Halogen Containing Patents (Class 205/498)
  • Patent number: 11779886
    Abstract: The presently disclosed concepts relate to improved techniques for alkali metal extraction (and in particular lithium), using a solid electrolyte membrane. By using a solid electrolyte embedded in a matrix, alkali metal (such as lithium) can be more effectively separated from feed solutions. Additionally, energy used to initially extract lithium from a feed solution may be stored as electrochemical energy, which in turn, may be discharged when lithium is depleted from the electrode. This discharged energy may therefore be reclaimed and reused to extract additional lithium.
    Type: Grant
    Filed: September 19, 2022
    Date of Patent: October 10, 2023
    Assignee: LYTEN, INC.
    Inventors: Jesse Baucom, Sanjeev Kolli
  • Patent number: 11685667
    Abstract: A method for purifying ferric chloride, the method including: 1) adding an oxidant to an aqueous solution of an iron-containing chloride for oxidation of Fe2+, to yield a ferric chloride solution; 2) adding industrial hydrochloric acid and butyl acetate to the ferric chloride solution, shaking and resting a mixture of the ferric chloride solution, the industrial hydrochloric acid, and butyl acetate for phase separation, to yield an organic phase and an aqueous phase; 3) adding a stripping agent to the organic phase, shaking, and resting a mixture of the stripping agent and the organic phase; and collecting an aqueous phase including ferric chloride; and 4) evaporating and concentrating the aqueous phase including ferric chloride, removing butyl acetate, to yield purified ferric chloride.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: June 27, 2023
    Assignees: 3R ENVIRONMENTAL TECHNOLOGY CO., LTD., TANGSHAN 3R CHEMICAL CO., LTD.
    Inventors: Ying Che, Kaijing He, Jinhua Liang, Maojie Liang, Haixiong Chen
  • Patent number: 11453951
    Abstract: This invention describes a novel recovery method of ammonia through the electrocoagulation process, which may be applied in the industrial as well as the environmental sectors. The present invention has a significant impact not only on recovering the ammonia content from the Solvay effluent, but also for recovering the ammonia from landfill leachate and different sources of wastewater where high concentrations of ammonia can be found. This invention has economic benefits in recovering ammonia and reducing the required energy in such processes. Another impact is the environmental one, where ammonia can cause problems such as toxicity to the organisms living in the soil or water bodies, and could also decrease the concentration of the dissolved oxygen.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: September 27, 2022
    Assignee: UNITED ARAB EMIRATES UNIVERSITY
    Inventors: Ameera Mohammad, Ali Al Marzouqi, Muftah El Naas
  • Patent number: 9017625
    Abstract: A method of upgrading a titaniferous material includes nitriding and reducing a titaniferous material which includes TiO2 and Fe oxides in the presence of nitrogen and carbon to convert the TiO2 to TiN and to reduce most of the Fe oxides to Fe. The Fe is oxidized in preference to the TiN to form Fe2+ ions, whereafter the Fe2+ ions are removed to produce an upgraded low-Fe TiN bearing material.
    Type: Grant
    Filed: November 24, 2011
    Date of Patent: April 28, 2015
    Assignee: CSIR
    Inventors: David Steyn Van Vuuren, Jaco Johannes Swanepoel
  • Publication number: 20140346055
    Abstract: Coaxial disk armatures, counter-rotating through an axial magnetic field, act as electrolysis electrodes and high shear centrifugal impellers for an axial feed. The feed can be carbon dioxide, water, methane, or other substances requiring electrolysis. Carbon dioxide and water can be processed into syngas and ozone continuously, enabling carbon and oxygen recycling at power plants. Within the space between the counter-rotating disk electrodes, a shear layer comprising a fractal tree network of radial vortices provides sink flow conduits for light fractions, such as syngas, radially inward while the heavy fractions, such as ozone and elemental carbon flow radially outward in boundary layers against the disks and beyond the disk periphery, where they are recovered as valuable products, such as carbon nanotubes.
