Alkali Metal Containing Patents (Class 205/503)
  • Patent number: 11912569
    Abstract: The present invention provides a method for manufacturing a chlorous acid aqueous solution using salt as a raw material. The present invention provides a method for manufacturing a chlorous acid aqueous solution, the method including 1) a step for electrolyzing salt and obtaining a chlorate or an aqueous solution thereof, and 2) a step for reducing the chlorate or aqueous solution thereof and manufacturing an aqueous solution including chlorous acid. The method for manufacturing a chlorous acid aqueous solution includes a step for mixing an inorganic acid or an inorganic acid salt as a simple substance or two or more types thereof with the aqueous solution including chlorous acid, and then mixing any of an inorganic acid, an inorganic acid salt, an organic acid, or an organic acid salt as a simple substance or two or more types thereof.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: February 27, 2024
    Assignee: HONBUSANKEI CO., LTD.
    Inventor: Hisataka Goda
  • Patent number: 10322941
    Abstract: The present invention relates to a method and a process of preparing precipitated calcium carbonate of high purity by extracting calcium ion contained in an alkali ion-containing inorganic material such as mineral, steelmaking slag and waste concrete with the use of an acidic aqueous solution, separating other metal ions from the extracted solution, preparing an alkaline earth metal hydroxide using an alkaline aqueous solution and then contacting the same with carbon dioxide.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: June 18, 2019
    Assignee: Korea Institute of Science and Technology
    Inventors: Kwang Deog Jung, Heung Yong Ha, Jun Woo Oh, Ho Yong Jo
  • Patent number: 8764963
    Abstract: A process for producing alkali metal chlorate that includes introducing an electrolyte solution containing alkali metal halide and alkali metal chlorate to an electrolytic cell, electrolyzing the electrolyte solution to produce an electrolyzed chlorate solution, transferring the electrolyzed chlorate solution to a chlorate reactor to produce a more concentrated alkali metal chlorate, wherein the electrolytic cell is a non-divided electrolytic cell that includes: at least one anode or at least one cathode that includes an electrode substrate comprising M(n+1)AXn, where M is a metal of group IIIB, IVB, VB, VIB or VIII of the periodic table of elements or a combination thereof, A is an element of group IIIA, IVA, VA or VIA of the periodic table of elements or a combination thereof, X is carbon, nitrogen or a combination thereof, where n is 1, 2, or 3; and an outlet for transferring electrolyzed solution to the chlorate reactor.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: July 1, 2014
    Assignee: Akzo Nobel N.V.
    Inventors: Magnus Rosvall, Rolf Edvinsson-Albers, Kristoffer Hedenstedt
  • Publication number: 20130292261
    Abstract: The invention relates to a process of producing alkali metal chlorate in an electrolytic cell comprising an anode and a cathode, wherein at least one chromium compound having a valence lower than +6 is added to the process, wherein said at least one chromium compound is oxidized to hexavalent chromium within said process, wherein substantially no hexavalent chromium is added to the process from an external source. The invention also relates to the use of an aqueous solution of chromium compounds as an additive to a chlorate process.
    Type: Application
    Filed: December 19, 2011
    Publication date: November 7, 2013
    Applicant: Akzo Nobel Chemicals International B.V.
    Inventors: Kristoffer Hedenstedt, Rolf Edvinsson Albers
  • Patent number: 8216443
    Abstract: The invention relates to a process for producing alkali metal chlorate in an electrolytic cell that is divided by a cation selective separator into an anode compartment in which an anode is arranged and a cathode compartment in which a gas diffusion electrode is arranged. The process comprises introducing an electrolyte solution containing alkali metal chloride into the anode compartment and an oxygen-containing gas into the cathode compartment. The invention also relates to an electrolytic cell for the production of alkali metal chlorate comprising a cation selective separator dividing the cell into an anode compartment in which an anode is arranged and a cathode compartment in which a gas diffusion electrode is arranged. An inlet for electrolyte solution and an outlet for electrolysed solution are provided in the anode compartment and an inlet for introducing oxygen-containing gas is provided in the gas chamber.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: July 10, 2012
    Assignee: Akzo Nobel N.V.
    Inventors: Bo Håkansson, Eduardo Fontes, Fredrik Herlitz, Viktoria Lindstrand
  • Patent number: 8038884
    Abstract: The present invention relates to process to prepare a chlorine-containing compound using an aqueous salt solution containing at least 100 g/l of sodium chloride and a contaminating amount of polyvalent cations comprising the steps of (i) preparing an aqueous salt solution containing at least 100 g/l of sodium chloride and at least 0.01 ppm of polyvalent cations by dissolving a sodium chloride source in water, (ii) adding an effective amount of at least one positive retention enhancing component to the aqueous solution, (iii) subsequently subjecting the solution to a nanofiltration step, thereby separating the solution into a retentate which is enriched for polyvalent cations and a permeate which is the purified aqueous salt solution, (iv) reacting the chloride anions in the permeate to a chlorine-containing compound by an electrolysis step, and (v) recycling at least part of the retentate to dissolution step (i).
