Catalytic Patents (Class 208/143)
  • Patent number: 7842262
    Abstract: A reactor in which a multi-phase mixture, including gas and a catalyst slurry or liquid, is to be conducted. The reactor includes a reaction chamber having a substantially unencumbered center portion through which the multi-phase mixture is conducted upwardly. A downcomer arrangement is disposed laterally outwardly of the center portion and adjacent to an inner surface of the reaction chamber. An external pump communicates with a lower portion of the reaction chamber for circulating components of the mixture downward from an upper end of the downcomer arrangement to a lower end thereof. A collection chamber is disposed below the reaction chamber into which the components exiting the downcomer arrangement are introduced and where the gas is separated from the remainder of the components. The separated gas can be reintroduced into the reaction chamber.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: November 30, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventor: Abdenour Kemoun
  • Publication number: 20100276338
    Abstract: A process for preparing a bulk multi-metallic catalyst for hydrotreating heavy oil feeds is provided. The catalyst is particularly suitable for hydrotreating heavy oil feeds having a boiling point in the range of 343° C. (650° F.)- to 454° C. (850° F.), an average molecular weight Mn ranging from 300 to 400, and an average molecular diameter ranging from 0.9 nm to 1.7 nm. The bulk multi-metallic catalyst is prepared by sulfiding a catalyst precursor that has an essentially monomodal pore volume distribution with at least 95% of the pores being macropores, and having a total pore volume of at least 0.08 g/cc.
    Type: Application
    Filed: April 29, 2009
    Publication date: November 4, 2010
    Inventors: Dennis Dykstra, Alexander E. Kuperman, Theodorus Maesen, Soy Uckung, Darren Fong
  • Publication number: 20100236986
    Abstract: The invention concerns a catalyst comprising a porous support, palladium, at least one metal selected from the group constituted by alkalis and alkaline-earths, in which: the specific surface area of the porous support is in the range 50 to 210 m2/g; the palladium content in the catalyst is in the range 0.05% to 2% by weight; at least 80% by weight of the palladium is distributed in a crust at the periphery of the support, the thickness of said crust being in the range 20 to 200 ?m; the metallic dispersion D is in the range 25% to 70%; the density of the palladium particles in the crust is in the range 1500 to 4100 particles of palladium per ?m2; and said alkali and/or alkaline-earth metal is distributed homogeneously across the support. The invention also concerns the preparation of the catalyst and its use in selective hydrogenation.
    Type: Application
    Filed: October 24, 2008
    Publication date: September 23, 2010
    Applicant: IFP
    Inventors: Lars Fischer, Carine Petit-Clair, Cecile Thomazeau, Lois Sorbier, Catherine Verdon
  • Patent number: 7794588
    Abstract: A process is provided for producing low sulfur diesel having a reduced poly-aromatic level where at least a portion of the poly-aromatics are converted to mono-aromatics. In one aspect, the process separates the temperature and pressure requirements for obtaining low levels of sulfur from the temperature and pressure requirements to saturate poly-aromatics to mono-aromatics. By one approach, the process first converts a diesel boiling range hydrocarbon stream in a hydrotreating zone at conditions effective to produce a hydrotreating zone effluent having a reduced concentration of sulfur with minimal saturation of poly-aromatics. Hydrogen is then admixed in the hydrotreating zone effluent or at least a portion thereof, which is then reacted in a substantially liquid-phase continuous reaction zone to effect saturation of poly-aromatics to provide a liquid-phase continuous reaction zone effluent having a reduced level of poly-aromatics relative to the diesel feed.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: September 14, 2010
    Assignee: UOP LLC
    Inventors: Peter Kokayeff, Laura Elise Leonard, Michael Roy Smith
  • Publication number: 20100224535
    Abstract: A supported carbon having high surface area, high pore volume containing (i) molybdenum (ii) a metal of non noble Group VIII, (iii) phosphorous, is used for hydrometallization of heavy crude oil and residue. The catalyst contains about 6 to 15 wt % molybdenum as MoO3, about 1 to 6 wt % cobalt or nickel as CoO or NiO and phosphorus as phosphorous oxide. One characteristic of the catalyst is the portion of pores having pore diameter in the range of 200 to 2000 Angstrom of 20 percent or more. The catalyst prepared by chelating agent has higher hydrodesulfurization activity assuming that more dispersed active metals are present on this catalyst. Long run activity studies show that catalyst having only molybdenum supported on activated carbon has good stability with time-on-stream and very high metal retention capacity.
