José Adolfo Pomposo Alonso