Catalytic Patents (Class 208/143)
  • Publication number: 20020008050
    Abstract: The present invention discloses a medium-pressure hydrocracking process able to simultaneously produce products such as qualified gasoline, kerosene, diesel, etc.. Based on the prior medium-pressure hydrocracking process, the present invention uses a fresh hydrogen resource and a hydrosaturation catalyst with reduced metals of group VIB and/or group VIII as the active components to selectively and deeply hydrosaturate the jet fuel and/or diesel cuts derived in the medium-pressure hydrocracking, thereby allowing the quality of these cut fractions to meet the requirement of the specifications. In the present invention, a quite favorable reaction environment is created for the deep hydrosaturation of the jet fuel and/or diesel cuts with an extremely low investment by reasonable combination of the medium-pressure hydrocracking process flow, full reliance on the medium-pressure hydrocracking,, and addition of an ultra-low-pressure hydrosaturation reactor.
    Type: Application
    Filed: May 18, 2001
    Publication date: January 24, 2002
    Inventors: Xiangchen Fang, Ling Lan, Xiaobing Song, Minghua Guan, Guang?apos;an Jiang, Fenglai Wang, Zhengnan Yu, Qun Guo
  • Publication number: 20020000396
    Abstract: The present invention pertains to a process for activating a catalyst composition comprising at least one hydrogenation metal component of Group VI and/or Group VIII of the Periodic Table, and an S-containing organic additive, wherein the catalyst is contacted with hydrogen at a temperature between room temperature and about 600° C., preferably about 100-450° C., and prior to or during the contacting with hydrogen the catalyst is contacted with an organic liquid. Preferably, the contacting with the organic liquid is carried out prior to the contacting with hydrogen. The organic liquid may be a hydrocarbon with a boiling range of 150-500° C., preferably white oil, gasoline, diesel, or gas oil or mineral lube oil. It was found that the application of an organic liquid prior to or during the hydrogen treatment results in catalysts with an increased activity. The invention also comprises catalyst made by the above process and the use of such catalyst in hydrotreating.
    Type: Application
    Filed: April 10, 2001
    Publication date: January 3, 2002
    Inventor: Sonja Eijsbouts
  • Patent number: 6329561
    Abstract: The method of producing high purity isooctane useful as a gasoline blending component from diisobutylene or isooctane contaminated with minor amounts of oxygenated impurities which comprises converting the impurities at conditions of elevated temperature and pressure to hydrocarbon and water and recovering the purified diisobutylene or isooctane stream.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: December 11, 2001
    Assignee: Equistar Chemicals, LP
    Inventors: Kenneth M. Webber, Mark P. Kaminsky, Andrew P. Kahn
  • Publication number: 20010049333
    Abstract: Provided are a catalyst and a method for hydrogenation of hydrocarbon oil containing aromatic hydrocarbons and olefins, which minimize the hydrocracking of the oil being hydrogenated. Preferably, the catalyst comprises, as the active metal, at least one selected from noble metals of Group VIII of the Periodic Table, in which the active metal is carried by a substantially amorphous metal oxides carrier consisting essentially of silicon and magnesium. The carrier has a BET specific surface area falling between 50 m2/g and 800 m2/g. In the carrier, the atomic ratio of Mg/Si falls between 0.25 and 2.0, the active metal selected from noble metals of Group VIII of the Periodic Table is platinum or palladium, or a mixture of platinum and palladium in an atomic ratio Pt/Pd falling between 0.05 and 2.0. In the hydrogenation method, hydrocarbon oil to be processed is contacted with hydrogen and the catalyst at a reaction temperature falling between 150 and 450° C.
    Type: Application
    Filed: February 5, 1999
    Publication date: December 6, 2001
    Inventors: YUKI KANAI, TAKASHI MATSUDA, HIDEHARU YOKOZUKA
  • Patent number: 6309537
    Abstract: The present invention concerns the use of a catalyst comprising an extruded essentially alumina-based support, constituted by a plurality of juxtaposed agglomerates and partially in the form of packs of flakes and partially in the form of needles, and optionally comprising at least one catalytic metal or a compound of a catalytic metal from group VIB and/or at least one catalytic metal or compound of a catalytic metal from group VIII, further comprising at least one dopant selected from the group formed by boron, phosphorous, silicon (or a silica different from that which can be found in the support) and halogens, in an ebullating bed process and for hydrorefining and hydroconverting hydrocarbon feeds.