    Type: Application
    Filed: March 3, 2010
    Publication date: September 9, 2010
    Applicants: INSTITUTO MEXICANO DEL PETROLEO, TOYO ENGINEERING CORPORATION
    Inventors: Samir Kumar Maity, Jorge Ancheyta Juárez, Fernando Alonso Martínez, Hidetsugu Fukuyama, Satoshi Terai, Masayuki Uchida
  • Patent number: 7790020
    Abstract: A process is provided for producing low sulfur diesel having a high cetane number where the temperature and pressure requirements for obtaining low levels of sulfur is separated from the temperature and pressure requirements for improving cetane. In one aspect, a low pressure hydrodesulfurization zone and a high pressure aromatic saturation zone are employed to sequentially achieve the desired sulfur and cetane levels. In another aspect, the process first converts a diesel boiling range hydrocarbonaceous stream in a hydrotreating zone at conditions effective to produce a hydrotreating zone effluent having a reduced concentration of sulfur with minimal saturation of aromatics. Hydrogen is then admixed with the hydrotreating zone effluent, which is then reacted in a substantially liquid-phase continuous reaction zone substantially undiluted with other streams to effect saturation of aromatics to provide a liquid-phase continuous reaction zone effluent having an improved cetane number.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: September 7, 2010
    Assignee: UOP LLC
    Inventors: Peter Kokayeff, Laura Elise Leonard, Michael Roy Smith
  • Publication number: 20100213103
    Abstract: System and relative process for the complete and high productivity hydroconversion of heavy oils essentially consisting of a solid accumulation reactor and a stripping section of the conversion products outside or inside the reactor itself. In particular, the system proposed consists of a solid accumulation hydroconversion reactor in which the solids deriving from and generated by the feedstock treated (metals in the form of sulphides and coke) are accumulated, up to very high levels, and a hot gas stripping section of the reaction liquid, designed in relation to the type of reactor adopted, for the direct and continuous removal of the conversion products, including high-boiling products.
    Type: Application
    Filed: May 19, 2008
    Publication date: August 26, 2010
    Applicant: ENI S.P.A.
    Inventors: Luigi Patron, Giuseppe Bellussi, Lorenzo Tagliabue, Vincenzo Piccolo
  • Publication number: 20100200462
    Abstract: An aromatics hydrogenation catalyst composition which comprises a noble metal component and a support comprising zirconia, silica, and, optionally, alumina. The catalyst composition is manufactured by co-mulling silica, a zirconium compound, and, optionally, alumina to form a mixture that is formed into a shape, such as by extrusion to form an extrudate, with the shape being calcined and noble metal being incorporated into the shape. The catalyst composition may be used in the saturation of aromatic compounds.
    Type: Application
    Filed: April 21, 2010
    Publication date: August 12, 2010
    Inventors: John Anthony SMEGAL, Johannes Anthonius Robert Van Veen
  • Patent number: 7763164
    Abstract: This invention focuses on the specialized catalyst and/or additive for lower FCCU gasoline and diesel blendstock component sulfur content. This invention utilizes a specified ratio of the transition metal oxides of cobalt and molybdenum to accomplish gasoline and diesel blendstock sulfur reduction. This is accomplished by minimizing sulfur compound formation in the FCCU riser. The cobalt and molybdenum oxides in the presence of H2S from cracked organic sulfur compounds are converted to metal sulfides. A portion of the overall sulfur reduction in the gasoline and diesel blendstock occurs emitted NOx also is reduced.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: July 27, 2010
    Assignee: Marathon Petroleum Company LLC
    Inventors: William Jay Turner, Ronald Lee Cordle, David J. Zalewski, Jeffrey A. Sexton
  • Patent number: 7763160
    Abstract: Contact of a crude feed with one or more catalysts produces a total product that includes a crude product. The crude feed has a residue content of at least 0.2 grams of residue per gram of crude feed. The one or more catalysts include a transition metal sulfide catalyst. The crude product is a liquid mixture at 25° C. and 0.101 MPa. One or more properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: July 27, 2010
    Inventors: Scott Lee Wellington, Stanley Nemec Milam
  • Publication number: 20100176030
    Abstract: The present invention discloses an alumina support having multiple pore structure, wherein the alumina support has a specific surface area of from 40 to 160 m2/g and a total pore volume of from 0.3 to 1.2 cm3/g; a pore volume of pores having a pore diameter of less than 30 nm comprises 5 to 60% of the total pore volume; a pore volume of pores having a pore diameter of from 30 to 60 nm comprises 20 to 75% of the total pore volume; and a pore volume of pores having a pore diameter of larger than 60 nm comprises 20 to 60% of the total pore volume. The present invention further discloses a catalyst used for selective hydrogenation of a pyrolysis gasoline, comprising: (a) the alumina support according to the invention; and (b) 0.01 to 1.2 wt. % of metal palladium or palladium oxides, based on the weight of the alumina support.
    Type: Application
    Filed: August 2, 2007
    Publication date: July 15, 2010
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, SHANGHAN RESEARCH INSTITUTE OF PETROCHEMICAL TECHNOLOGY
    Inventors: Zhongneng Liu, Zaiku Xie, Xinghua Jiang, Xiaoling Wu, Minbo Hou, Hongyuan Zong
  • Publication number: 20100147740
    Abstract: A process comprising regenerating a used ionic liquid catalyst, recovering conjunct polymer from the regenerated catalyst and using at least a portion of the conjunct polymer is disclosed.