    Type: Grant
    Filed: February 13, 2006
    Date of Patent: October 18, 2011
    Assignee: Akzo Nobel N.V.
    Inventors: Gerrald Bargeman, René Lodewijk Maria Demmer, Antoon Ten Kate, Boris Kuzmanovic, Cornelis Elizabeth Johannus Van Lare, Mateo Jozef Jacques Mayer, Maarten André Irène Schutyser, Jan Barend Westerink
  • Patent number: 8034227
    Abstract: The invention relates to a process for the production of alkali metal chlorate comprising: providing an electrochemical cell comprising an anode and a cathode in separate anode and cathode compartments; contacting the cathode with an electrolyte comprising at least one organic mediator and one or more organic or mineral acids; reacting the organic mediator at the cathode to form at least one reduced form of the mediator; reacting the at least one reduced form of the mediator with oxygen to form hydrogen peroxide; contacting the anode with an anolyte comprising alkali metal chloride; reacting chloride at the anode to form chlorine that is hydrolyzed; and, reacting the hydrolyzed chlorine to form chlorate.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: October 11, 2011
    Assignee: Akzo Nobel N.V.
    Inventors: Magnus Rosvall, Rolf Edvinsson Albers
  • Patent number: 7955481
    Abstract: Method and apparatus for controlling two phase flow in electrolytic cells. The present invention is directed to any electrolytic cell, including but not limited to upflow electrolytic cells that comprise parallel electrodes in a vertical orientation. Fluid control strips are preferably added between the anode and cathode electrodes to control flow of fluid and gas bubbles generated between the electrodes in order to avoid the detrimental effects of gas bubbles on the conductivity of the fluid solution, and thereby increase production and operational efficiency of the electrolytic cell.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: June 7, 2011
    Assignee: MIOX Corporation
    Inventors: Justin Sanchez, Rodney E. Herrington
  • Patent number: 7794579
    Abstract: A process for the production of chlorates and derivative chemicals from ammonium perchlorate as a starting material. Ammonia is produced in a first step wherein a metal hydroxide is reacted with ammonium perchlorate to produce ammonia and a metal perchlorate. If the metal hydroxide used is sodium hydroxide, sodium perchlorate is formed. The ammonia generated is recovered and sent to a reformer to produce hydrogen which is used to fuel a fuel cell that generates water and electrical energy to run an electrochemical reactor where the metal perchlorate is converted to a metal chlorate and derivative chemicals.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: September 14, 2010
    Assignee: G.D.O.
    Inventors: Steve J. Schmit, Duane A. Goetsch
  • Publication number: 20040124094
    Abstract: The invention relates to a process for producing alkali metal chlorate in an electrolytic cell that is divided by a cation selective separator into an anode compartment in which an anode is arranged and a cathode compartment in which a gas diffusion electrode is arranged. The process comprises introducing an electrolyte solution containing alkali metal chloride into the anode compartment and an oxygen-containing gas into the cathode compartment.
    Type: Application
    Filed: June 30, 2003
    Publication date: July 1, 2004
    Applicant: AKZO NOBEL N.V.
    Inventors: Hakansson Bo, Fontes Eduardo, Herlitz Fredrik, Lindstrand Viktoria
  • Patent number: 6572758
    Abstract: An electrolytic cell producing sodium chlorate uses an electrode, specifically an anode, having a surface or coating or treatment of a mixed metal oxide having ruthenium oxide as an electrocatalyst, a precious metal of the platinum group or its oxide as a stability enhancer, antimony oxide as an oxygen suppressant and a titanium oxide binder. The electrocatalytic coating is about 21 mole percent ruthenium oxide, about 2 mole percent iridium oxide, about 4 mole percent antimony oxide and the balance is titanium oxide. The coating is characterized by high durability and low oxygen content in an off-gas.
    Type: Grant
    Filed: February 6, 2001
    Date of Patent: June 3, 2003
    Assignee: United States Filter Corporation
    Inventors: Vadim Zolotarsky, Irina A. Ivanter, Mark J. Geusic
  • Patent number: 6471871
    Abstract: A batch or continuous process for the removal by flocculation of silicon and heavy metal contamination from aqueous waste streams by the addition of an aluminum salt, particularly, aqueous streams recycled as electrolyte in the electrolytic production of alkali metal or alkaline earth metal chlorates. The process is particularly suited to the removal of heavy metals and silicon contamination in an electrolyte recycled to an electrolytic cell subsequent to the removal by crystallization of a chlorate salt. An aluminum salt, such as aluminum chloride, aluminum chlorohydrate, and polyaluminum chlorides including polyaluminum chloride sulfates is effective as a flocculating agent.
    Type: Grant
    Filed: October 26, 2000
    Date of Patent: October 29, 2002
    Assignee: Finnchem USA, Inc
    Inventor: Charles L. Pitzer
  • Patent number: 5965004
    Abstract: Chlorine dioxide is generated by electrochemical oxidation of sodium chlorite in an anode compartment of a cation-exchange membrane-divided cell in the presence of significant quantities of sodium chlorate and is recovered in a suitable recipient medium by passing the chlorine dioxide through a hydrophobic microporous membrane. Water balance in a continuous operation is maintained by removing water from the anolyte by transporting the same partly across the hydrophobic microporous membrane in vapor form and partly across the cation-exchange membrane.