    Type: Grant
    Filed: December 9, 1999
    Date of Patent: October 30, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Virginie Harle, Slavik Kasztelan, Stéphane Kressmann, Frédéric Morel
  • Publication number: 20010027937
    Abstract: A process, preferably in a counter-current configuration, for selectively cracking carbon-carbon bonds of naphthenic species using a low acidic catalyst, preferably having a crystalline molecular sieve component and carrying a Group VIII noble metal. The diesel fuel products are higher in cetane number and diesel yield.
    Type: Application
    Filed: May 16, 2001
    Publication date: October 11, 2001
    Inventors: Ying-Yen P. Tsao, Tracy J. Huang, Philip J. Angevine
  • Patent number: 6299758
    Abstract: Gas oils comprises one or more gas oil bases obtained by subjecting specific fractions from distilled petroleum fractions to hydrogenating treatment under specific conditions and optionally a small amount of a straight kerosene or gas oil. The gas oils have a sulfur concentration of 350 ppm or below.
    Type: Grant
    Filed: November 10, 1999
    Date of Patent: October 9, 2001
    Assignee: Nippon Mitsubishi Oil Corporation
    Inventors: Hajime Okazaki, Katsuhiko Ishikawa, Michiaki Adachi, Toshio Waku
  • Patent number: 6296759
    Abstract: The invention concems a process for hydrogenation, hydroisomerization and/or hydrodesulfurization of a sulfur contaminant containing hydrocarbon feedstock, wherein the feedstock is contacted in the presence of hydrogen gas with a catalyst, which catalyst comprises platinum, palladium or a combination thereof on a non-crystalline, acidic silica-alumina support, which support is obtained by sol-gel techniques and wherein the ratio of Si to Al is from 1:10 to 200:1.
    Type: Grant
    Filed: November 5, 1999
    Date of Patent: October 2, 2001
    Assignee: Engelhard Corporation
    Inventors: Marinus Vaarkamp, Bernard Hendrik Reesink, Pieter Hildegardus Berben
  • Patent number: 6287454
    Abstract: Lubricant oils of low pour point and improved oxidation stability are produced by catalytically dewaxing a lube feedstock over a zeolite dewaxing catalyst such as ZSM-5 in the hydrogen or decationized form. The use of these catalysts enables products of excellent oxidative stability to be obtained and reduces the catalyst aging rate in the first and subsequent dewaxing cycles to values below 5° F./day. The duration of the dewaxing cycles may be extended, particularly in the second and subsequent cycles after hydrogen reactivation.
    Type: Grant
    Filed: August 16, 1994
    Date of Patent: September 11, 2001
    Assignee: Mobil Oil Corporation
    Inventors: Thomas R. Forbus, Jr., Chwan P. Kyan
  • Patent number: 6284128
    Abstract: A process combination is disclosed to selectively upgrade hydrocarbons in a manner to essentially eliminate olefins in product from the combination. Preferably the hydrocarbons comprise naphtha which is reformed to upgrade its octane number and/or to produce aromatic intermediates, followed by hydrogenation of olefins in the reformate. Olefin saturation optimally is effected by catalytic reaction on an olefin-containing reformate taken at an intermediate point from the effluent side of the reforming-process feed-effluent heat exchanger. Saturation is performed in a defined temperature range which results in selective hydrogenation.
    Type: Grant
    Filed: September 2, 1999
    Date of Patent: September 4, 2001
    Assignee: UOP LLC
    Inventors: Bryan K. Glover, Aronson L. Huebner
  • Patent number: 6280608
    Abstract: This invention relates to a layered catalyst composition, a process for preparing the composition and processes for using the composition. The catalyst composition comprises an inner core such as alpha-alumina, and an outer layer bonded to the inner core composed of an outer refractory inorganic oxide such as gamma-alumina. The outer layer has uniformly dispersed thereon a platinum group metal such as platinum and a promoter metal such as tin. The composition also contains a modifier metal such as lithium. The catalyst composition shows improved durability and selectivity for dehydrogenating hydrocarbons.