    Type: Application
    Filed: December 16, 2008
    Publication date: June 17, 2010
    Inventors: Saleh A. Elomari, Hye-Kyung C. Timken
  • Patent number: 7736492
    Abstract: A process for jointly carrying out selective hydrogenation of polyunsaturated compounds into monounsaturated compounds contained in gasolines, and for transforming light sulphur-containing compounds into heavier compounds by reaction with unsaturated compounds, said process employing a supported catalyst comprising at least one metal from group VIB and at least one non-noble metal from group VIII used in the sulphurized form, deposited on a specific support comprising a metal aluminate of the MAl2O4 type with a metal M selected from the group constituted by nickel and cobalt, and comprising bringing the feed into contact with the catalyst at a temperature in the range of 80° C. to 220° C. at a liquid hourly space velocity in the range of 1 h?1 to 10 h?1 and at a pressure in the range of 0.5 to 5 MPa.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: June 15, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Christophe Bouchy, Florent Picard, Nathalie Marchal
  • Publication number: 20100133147
    Abstract: A supported and sulphur-containing catalyst is described, comprising; a porous support constituted by an organic-inorganic hybrid material for which the covalent bond between the organic and inorganic phases conforms to the formula M-O—Z—R where M represents at least one metal constituting the inorganic phase, Z at least one heteroelement from among phosphorus and silicon and R an organic fragment, at least one metal of group VIB and/or of group VB and/or of group VIII. The invention also relates to the use of this catalyst for the hydrorefining and the hydroconversion of hydrocarbon-containing feedstocks such as petroleum fractions, fractions from coal or biomass or hydrocarbons produced from natural gas.
    Type: Application
    Filed: July 6, 2007
    Publication date: June 3, 2010
    Inventors: Alexandra Chaumonnot, Denis Guillaume, Benoit Fremon, Karin Marchand, Renaud Revel
  • Patent number: 7727378
    Abstract: A process to prepare a waxy raffinate product by performing the following steps: (a) subjecting a Fischer-Tropsch derived product having a weight ratio of compounds boiling above 540° C. and compounds boiling between 370 and 540° C. of greater than 2 to a hydroconversion step and (b) fractionating the effluent of step (a) to obtain products boiling in the fuels range and a waxy raffinate product boiling between 350 and 600° C.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: June 1, 2010
    Assignee: Shell Oil Company
    Inventors: Jan Lodewijk Maria Dierickx, Arend Hoek, Lip Piang Kueh
  • Patent number: 7718053
    Abstract: A process for jointly carrying out selective hydrogenation of polyunsaturated compounds into monounsaturated compounds contained in gasolines, and for transforming light sulphur-containing compounds into heavier compounds by reaction with unsaturated compounds employing a supported catalyst, comprising at least one metal from group VIB and at least one non-noble metal from group VIII used in the sulphurized form deposited on a support and having a controlled porosity, and comprising bringing the feed into contact with the catalyst at a temperature in the range of 80° C. to 220° C. at a liquid hourly space velocity in the range of 1 h?1 to 10 h?1 and at a pressure in the range of 0.5 to 5 MPa.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: May 18, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Christophe Bouchy, Florent Picard, Nathalie Marchal
  • Patent number: 7691256
    Abstract: Heavy hydrocarbon charges are converted in a deasphalting section in the presence of solvents and obtaining two streams, one consisting of deasphalted oil and the other one containing asphaltenes, mixing the deasphalted oil stream with a hydrogenation catalyst and passing the thus obtained mixture to a hydroprocessing section containing hydrogen or hydrogen/H2S, mixing the stream consisting of asphaltenes discharged from the deasphalting section with an appropriate hydrogenation catalyst and passing the obtained mixture to a second hydroprocessing section where it is reacted with hydrogen or a mixture of hydrogen and H2S, passing both the stream containing the reaction product with dispersed catalyst from the hydroprocessing section and the stream containing the reaction product with dispersed catalyst from the second hydroprocessing section, to one or more distillation or flash stages, whereby the more volatile fractions are separated from the distillation residue (tar) or from the liquid discharged from the
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: April 6, 2010
    Assignees: ENI S.p.A., SNAMPROGETTI S.p.A., ENITECNOLOGIE S.p.A.
    Inventors: Romolo Montanari, Mario Marchionna, Sergio Rosi, Nicoletta Panariti, Alberto Delbianco
  • Patent number: 7682502
    Abstract: An improved hydrogenation process for lube oil boiling range feedstreams utilizing a catalyst comprising at least one Group VIII noble metal selected from Pt, Pd, and mixtures thereof having an average pore diameter of about 15 to less than about 40 ?.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: March 23, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stephen J. McCarthy, Wenylh F. Lai, Jean W. Beeckman, Sylvain S. Hantzer
  • Publication number: 20100038285
    Abstract: The present invention relates to the novel catalytic composition having a high specific activity in reactions involving hydroprocessing of light and intermediate petroleum fractions, and preferably in hydrodesulphurization and hydrodenitrogenation reactions. The inventive catalyst contains at least one element of a non-noble metal from group VIII, at least one element from group VIB and, optionally, a group one element of the VA group, which are deposited on a novel catalytic support comprising of an inorganic metal oxide from group IVB, consisting of an (ID) one-dimensional nanostructured material having nanofibers and/or nanotube morphology with high specific surface area of between 10 and 500 m2/g.