    Type: Application
    Filed: August 13, 2014
    Publication date: November 27, 2014
    Inventors: Wilmot H. McCutchen, David J. McCutchen
  • Patent number: 8795510
    Abstract: An automated self-propelled robotic pool cleaner having a housing and drive means for moving the pool cleaner over at least the bottom wall of a pool, is provided with an integral on-board electrochemical chlorine generator for producing chlorine from a chlorine compound, e.g., sodium chloride, that is dissolved in the pool water, a source of electrical power operatively connected to the electrochemical chlorine generator, control means for initiating and terminating the operation of the chlorine generator, and an outlet for discharging water containing chlorine ions produced by the electrochemical generator to thereby distribute the chlorine into the water proximate the exterior of the pool cleaner housing as the pool cleaner follows a programmed operational mode across the bottom and/or side walls of the pool.
    Type: Grant
    Filed: September 15, 2004
    Date of Patent: August 5, 2014
    Assignee: Aqua Products, Inc.
    Inventor: Joseph Porat
  • Publication number: 20140069821
    Abstract: The systems and methods disclosed herein process produced/flowback water, such as high total dissolved solids produced water, to generate high purity, high value products with little to no waste. The generated high purity, high value products include caustic soda, hydrochloric acid, and/or sodium hypochlorite. Further, the methods and systems disclosed herein generate high quality brine for electrolysis through the systematic removal of contaminants such as but not limited to suspended solids, iron, sulfides, barium, radium, strontium, calcium, magnesium, manganese, fluoride, heavy metals, organic carbon, recoverable hydrocarbons, silica, lithium, and/or nitrogen containing compounds. Further, some products generated by the systems and methods disclosed herein may be recovered and reutilized or sold for other uses, such as carbon dioxide, calcium oxide, chlorine, magnesium oxide, calcium carbonate, and/or barium sulfate.
    Type: Application
    Filed: November 18, 2013
    Publication date: March 13, 2014
    Inventors: Mark A. Marcin, Thomas R. Sage
  • Publication number: 20140014527
    Abstract: Method for the gastight and liquid-tight installation of oxygen-consuming electrodes in an electrolysis apparatus, and electrolysis apparatus for use in chloralkali electrolysis, in which particular regions are covered with an additional film having a composition comparable to the oxygen-consuming electrodes
    Type: Application
    Filed: December 5, 2011
    Publication date: January 16, 2014
    Applicants: UHDENORA S.p.A., BAYER INTELLECTUAL PROPERTY GMBH
    Inventors: Andreas Bulan, Michael Grossholz, Randolf Kiefer, Peter Woltering
  • Publication number: 20130240371
    Abstract: Process for electrolysis of alkali metal chlorides with oxygen-consuming electrodes having specific operating conditions for startup and shutdown, which prevents damage to constituents of the electrolysis cell.
    Type: Application
    Filed: February 26, 2013
    Publication date: September 19, 2013
    Applicant: BAYER INTELLECTUAL PROPERTY GMBH
    Inventors: Andreas BULAN, Jürgen KINTRUP
  • Publication number: 20130112571
    Abstract: An electrolytic apparatus and a method produce slightly acidic electrolyzed water with a molecular hypochlorous acid component by electrolysis of a chlorine containing composition. The electrolytic apparatus electrolyzes a chlorine containing composition with chloride ions and then dilutes the electrolyzed solution, and includes a container for providing a dilution water passage for diluting the electrolyzed solution, an electrode stack in the container including a diaphragm-less unit electrolysis cell defined between planar electrodes and the electrode holder frame for supplying chlorine composition at the position corresponding to the unit electrolysis cell, and an electrode holder frame including a reservoir part fluid-communicated to the opening while retaining the chlorine containing composition prior to the supply of the chlorine containing composition to the unit electrolysis cell.