    Type: Grant
    Filed: October 28, 1997
    Date of Patent: October 12, 1999
    Assignee: Sterling Pulp Chemicals, Ltd.
    Inventors: Gerald Cowley, Marek Lipsztajn, George Joseph Ranger, Ron K. Schaible, Ty V. Tran, Darren F. Lawless
  • Patent number: 5932085
    Abstract: Chlorine dioxide is generated by electrochemical oxidation of sodium chlorite in an anode compartment of a cation-exchange membrane-divided cell and is recovered in a suitable recipient medium by passing the chlorine dioxide through a hydrophobic microporous membrane. Water balance in a continuous operation is maintained by removing water from the anolyte by transporting the same partly across the hydrophobic microporous membrane in vapor form and partly across the cation-exchange membrane.
    Type: Grant
    Filed: March 13, 1996
    Date of Patent: August 3, 1999
    Assignee: Sterling Pulp Chemicals, Ltd.
    Inventors: Gerald Cowley, Marek Lipsztajn, George Joseph Ranger
  • Patent number: 5681446
    Abstract: Control of sulfate and perchlorate impurity levels is provided in a procedure for manufacturing crystalline sodium chlorate by electrolyzing an aqueous solution of sodium chloride and crystallizing sodium chlorate from the resulting aqueous solution of sodium chlorate and sodium chloride. The mother liquor from the crystallization, or a portion thereof, is treated simultaneously with calcium chloride to remove sulfate ions by precipitating calcium sulfate and with potassium chloride to remove perchlorate ions by precipitating potassium perchlorate.
    Type: Grant
    Filed: August 30, 1995
    Date of Patent: October 28, 1997
    Assignee: Sterling Pulp Chemicals, Ltd.
    Inventors: James A. Betts, Tomasz J. Dluzniewski
  • Patent number: 5662834
    Abstract: An alloy of formula:Ti.sub.30+x Ru.sub.15+y Fe.sub.25+z O.sub.30+t M.sub.uwherein M represent at least one metal selected from the group consisting of chromium, manganese, vanadium, tungsten, antimony, platinum and lead; x is an integer ranging between -30 and +50; y is an integer ranging between -10 and +35; z is an integer ranging between -25 and +70; t is an integer ranging between -28 and +10; and u is an integer ranging between 0 and +50; x, y, z, t and u being selected so that: x+y+z+t+u=0. This alloy, especially when it has a nanocrystalline structure, is useful for the manufacture cathodes for the electro-chemical synthesis of sodium chlorate. These cathodes have an over-potential of hydrogen lower than the one of the soft-steel cathodes presently in use.
    Type: Grant
    Filed: November 30, 1995
    Date of Patent: September 2, 1997
    Assignee: Hydro-Quebec
    Inventors: Robert Schulz, Andre Van Neste, Sabin Boily, Shize Jin
  • Patent number: 5547542
    Abstract: The invention relates to a process for treating a low-concentrated aqueous feed solution which includes at least one aqueous process stream from a pulp mill. The process includes concentrating the feed solution by evaporation to form an evaporation concentrate, and subjecting at least a part of the concentrate to a first electrodialysis treatment, thereby forming a first electrodialysis concentrate containing salt removed from the evaporation concentrate and at least one diluate depleted in the salt. The invention also relates to a plant for carrying out the above process.
    Type: Grant
    Filed: February 2, 1994
    Date of Patent: August 20, 1996
    Assignee: Eka Nobel AB
    Inventor: Johan Landfors
  • Patent number: 5545389
    Abstract: A process for the production of chlorine dioxide by reacting at least one of chloric acid and an alkali metal chlorate, and hydrogen peroxide as the reducing agent in such proportions that chlorine dioxide is produced in a reaction medium. A mixture comprising chlorine dioxide and oxygen is withdrawn from the reaction medium. Urea and/or one or more phosphonic acid based complexing agents are added to the reaction medium. The stabilizer is added in an amount of 0.01-5 weight % and serves to increase the reaction rate.
    Type: Grant
    Filed: September 12, 1994
    Date of Patent: August 13, 1996
    Assignee: Eka Nobel AB
    Inventors: John R. Winters, John M. Gray, Joel D. Tenney
  • Patent number: 5487881
    Abstract: The invention relates to a process of producing chlorine dioxide using, in a first alternative atmospheric pressure and hydrogen peroxide in the reaction medium optionally with an electrolytic cell. In a second alternative, either atmospheric or subatmospheric pressure is used in the reaction medium together with an organic or inorganic reducing agent and an electrolytic cell.
    Type: Grant
    Filed: September 15, 1993
    Date of Patent: January 30, 1996
    Assignee: EKA Nobel Inc.
    Inventors: Helena Falgen, Goran Sundstrom, Johan Landfors, John C. Sokol