    Type: Application
    Filed: October 10, 2003
    Publication date: February 18, 2010
    Inventors: José Antonio Toledo Antonio, José Escobar Aguilar, Maria Antonia Cortés Jacome, Maria de Lourdes Mosqueira Mondragon, Vitor Pérez Moreno, Calos Angeles Chávez, Esteban López Salinas, Marcelo Lozada y Cassou
  • Patent number: 7663008
    Abstract: A method of catalytic reaction uses a micro-reactor (1) with a metal catalyst (5) or a metal complex catalyst (5) as a solid phase supported on the inner wall (4c) of a channel (4), a solution (7) dissolving a reactant as a liquid phase and hydrogen (9) as a gas phase are flown through the channel (4) in pipe flow state, and the reaction of the solution (7) and the gas (9) accelerated by the metal catalyst (5) or the metal complex catalyst (5) is conducted by three phase catalytic reaction of solid-liquid-gas phases. The metal catalyst (5) or the metal complex catalyst (5) is incorporated in a polymer, and hydrogenation reaction by three phase catalytic reductive reaction of a substance to be reduced can be conducted in short time at good yield. For hydrogenation reaction of unsaturated organics, the rate of reaction and yield are high when palladium catalyst is used, and carbonylation reaction can be conducted if carbon monoxide is used instead of hydrogen.
    Type: Grant
    Filed: January 26, 2005
    Date of Patent: February 16, 2010
    Assignee: Japan Science and Technology Agency
    Inventors: Shu Kobayashi, Yuichiro Mori, Takehiko Kitamori, Masaharu Ueno, Kuniaki Okamoto
  • Patent number: 7663011
    Abstract: A process for treating organic compounds includes providing a composition which includes a substantially mesoporous structure of refractory oxide containing at least 97% by volume of pores having a pore size ranging from about 15 ? to about 30 ? and having a micropore volume of at least about 0.01 cc/g, wherein the mesoporous structure has incorporated therewith at least about 0.02% by weight of at least one catalytically and/or chemically active heteroatom selected from the group consisting of Al, Ti, V, Cr, Zn, Fe, Sn, Mo, Ga, Ni, Co, In, Zr, Mn, Cu, Mg, Pd, Pt and W, and the catalyst has an X-ray diffraction pattern with one peak at 0.3° to about 3.5° at 2 theta (?). The catalyst is contacted with an organic feed under reaction conditions wherein the treating process is selected from alkylation, acylation, oligomerization, selective oxidation, hydrotreating, isomerization, demetalation, catalytic dewaxing, hydroxylation, hydrogenation, ammoximation, isomerization, dehydrogenation, cracking and adsorption.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: February 16, 2010
    Assignee: Lummus Technology Inc.
    Inventors: Zhiping Shan, Jacobus Cornelis Jansen, Chuen Y. Yeh, Philip J. Angevine, Thomas Maschmeyer, Mohamed S. Hamdy
  • Patent number: 7645376
    Abstract: A process for jointly carrying out selective hydrogenation of polyunsaturated compounds into mono unsaturated compounds contained in gasolines, and for transforming light sulphur-containing compounds into heavier compounds by reaction with unsaturated compounds, said process employing a supported catalyst comprising at least one metal from group VIB and at least one non-noble metal from group VIII used in the sulphurized form deposited on a support and having a specific composition and comprising bringing the feed into contact with the catalyst at a temperature in the range of 80° C. to 220° C. at a liquid hourly space velocity in the range of 1 h?1 to 10 h?1 and at a pressure in the range of 0.5 to 5 MPa.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: January 12, 2010
    Assignee: Institute Francais du Petrole
    Inventors: Christophe Bouchy, Florent Picard, Nathalie Marchal
  • Patent number: 7638040
    Abstract: A process for the recovery and purification of a contaminated hydrocarbons, wherein the contamination includes metals, finely divided solids and non-distillable components. The process further includes hydroprocessing the oil to remove deleterious compounds, to produce high quality reusable lubricants, solvents and fuels and to improve the quality of water byproduct.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: December 29, 2009
    Assignee: UOP LLC
    Inventors: Mark Van Wees, Robert B. James, Jr., Tom N. Kalnes, Gavin P. Towler
  • Publication number: 20090308790
    Abstract: The present invention relates to a hydrogenation catalyst composition, process for preparing the same and use thereof. The composition comprises a hydrogenation catalyst, an organonitrogen compound in an amount of 0.01%-20% by weight of the catalyst, a sulfiding agent in an amount of 30%-150% by weight of the sulfur-requiring amount calculated theoretically of the hydrogenation catalyst, and an organic solvent in an amount of 0.1%-50% by weight of the catalyst. The preparation process comprises introducing the required substances onto the hydrogenation catalyst in oxidation state. By introduction of the organonitrogen compound, sulfur and organic solvent, the hydrogenation catalyst composition of the present invention may further increase the sulfur-maintaining ratio of the catalyst during the activation, slow down the concentrative exothermic phenomenon, decrease the rate of temperature rise of the catalyst bed layer, and improve the activity of the catalyst.