    Type: Grant
    Filed: May 30, 2000
    Date of Patent: August 28, 2001
    Assignee: UOP LLC
    Inventors: Robert H. Jensen, Jeffery C. Bricker, Qianjun Chen, Masaru Tatsushima, Kenji Kikuchi, Masao Takayama, Koji Hara, Isao Tsunokuma, Hiroyuki Serizawa
  • Publication number: 20010013484
    Abstract: A process for reducing content of sulphur compounds and polyaromatic hydrocarbons in a hydrocarbon feed having a boiling range between 200° C. and 600° C., which process comprises in combination contacting the feed and hydrogen over a hydrotreating catalyst and hydrotreating feed at hydrotreating conditions, cooling the hydrotreated effluent and hydrogen-rich gas from the hydrotreating reactor contacting said effluent and hydrogen gas over a hydrotreating catalyst in a post-pretreatment reactor at a temperature sufficient to lower the polyaromatic hydrocarbon content.
    Type: Application
    Filed: January 24, 2001
    Publication date: August 16, 2001
    Applicant: Haldor Topsoe A/S
    Inventors: Per Zeuthen, Barry H. Cooper
  • Publication number: 20010013485
    Abstract: A process for transforming a gas oil cut into a dearomatised fuel with a high cetane number comprises at least one first, deep desulphurisation and deep denitrogenation step in which the gas oil cut and hydrogen are passed over a catalyst comprising a mineral support, at least one group VIB metal or metal compound, at least one group VIII metal or metal compound, and phosphorous or at least one phosphorous compound, and at least one subsequent second step, dearomatisation, in which the desulphurised and denitrogenated product from the first step is passed with hydrogen over a catalyst comprising a mineral support and at least one group VIII noble metal or noble metal compound.
    Type: Application
    Filed: March 22, 2001
    Publication date: August 16, 2001
    Applicant: Institut Francais du Petrole
    Inventors: Frederic Morel, Henri Delhomme, Nathalie George-Marchal
  • Patent number: 6270654
    Abstract: A process for catalytic multi-stage hydrogenation of heavy carbonaceous feedstocks using catalytic ebullated bed reactors is operated at selected flow and operating conditions so as to provide improved reactor operations and produce increased yield of lower boiling hydrocarbon liquid and gas products. The disclosed process advantageously takes advantage of an external gas/liquid separation unit associated with the first stage reactor to allow for a more efficient and effective catalytic hydrocracking process. The more efficient process is primarily a result of the increased catalyst loading and lower gas hold-up in the ebullated reactors.
    Type: Grant
    Filed: May 29, 1998
    Date of Patent: August 7, 2001
    Assignee: IFP North America, Inc.
    Inventors: James J. Colyar, James B. MacArthur, Eric D. Peer
  • Patent number: 6264827
    Abstract: A manufacturing process of a diesel gas oil with a high cetane number and a low sulfur, where the cetane number thereof is at least 45, the sulfur content thereof is less than 350 ppm, and the storage stability is superior, from a petroleum distillate oil with a low cetane number and a high sulfur content is provided.
    Type: Grant
    Filed: August 27, 1999
    Date of Patent: July 24, 2001
    Assignee: Nippon Mitsubishi Oil Corp.