    Type: Application
    Filed: June 14, 2010
    Publication date: May 9, 2013
    Applicant: HOCL INC.
    Inventor: Toyohiko Doi
  • Publication number: 20130048509
    Abstract: A method for producing an alkali metal hydroxide, comprises providing an electrolytic cell that includes at least one membrane having ceramic material configured to selectively transport alkali metal ions. The method includes introducing a first solution comprising an alkali metal hydroxide solution into a catholyte compartment such that said first solution is in communication with the membrane and a cathode. A second solution comprising at least one alkali metal salt and one or more monovalent, divalent, or multivalent metal salts is introduced into an anolyte compartment such that said second solution is in communication with the membrane and an anode. The method includes applying an electric potential to the electrolytic cell such that alkali metal ions pass through the membrane and are available to undertake a chemical reaction with hydroxyl ions in the catholyte compartment to form alkali metal hydroxide.
    Type: Application
    Filed: August 31, 2011
    Publication date: February 28, 2013
    Inventors: Shekar Balagopal, Marc Flinders, Justin Pendelton
  • Publication number: 20120255865
    Abstract: This is directed to systems, processes, machines, and other means that produce a reduced solution for cooling machinery. The invention can produce a superior coolant, or has a superior ability to reduce or transfer heat through the use of highly reduced water with a high potential of hydrogen and increased production of electrons in a rapid state of disassociation, which produces a highly active (energy) solution with an increased ability to transfer heat. This superior coolant is a cathodic non-corrosive medium, which possesses an increased ability to transfer heat.
    Type: Application
    Filed: April 4, 2012
    Publication date: October 11, 2012
    Inventor: Melinda Taylor
  • Patent number: 8241483
    Abstract: The present invention relates to a process for the preparation of stable iodate-exchanged hydrotalcite with zero effluent discharge. The iodate-exchanged hydrotalcite produced is useful as iodizing agent. The invention further relates to utilization of alkaline effluent generated in the process of ion exchange of iodate into SHT so as to fully recycle the residual iodate anion and also utilize the alkali generated in the process for production of additional quantities of iodate through reaction with iodine crystals followed by electrochemical oxidation to obtain pure aqueous solution of iodate salt which can be reused for preparation of the stable iodizing agent. The process gives zero effluent discharge hence economical.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: August 14, 2012
    Assignee: Council of Scientific & Industrial Research
    Inventors: Pushpito Kumar Ghosh, Mahesh Ramaniklal Gandhi, Satish Hariray Mehta, Ramachandraiah Gadde, Jatin Rameshchandra Chunawala, Mirnal Vinodbhai Sheth, Girirajsinh Sabalsinh Gohil
  • Patent number: 8197665
    Abstract: Aqueous composition containing at least one salt in an amount of at least 30 g/kg of composition, of which the total organic carbon content is at least 1 ?g of C/l and at most 5 g of C/l of composition and which contains at least one carboxylic acid.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: June 12, 2012
    Assignee: Solvay (Societe Anonyme)
    Inventors: Philippe Krafft, Patrick Gilbeau, Dominique Balthasart, Andre Daene
  • Publication number: 20110303551
    Abstract: An electrochemical system comprising a cathode electrolyte comprising added carbon dioxide and contacting a cathode; and a first cation exchange membrane separating the cathode electrolyte from an anode electrolyte contacting an anode; and an electrochemical method comprising adding carbon dioxide into a cathode electrolyte separated from an anode electrolyte by a first cation exchange membrane; and producing an alkaline solution in the cathode electrolyte and an acid.