    Type: Application
    Filed: November 14, 2006
    Publication date: December 17, 2009
    Applicant: CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Yulan Gao, Xiangchen Fang, Gang Wang, Fenglan Cao, Chonghui Li, Guang Chen
  • Patent number: 7626062
    Abstract: A system and method for recycling plastics. The system and method recover materials such as hydrocarbon gases, liquid hydrocarbon distillates, various polymers and/or monomers used to produce the original plastics. The system and method allow about one unit of input of energy input to the plastic recycler to be used to create one or more gaseous components and one or more liquid distillate components from a plastic that is being recycled. The one or more gaseous components and one or more liquid distillate components produce about one corresponding unit of useable output energy recovered from the recycling of the plastic.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: December 1, 2009
    Inventor: William E. Carner
  • Publication number: 20090266743
    Abstract: A triglyceride or a triglyceride/hydrocarbon combination can be heated to produce thermally treated feeds. The thermally treated feeds can then be contacted with a hydrotreating catalyst in a reaction zone.
    Type: Application
    Filed: April 25, 2008
    Publication date: October 29, 2009
    Inventors: Jianhua Yao, Edward L. Sughrue, II, Dhananjay B. Ghonasgi, Xiaochun Xu
  • Patent number: 7601881
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a tungstated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a phosphorus component, and at least one platinum-group metal component which is preferably platinum. The catalyst has a structure other than a heteropoly anion structure.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: October 13, 2009
    Assignee: UOP LLC
    Inventors: Ralph D. Gillespie, Feng Xu
  • Patent number: 7598202
    Abstract: Novel compositions of matter comprising a cationic layered material and a second compound. The second compound has a reflection in its XRD pattern at 18.5 degrees two-theta, and s second reflection at 29 degrees two-theta. The composition of matter may be used in hydrocarbon conversion, purification, and synthesis processes, such as fluid catalytic cracking and hydroprocessing. The materials are especially suitable for the reduction of SOx and NOx emissions and the reduction of the sulfur and nitrogen content in fuels like gasoline and diesel.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: October 6, 2009
    Assignee: Albemarle Netherlands B.V.
    Inventors: Paul O'Connor, William Jones, Dennis Stamires
  • Patent number: 7591942
    Abstract: Bulk bi-metallic catalysts for use in the hydroprocessing of hydrocarbon feeds, as well as a method for preparing such catalysts. The catalysts are prepared from a catalyst precursor containing an organic agent.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: September 22, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart L. Soled, Sabato Miseo, Zhiguo Hou
  • Patent number: 7591940
    Abstract: A catalytic hydrocracking process for the production of ultra low sulfur diesel wherein a hydrocarbonaceous feedstock is hydrocracked at elevated temperature and pressure to obtain conversion to diesel boiling range hydrocarbons. The resulting hydrocracking zone effluent is hydrogen stripped in a stripping zone maintained at essentially the same pressure as the hydrocracking zone to produce a first gaseous hydrocarbonaceous stream and a first liquid hydrocarbonaceous stream. The first gaseous hydrocarbonaceous stream containing diesel boiling range hydrocarbons is introduced into a desulfurization zone and subsequently partially condensed to produce a hydrogen-rich gaseous stream and a second liquid hydrocarbonaceous stream containing diesel boiling range hydrocarbons. At least a portion of the first liquid stream is thermal cracked to produce diesel boiling range hydrocarbons. An ultra low sulfur diesel product stream is recovered.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: September 22, 2009
    Assignee: UOP LLC
    Inventor: Tom N. Kalnes
  • Patent number: 7588680
    Abstract: In some embodiments, the invention is a method of removing sulfur from a hydrocarbon feed using the steps of dissolving metallic sodium in a first solvent, combining the sodium/first solvent solution with a sulfur-free alkane or cycloalkane second solvent, vaporizing the first solvent from sodium/first solvent/second solvent combination to transfer the dissolved metallic sodium into the second solvent, and then combine the resultant liquid with a liquid hydrocarbon feed containing an organosulfur species. The resulting stream is combined with a hydrogen donor. The combination is heated and pressurized to form a liquid hydrocarbon product containing sodium sulfide. The liquid hydrocarbon product containing sodium sulfide is then cooled, and the sodium sulfide is extracted.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: September 15, 2009
    Assignee: Trans Ionics Corporation
    Inventor: Robert C. Schucker
  • Patent number: 7585406
    Abstract: A Process for hydroconverting of a heavy hydrocarbonaceous feedstock comprising a catalyst to produce lower boiling hydrocarbon products. The method can be used for the high- boiling point residues of oil refining (asphaltene, the residues of vacuum and under pressure distillation of oil, and the useless and heavy materials of thermo catalytic processes), heavy oil, natural bitumen, and bitumen-containing sands. It can also be used in oil refinery industries for the production of gas, gasoline fractions, distillation gas oil, concentrate of ash containing metals and chemical fertilizers.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: September 8, 2009
    Assignees: Research Institute of Petroleum Industry (RIPI), NTI Company
    Inventors: Salambek Naibovich Khadzhiev, Khusain Magamedovich Kadiev, Vahid Khumaidovich Mezhidov, Jamshid Zarkesh, Reza Hashemi, Seyed Kamal Masoudian Targhi
  • Publication number: 20090211945
    Abstract: The invention relates to a bulk catalyst having improved activity in hydrodesulphurisation, in particular in relatively low Group VIII over Group VIB metal molar ratios. The bulk catalyst comprises metal oxidic particles comprising one or more Group VIB metals and one or more-Group VIII metals which metal oxidic particles are obtainable by a process comprising the steps of reacting the compounds comprising one or more Group VIB metals and compounds comprising one or more Group VIII metals in hydrothermal conditions at a reaction temperature above the boiling temperature of the protic liquid, preferably in an autoclave at a reaction pressure above atmospheric pressure and. The invention also relates to the corresponding sulphided catalyst, to a process for the manufacture of said bulk catalyst and to the use of said catalyst for the hydrotreatment, in particular the hydrodesulphurisation and hydrodenitrogenation of hydrocarbon feedstock.