    Inventors: Hajime Okazaki, Katuhiko Ishikawa, Michiaki Adachi, Toshio Waku
  • Patent number: 6261442
    Abstract: The invention provides a process for converting a hydrocarbon feed in which said feed is treated in a distillation zone producing an overhead vapour distillate and a bottom effluent, associated with an at least partially external reaction zone comprising at least one catalytic bed, in which at least one reaction for converting at least a portion of at least one hydrocarbon is carried out in the presence of a catalyst and a gas stream comprising hydrogen, the feed for the reaction zone being drawn off at the height of at least one draw-off level and representing at least a portion of the liquid flowing in the distillation zone, at least part of the effluent from the reaction zone being re-introduced into the distillation zone at the height of at least one re-introduction level, so as to ensure continuity of the distillation, said process being characterized in that a liquid distillate is withdrawn from the distillation zone at the height of at least one withdrawal level, said level being located below the vapo
    Type: Grant
    Filed: April 5, 1999
    Date of Patent: July 17, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Jean-Louis Ambrosino, Blaise Didillon, Pierre Marache, Jean-Charles Viltard, Gérald Witte
  • Patent number: 6245220
    Abstract: For transforming unsaturated diolefinic hydrocarbons to a &agr;-olefinic hydrocarbons at rates which are at least 1.5 times higher than the rate of hydrogenation of &agr;-olefinic hydrocarbons to saturated compounds, the catalyst contains palladium distributed at the periphery of particles (spherules or extrduates), and at least one element selected from tin and lead. Further, the tin and/or lead is advantageously distributed at the periphery of the spherules or extrudates.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: June 12, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Blaise Didillon, Charles Cameron, Christophe Gautreau
  • Patent number: 6241876
    Abstract: A process, preferably in a counter-current configuration, for selectively cracking carbon-carbon bonds of naphthenic species using a low acidic catalyst, preferably having a crystalline molecular sieve component and carrying a Group VIII noble metal. The diesel fuel products are higher in cetane number and diesel yield.
    Type: Grant
    Filed: June 11, 1999
    Date of Patent: June 5, 2001
    Assignee: Mobil Oil Corporation
    Inventors: Ying-Yen P. Tsao, Tracy J. Huang, Philip J. Angevine
  • Publication number: 20010001805
    Abstract: A composition and a process for using the composition in a selective hydrogenation of a highly unsaturated hydrocarbon such as, for example, an alkyne or diolefin, to a less unsaturated hydrocarbon such as, for example, an alkene or a monoolefin, are disclosed. The composition comprising palladium, a selectivity enhancer and an inorganic support wherein the palladium and selectivity enhancer are each present in a sufficient amount to effect the selective hydrogenation of a highly unsaturated hydrocarbon. Optionally, the composition can comprise silver. Also optionally, the palladium is present as skin distributed on the surface of the support. The composition can further comprise an alkali metal-containing compound such as, for example, potassium fluoride.
    Type: Application
    Filed: November 19, 1998
    Publication date: May 24, 2001
    Applicant: Phillips Petroleum Company
    Inventors: SCOTT H. BROWN, TIN-TACK PETER CHEUNG
  • Patent number: 6221239
    Abstract: A process for transforming a gas oil cut into a dearomatised fuel with a high cetane number comprises at least one first, deep desulphurisation and deep denitrogenation step in which the gas oil cut and hydrogen are passed over a catalyst comprising a mineral support, at least one group VIB metal or metal compound, at least one group VIII metal or metal compound, and phosphorous or at least one phosphorous compound, and at least one subsequent second step, dearomatisation, in which the desulphurised and denitrogenated product from the first step is passed with hydrogen over a catalyst comprising a mineral support and at least one group VIII noble metal or noble metal compound.
    Type: Grant
    Filed: January 10, 2000
    Date of Patent: April 24, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Frédéric Morel, Henri Delhomme, Nathalie George-Marchal
  • Patent number: 6210563
    Abstract: A process is provided for selectively producing diesel fuel with increased cetane number from a hydrocarbon feedstock. The process includes contacting the feedstock with a catalyst which has a large pore crystalline molecular sieve material component having a faujasite structure and alpha acidity of less than 1, preferably about 0.3 or less. The catalyst also contains a dispersed Group VIII noble metal component which catalyzes the hydrogenation/hydrocracking of the aromatic and naphthenic species in the feedstock.