    Type: Application
    Filed: July 13, 2011
    Publication date: December 15, 2011
    Inventors: RYAN J. GILLIAM, VALENTIN DECKER, NIGEL ANTONY KNOTT, MICHAEL KOSTOWSKYJ, BRYAN BOGGS
  • Patent number: 8025787
    Abstract: A method and apparatus are provided for receiving a cleaning liquid having a pH in a range between pH6-pH8 and an oxidation reduction potential (ORP) between ±50 mV. The liquid is converted into an anolyte liquid and a catholyte liquid having respective pHs outside of the range between pH6-pH8 and having respective ORPs outside the range between ±50 mV. The anolyte and catholyte liquids are applied to a surface, wherein the anolyte and catholyte liquids are, for example, in a combined state on the surface and substantially neutralize to a pH between pH6-pH8 and an ORP between ±50 mV within one minute of the time at which the anolyte and catholyte liquids are converted.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: September 27, 2011
    Assignee: Tennant Company
    Inventors: Bruce F. Field, Patrick J. Gronlund
  • Patent number: 8007653
    Abstract: An automated self-propelled pool cleaner having a housing, a water pump for moving water through the housing, drive means for moving the pool cleaner over the surface of the salt water pool to be cleaned, and an integral electrochemical chlorine generator mounted in the housing, includes a processor/controller that is programmed to activate the chlorine generator, the pump and drive means in predetermined operational sequences that minimize wear and tear on the water pump and drive means, while at the same time distribute and maintain a safe level of sanitizing chlorine in the pool, to thereby obviate the need for an in-line chlorinator or other chemical additive treatments; an optional automated sensor device can be provided to activate a secondary maintenance program which enables the pool cleaner to operate over prolonged periods of time as the sole means for filtering and sanitizing the pool water.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: August 30, 2011
    Assignee: Aquatron, Inc.
    Inventor: Joseph Porat
  • Patent number: 7857953
    Abstract: The present invention provides an oxygen-reduction gas diffusion cathode having: a porous conductive substrate; diamond particle having a hydrophobic surface; and catalyst particle, the diamond particle and the catalyst particle being disposed on the porous conductive substrate, and a method of sodium chloride electrolysis using the cathode.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: December 28, 2010
    Assignee: Permelec Electrode Ltd.
    Inventors: Yuji Yamada, Yuki Izawa, Masaharu Uno, Yoshinori Nishiki, Tsuneto Furuta
  • Patent number: 7846318
    Abstract: The invention relates generally to processes for the production of high-basicity and ultra-high basicity polyaluminum chlorides including aluminum chlorohydrate. The processes can produce products of a wide range of basicities and are particularly useful in producing high basicity products. The process can produce a wide range of solution concentrations and are particularly useful in producing high solution concentrations. The processes described generate high purity products, which are free of by-product salt(s). The processes described herein can also be utilized to produce enhanced efficacy polyaluminum chlorides including aluminum chlorohydrate. When compared to conventional processes for manufacturing these compounds the processes disclosed herein are unique in so far as the disclosed processes do not require aluminum metal as a starting material. The products of the processes are suitable in applications including water purification, catalysts, and antiperspirants.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: December 7, 2010
    Assignee: Nextchem, LLC
    Inventors: William E. Pratt, Joseph J. Stevens, Peter G. Symons
  • Publication number: 20090211917
    Abstract: A radioisotope Tl-201 is produced. The process includes electroplating, irradiating, dissolving precipitating, ion exchanging, decaying and filtering. The Tl-201 obtained is a liquid having a high purity.