    Type: Application
    Filed: October 25, 2006
    Publication date: August 27, 2009
    Applicant: ALBEMARLE NETHERLANDS B.V.
    Inventors: Sona Eijsbouts-Spickova, Robertus Gerardus Leliveld, Stuart Leon Soled, Sabato Miseo
  • Publication number: 20090206004
    Abstract: An MCM-41 catalyst having a crystalline framework containing SiO2 and a Group IV metal oxide, such as TiO2 or ZrO2 is provided. The catalyst is low in acidity and is suitable for use in processes involving aromatic saturation of hydrocarbon feedstocks.
    Type: Application
    Filed: December 16, 2008
    Publication date: August 20, 2009
    Inventors: Stephen J. McCarthy, Wenyih Frank Lai, Michel A. Daage
  • Publication number: 20090200204
    Abstract: A hydroprocessing catalyst is provided. The hydroprocessing catalyst has the formula (Mt)a(Xu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least one group VIB metal; X is at least one Group VIII non-noble metal; t, u, v, w, x, y, z representing the total charge for each of the components (M, X, S, C, H, O and N, respectively); ta+ub+vd+we+xf+yg+zh=0; and 0=<b/a=<5, (a+0.5b)<=d<=(5a+2b), 0<=e<=11(a+b), 0<=f<=7(a+b), 0<=g<=5(a+b), 0<=h<=0.5(a+b). The catalyst has an X-ray powder diffraction pattern with at least one broad diffraction peak at any of Bragg angles: 8 to 18°, 32 to 40°, and 55 to 65° (from 0 to 70° 2-? scale). In one embodiment, the at least one diffraction peak is greater than 2 degrees wide at ½ height.
    Type: Application
    Filed: October 31, 2007
    Publication date: August 13, 2009
    Inventors: Oleg Mironov, Alexander E. Kuperman, Jaime Lopez, Axel Brait, Bruce Reynolds, Kaidong Chen
  • Patent number: 7563359
    Abstract: An aromatics/naphthalene rich stream obtained by processing heavy gas oil derived from tar sands and cycle oils derived from cracking heavy gas oil may optionally be blended and subjected to a hydrogenation process and a ring opening reaction typically in the presence of a zeolite, alumina, or silica alumina based catalyst which may contain noble metals and or copper or molybdenum to produce paraffinic feedstocks for further chemical processing.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: July 21, 2009
    Assignee: Nova Chemical (International) S.A.
    Inventors: Michael C. Oballa, Andrzej Krzywicki, Sunny Ying-Shing Wong, Anthony Tse, Abdul Alim Fakih
  • Publication number: 20090178953
    Abstract: Contact of a crude feed with one or more catalysts produces a total product that includes a crude product. The crude product is a liquid mixture at 25° C. and 0.101 MPa. The one or more catalysts may include a catalyst that has a median pore diameter of at least 90 ?. One or more properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.
    Type: Application
    Filed: March 25, 2009
    Publication date: July 16, 2009
    Inventors: Opinder Kishan BHAN, Scott Lee Wellington
  • Publication number: 20090166260
    Abstract: The present invention concerns a catalyst for hydrotreating and/or hydroconverting heavy metal-containing hydrocarbon feeds, said catalyst comprising a support in the form of mainly irregular and non-spherical alumina-based agglomerates the specific shape of which results from a crushing step, and containing at least one catalytic metal or a compound of a catalytic metal from group VIB and/or group VIII (groups 8, 9 and 10 of the new periodic table notation), optionally at least one doping element selected from the group constituted by phosphorus, boron and silicon (or silica which does not form part of that which may be contained in the selected support) and halogens, said catalyst essentially being constituted by a plurality of juxtaposed agglomerates each formed by a plurality of acicular platelets, the platelets of each agglomerate generally being oriented radially with respect to each other and with respect to the centre of the agglomerate.