    Type: Application
    Filed: August 9, 2006
    Publication date: August 27, 2009
    Applicant: ATOMIC ENERGY COUNCIL-INSTITUTE OF NUCLEAR ENERGY RESEARCH
    Inventors: Wuu-Jyh Lin, Ting-Shien Duh, Ying-Ming Tsai, Sun-Rong Huang, Chien-Hsin Lu, Mao-Hsung Chang, Jenn-Tzong Chen
  • Patent number: 7566388
    Abstract: An electrode catalyst comprising a conductive carrier, and a mixture containing a particulate noble metal and at least one particulate rare-earth oxide, the mixture being supported on the conductive carrier wherein the particulate rare-earth oxide has an alkaline-earth metal as solid solution therein.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: July 28, 2009
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Takeaki Sasaki, Toshinori Hachiya, Isao Morimoto
  • Patent number: 7361276
    Abstract: A method of enhancing the concentration of a first inorganic compound in a first aqueous solution of a first process of a heavy chemical plant, the method comprising (a) feeding the first solution having the first compound at a first concentration and a first water vapor pressure to an osmotic membrane distillation means comprising a hydrophobic, gas and water vapor permeable membrane separating (i) a first chamber for receiving the first solution, from (ii) a second chamber for receiving a receiver feed aqueous solution having a second water vapor pressure lower than the first water vapor pressure; (b) feeding the receiver aqueous feed solution to the second chamber as to effect transfer of water vapor through the membrane from the first chamber to the second chamber, and to produce (i) a resultant first solution having a second concentration of the first compound greater than the first concentration and (ii) a diluted receiver feed aqueous solution; and (c) collecting the resultant first solution.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: April 22, 2008
    Assignee: Aker Kvaemer Canada Inc.
    Inventors: Zbigniew Twardowski, Thomas S. Drackett, Dmitri Bessarabov, Peter E. Fetissoff
  • Patent number: 7238278
    Abstract: The invention relates to a method for purifying water by forming in an electrolytic cell molecular halogen, hypohalic acid, hypohalite ions or combinations thereof, from halide ions dissolved in the water; and dissolving one or more soluble metal salts in the water to provide corresponding metal ions. The invention also relates to a system for purifying water, having an electrolytic cell comprising a plurality of electrodes sufficient to electrolytically convert halide ion in the water into molecular halogen, hypohalic acid, or hypohalite ions, or combinations thereof; and a metal generator, which provides concentrations of one or more metals to the water.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: July 3, 2007
    Assignee: Zodiac Pool Care, Inc.
    Inventors: Richard T. Coffey, Alvin Costa, Raymond Albert Hin, Gary Andrew Kennedy, Christopher Kampf, Daniel Nelsen, Michael Pereira
  • Patent number: 6440293
    Abstract: An electrode for electrolyzing an electrolyte comprising an ammonium fluoride (NH4F)-hydrogen fluoride (HF)-containing molten salt and having a composition ratio (HF/NH4F) of 1 to 3 to prepare a nitrogen trifluoride (NF3) gas and an electrolyte for use in the preparation of NF3 gas, and a preparation method of the NF3 gas by the use of the electrode and the electrolyte. The electrode comprises nickel having 0.07 wt % or less of Si content and containing a transition metal other than nickel. The electrolyte also contains a transition metal other than nickel.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: August 27, 2002
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Tatsuma Morokuma, Hiromi Hayashida, Akio Kikkawa
  • Patent number: 6428677
    Abstract: A chlorination system in which brine is converted to sodium hypochlorite by an electrolyser. Brine (1) fed to the electrolyser (3) is passed through a filter (2) which is capable of adsorbing bromine or hypobromous acid. Some of the sodium hypochlorite produced in an electrolyser (3) is fed back to a point in the brine feed upstream of the filter (2) such that any bromide in the brine is oxidized to bromine or hypobromous acid and therefore adsorbed by the filter (2).