    Type: Application
    Filed: December 14, 2006
    Publication date: July 2, 2009
    Inventors: Stephane Kressmann, Magalie Roy-Auberger, Jean Luc Le Loarer, Denis Guillaume, Jean Francois Chapat
  • Publication number: 20090159499
    Abstract: A reactor in which a multi-phase mixture, including gas and a catalyst slurry or liquid, is to be conducted. The reactor includes a reaction chamber having a substantially unencumbered center portion through which the multi-phase mixture is conducted upwardly. A downcomer arrangement is disposed laterally outwardly of the center portion and adjacent to an inner surface of the reaction chamber. An external pump communicates with a lower portion of the reaction chamber for circulating components of the mixture downward from an upper end of the downcomer arrangement to a lower end thereof. A collection chamber is disposed below the reaction chamber into which the components exiting the downcomer arrangement are introduced and where the gas is separated from the remainder of the components. The separated gas can be reintroduced into the reaction chamber.
    Type: Application
    Filed: December 19, 2007
    Publication date: June 25, 2009
    Applicant: Chevron U.S.A. Inc.
    Inventor: Abdenour Kemoun
  • Patent number: 7550073
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-70 prepared using a N,N?-diisopropyl imidazolium cation as a structure-directing agent, methods for synthesizing SSZ-70 and processes employing SSZ-70 in a catalyst.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: June 23, 2009
    Assignee: Chevron U.S.A., Inc.
    Inventors: Stacey I. Zones, Allen W. Burton, Jr.
  • Publication number: 20090134060
    Abstract: Contact of a crude feed with one or more catalysts containing a transition metal sulfide produces a total product that includes a crude product. The crude feed has a residue content of at least 0.2 grams of residue per gram of crude feed. The crude product is a liquid mixture at 25° C. and 0.101 MPa. One or more properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed. In some embodiments, gas is produced during contact with one or more catalysts and the crude feed.
    Type: Application
    Filed: January 27, 2009
    Publication date: May 28, 2009
    Inventors: Scott Lee Wellington, Thomas Fairechild Brownscombe, Stanley Nemec Milam
  • Patent number: 7537685
    Abstract: The present invention relates to new molecular sieve SSZ-71 prepared using a N-benzyl-1,4-diazabicyclo[2.2.2]octane cation as a structure-directing agent, methods for synthesizing SSZ-71 and processes employing SSZ-71 in a catalyst.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: May 26, 2009
    Assignee: Chevron U.S.A. Inc.
    Inventors: Cong-Yan Chen, Allen W. Burton, Jr., Ann J. Liang
  • Patent number: 7527724
    Abstract: The present invention is a method of removing sulphur from a hydrocarbon feed stream, comprising the steps of: (a) dissolving sodium in a liquid solvent to form a solution containing sodium atoms; (b) combining the liquid solution from step (a) with a liquid hydrocarbon feed containing an organosulfur component to form a combined stream at a temperature of addition and at a pressure near or above the vapor pressure of the solvent at the temperature of addition; (c) reacting the combined stream for sufficient reaction time and at sufficient reaction temperature to form a modified composition comprising one or more sulfur-containing species and less of the organosulfur species than had been present in the hydrocarbon feed; (d) extracting a portion of the sulfur-containing species from the modified composition.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: May 5, 2009
    Assignee: Trans Ionics Corporation
    Inventor: Robert C. Schucker
  • Publication number: 20090107889
    Abstract: A process for upgrading a hydrocarbon feedstock by hydroprocessing using multi-metallic catalysts is disclosed. In one aspect, the invention relates to hydroprocessing of a hydrocarbon feedstock using a catalyst derived from a catalyst precursor of the formula Av[(MP)(OH)x(L)ny]z(MVIBO4), wherein A comprises an alkali metal cation, an ammonium, an organic ammonium or a phosphonium cation, MP is selected from Group VIII, Group IIB, Group IIA, Group IVA and combinations thereof, L is an organic, oxygen-containing ligand, MVIB is at least one of Group VIB metals, and the atomic ratio of MVIII:MVIB is between 100:1 and 1:100.
    Type: Application
    Filed: October 28, 2008
    Publication date: April 30, 2009
    Inventors: Theodorus Ludovicus Michael Maesen, Alexander E. Kuperman
  • Patent number: 7510646
    Abstract: Process for the production of hydrocarbon blends with a high octane number by the hydrogenation of hydrocarbon blends, containing branched C8, C12 and C16 olefinic cuts, characterized by sending said blends, as such or fractionated into two streams, one substantially containing the branched C8 olefinic cut, the other substantially containing the branched C12 and C16 olefinic cuts, to a single hydrogenation zone or to two hydrogenation zones in parallel, respectively, only the stream substantially containing of saturated C8 hydrocarbons, obtained by the fractionation of the stream produced by the single hydrogenation zone or obtained by the hydrogenation zone fed by the fractionated stream substantially containing the branched C8 olefinic cut, being at least partly recycled to the single hydrogenation zone or to the hydrogenation zone fed by the fractionated stream substantially containing the branched C8 olefinic cut, and the hydrocarbon blend with a high octane number, obtained by the fractionation of the st
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: March 31, 2009
    Assignee: Snamprogetti S.p.A.