    Type: Grant
    Filed: March 20, 1998
    Date of Patent: August 6, 2002
    Assignee: United States Filter Corporation
    Inventors: David MacDonald Bonnick, Roger Roydon Ford
  • Patent number: 6395153
    Abstract: The present invention pertains to electrolytic diaphragm cells, particularly for the electrolysis of brine to produce chlorine and caustic. The innovation resides generally in the discovery that electrolytic cell operation can be desirably enhanced by compressing the diaphragm between anode and cathode. This compression of the diaphragm reduces the diaphragm thickness from an original thickness, e.g., from an original thickness of a diaphragm freshly deposited on a cathode. The reduced thickness of the diaphragm provides for cell operation that is less than zero gap operation. By maintaining the diaphragm under compression and in a reduced thickness, the cell operates with a narrower interelectrode gap and consequently at a desirably reduced cell voltage.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: May 28, 2002
    Assignee: Eltech Systems Corporation
    Inventors: Rudolf C. Matousek, Mark L. Arnold, Barry L. Martin, Eric J. Rudd, Lynne M. Ernes, Zoilo J. Colon, Gary F. Wyman, Joseph J. Chance
  • Patent number: 6039861
    Abstract: The invention provides an electrochemical reaction wherein a controlled amount of a first reagent is generated electrochemically at an electrode in electrical contact with a solution of an electrochemically inert salt, comprising applying a suitable electrical potential to the electrode for a suitable time to generate a controlled amount of the first reagent by electrochemical reaction between the electrode and a species in solution producing a localized thin layer environment comprising the first reagent in the vicinity of the electrode; and monitoring the amount or presence of the first reagent or a further species produced in solution in response to production of the first reagent. The method invention thus involves generating the first reagent in situ at an electrode.
    Type: Grant
    Filed: November 16, 1998
    Date of Patent: March 21, 2000
    Assignee: Unilever Patent Holdings BV
    Inventors: Brian Jeffrey Birch, Nicholas Andrew Morris
  • Patent number: 5840171
    Abstract: The invention provides an electrochemical reaction wherein a controlled amount of a first reagent is generated electrochemically at an electrode in electrical contact with a solution of an electrochemically inert salt, comprising applying a suitable electrical potential to the electrode for a suitable time to generate a controlled amount of the first reagent by electrochemical reaction between the electrode and a species in solution producing a localized thin layer environment comprising the first reagent in the vicinity of the electrode; and monitoring the amount or presence of the first reagent or a further species produced in solution in response to production of the first reagent. The method invention thus involves generating the first reagent in situ at an electrode.
    Type: Grant
    Filed: November 3, 1995
    Date of Patent: November 24, 1998
    Assignee: Unilever Patent Holdings BV
    Inventors: Brian Jeffrey Birch, Nicholas Andrew Morris
  • Patent number: 5716512
    Abstract: Process and equipment for manufacturing salts of metals, particularly nickel hypophosphite, are disclosed.
    Type: Grant
    Filed: May 10, 1995
    Date of Patent: February 10, 1998
    Inventor: Daniel J. Vaughan
  • Patent number: 5709791
    Abstract: There are provided a method of producing a hydrogen halide and oxygen by reacting water with a halogen using activated carbon as a catalyst, a method of producing hydrogen by thermal decomposition of a hydrogen halide using chromium oxide as a catalyst, and a method of producing oxygen and hydrogen by combining these two methods.
    Type: Grant
    Filed: March 1, 1996
    Date of Patent: January 20, 1998
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kouetsu Hibino, Kyoichi Tange
  • Patent number: 5565080
    Abstract: In accordance with the present invention, there is now provided a process for the production an anhydrous magnesium chloride-containing melt or electrolyte containing very low levels of MgO, typically less than 0.2% by weight MgO, directly from hydrated magnesium chloride feeds. More specifically, the process comprises the steps of a) feeding hydrated magnesium chloride in a furnace containing molten electrolyte from a magnesium electrolysis cell to produce a melt, the temperature in the furnace being maintained between 450.degree. and 65.degree. C.; b) simultaneously injecting an anhydrous hydrogen chloride-containing gas into the melt in an amount below the stoichiometric requirement of 2 moles of HCl per mole of magnesium chloride produced from hydrated magnesium chloride, and agitating the melt to keep any magnesium oxide in suspension in them melt, to dehydrate the magnesium chloride and react with the MgO in the melt so that the melt contains not more than 0.
    Type: Grant
    Filed: April 12, 1995
    Date of Patent: October 15, 1996
    Assignee: Noranda Metallurgy Inc.
    Inventors: John G. Peacey, Mark W. Kennedy, Thomas P. Walker