    Inventors: Roberto Catani, Marco Di Girolamo, Massimo Conte, Ambrogio Gusberti
  • Publication number: 20090057201
    Abstract: A hydroprocessing bulk catalyst is provided. A process to prepare hydroprocessing bulk catalysts is also provided. The hydroprocessing catalyst has the formula (Mt)d(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least one group VIB metal; promoter metal L is optional and if present, L is at least one Group VIII non-noble metal; t, u, v, w, x, y, z representing the total charge for each of the components (M, L, S, C, H, O and N, respectively); ta+ub+vd+we+xf+yg+zh=0; 0 =<b; and 0=<b/a=<5, (a+0.5b)<=d<=(5a+2b), 0<=e<=11(a+b), 0<=f<=7(a+b), 0<=g<=5(a+b), 0<=h<=0.5(a+b). The catalyst has an X-ray powder diffraction pattern with at least one broad diffraction peak at any of Bragg angles: 8 to 18°, 32 to 40°, and 55 to 65° (from 0 to 70° 2-? scale).
    Type: Application
    Filed: October 29, 2008
    Publication date: March 5, 2009
    Inventors: Axel Brait, Alexander E. Kuperman, Jaime Lopez, Oleg Mironov, Bruce Reynolds, Kaidong Chen
  • Patent number: 7497941
    Abstract: A process to prepare two or more lubricating base oil grades and a gas oil by (a) hydrocracking/hydroisomerizing a Fischer-Tropsch product, wherein weight ratio of compounds having at least 60 or more carbon atoms and compounds having at least 30 carbon atoms in the Fischer-Tropsch product is at least 0.2 and wherein at least 30 wt % of compounds in the Fischer-Tropsch product have at least 30 carbon atoms; (b) separating the product of step (a) into one or more gas oil fractions and a base oil precursor fraction; (c) performing a pour point reducing step to the base oil precursor fraction obtained in step (b); and (d) separating the effluent of step (c) in two or more base oil grades.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: March 3, 2009
    Assignee: Shell Oil Company
    Inventor: Gilbert Robert Bernard Germaine
  • Patent number: 7479217
    Abstract: The invention concerns a process for treating a hydrocarbon feed comprising a series of a first upstream process for hydrocarbon hydroconversion comprising at least one reaction chamber, the reaction or reactions occurring inside said chambers and employing at least one solid phase, at least one liquid phase and at least one gas phase, and a second downstream steam reforming process comprising at least one reaction chamber, characterized in that the said upstream process is carried out in a “slurry” and/or an ebullated bed mode and in that the downstream process comprises a first step for at least partial conversion of hydrocarbons heavier than methane into methane, termed the pre-reforming step, and in that the reaction or reactions occurring inside the chambers of the downstream stream reforming process enables the production of a reagent, namely hydrogen, which is necessary for the reactions in the first upstream process.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: January 20, 2009
    Assignee: Institut Francais du Petrole
    Inventors: Mathieu Pinault, Thierry Gauthier, Stéphane Kressmann, Arnault Selmen
  • Publication number: 20090014356
    Abstract: The invention relates to a process for the preparation of a shaped bulk catalyst comprising metal oxide particles comprising one or more Group VIII metals and two or more Group VIB metals which process comprises the steps of providing first metal oxidic particles comprising one or more first Group VIII metals and one or more first Group VIB metals, providing separately prepared second metal oxidic particles comprising one or more second Group VIII metals and one or more second Group VIB metals, wherein the composition of Group VIB and Group VIII metals in the first and second metal oxidic particles are different, combining the first and second metal oxidic particles before and/or during shaping and shaping the combined first and second metal oxide particles to form a shaped bulk catalyst. The invention further relates to the shaped bulk catalyst obtainable with the process In sulphided or unsulphided form and the use thereof in hydroprocessing.
    Type: Application
    Filed: October 25, 2006
    Publication date: January 15, 2009
    Applicant: ALBEMARLE NETHERLANDS B.V.
    Inventors: Sona Eijsbouts-Spickova, Robertus Gerardus Leliveld, Johannes Cornelis Sitters, Marinus Bruce Cerfontain, Bob Gerardus Oogjen
  • Publication number: 20080302703
    Abstract: A process for the catalytic reaction of organic compounds, in which the organic compounds are contacted with a catalyst comprising an interstitial metal hydride, having a reaction surface, to produce a catalyst-organic compound mixture, energy is applied, monatomic hydrogen is produced at the reaction surface of the interstitial metal hydride, and the organic compounds are reacted with the monatomic hydrogen. Reactions accomplished by this process include petroleum hydrocracking and hydrotreating processes. The method's performance can be further enhanced using radio frequency (RF) or microwave energy.
    Type: Application
    Filed: June 11, 2008
    Publication date: December 11, 2008
    Inventors: David A. Purta, Marc A. Portnoff, Faiz Pourarian, Margaret A. Nasta, Jingfeng Zhang