    Type: Grant
    Filed: December 30, 1998
    Date of Patent: April 3, 2001
    Assignee: Mobil Oil Corporation
    Inventors: Ying-Yen P. Tsao, Tracy J. Huang, Philip J. Angevine
  • Patent number: 6210561
    Abstract: An integrated process for converting a hydrocarbon feedstock having components boiling above about 100° C. into steam cracked products is described. The process first involves passing the feedstock to a hydrotreating zone to effect substantially complete decomposition of organic sulfur and/or nitrogen compounds. The product from the hydrotreating zone is passed to an aromatics saturation zone. The product is then passed to a steam cracking zone. Hydrogen and C1-C4 hydrocarbons, steam cracked naphtha, steam cracked gas oils and steam cracked tar are recovered. The amount of steam cracked tar produced is reduced by at least about 30 percent, and the amount of steam cracked tar produced is reduced by at least about 40 percent, basis the starting hydrocarbon feedstock which has not been subject to hydrotreating and aromatics saturation.
    Type: Grant
    Filed: May 8, 1997
    Date of Patent: April 3, 2001
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Carl W. Bradow, Dane C. Grenoble, Richard M. Foley, Brendan D. Murray, Bruce H. C. Winquist, Stanley N. Milam
  • Patent number: 6203695
    Abstract: A process for hydrotreating a hydrocarbon feed, comprising subjecting said feed to hydrotreating conditions in the presence of a catalyst comprising an essentially alumina-based extruded support, essentially constituted by a plurality of juxtaposed agglomerates, optionally at least one catalytic metal or a compound of a catalytic metal from group VIB (group 6 of the new periodic table notation) and/or optionally, at least one catalytic metal or a compound of a catalytic metal from group VIII (group 8, 9 and 10 of the new periodic table notation), in which the sum S of the group VIB and VIII metals, expressed as the oxides, is 0% to 50% by weight, and wherein each of these agglomerates is partly in the form of packs of flakes and partly in the form of needles, said needles being uniformly dispersed both about the packs of flakes and between the flakes, in which the alumina agglomerates are obtained by forming a starting alumina originating from rapid dehydration of hydrargillite and in which the amount of alum
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: March 20, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Virginie Harle, Slavik Kazstelan, Frédéric Morel, Stéphane Kressmann, Philippe Courty
  • Patent number: 6187176
    Abstract: A three stage process for producing high quality white oils, particularly food grade mineral oils from mineral oil distillates. The first reaction stage preferably employs a sulfur resistant hydrotreating catalyst and produces a product suitable for use as a high quality lubricating oil base stock. The second reaction stage preferably employs a hydrogenation/hydrodesulfurization catalyst combined with a sulfur sorbent and produces a product stream which is low in aromatics and which has substantially “nil” sulfur. The final reaction stage employs a selective hydrogenation catalyst that produces a product suitable as a food grade white oil.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: February 13, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Sylvain Hantzer, Alberto Ravella, Ian A. Cody, Darryl P. Klein
  • Patent number: 6174432
    Abstract: A hydrotreating catalyst for heavy hydrocarbon oil, which comprises a boron-containing alumina carrier containing from 1 to 12 wt %, in terms of an oxide, of boron based on the catalyst, having supported thereon a metal in the Group VI, wherein the catalyst has an average pore size of from 19 to 25 nm, a pore volume of from 0.65 to 0.8 ml/g, a catalyst strength of 3 lb/mm or more, and a specific surface area of from 70 to 130 m2/g; a process for producing the hydrotreating catalyst; and a method for hydrotreating heavy hydrocarbon oil, which comprises conducting a catalytic reaction of heavy hydrocarbon oil in the presence of the catalyst composition at a temperature of from 300 to 500° C., a pressure of from 3 to 20 MPa, a hydrogen/oil ratio of from 400 to 3000 Nl/l, and LHSV of from 0.1 to 1.5 hr−1.
    Type: Grant
    Filed: June 17, 1999
    Date of Patent: January 16, 2001
    Assignees: Petroeum Energy Center, Cosmo Oil Co., Ltd.
    Inventors: Yoshihiro Mizutani, Keizou Nagata, Yukio Shibata, Yasuo Yamamoto
  • Patent number: 6175046
    Abstract: There is provided a catalyst that is highly resistant to sulfur and nitrogen compounds and active for hydrogenation and shows a low hydrocracking rate and a long service life as well as a method of converting aromatic hydrocarbons in hydrocarbon oil containing sulfur and nitrogen compounds into saturated hydrocarbons by using such a catalyst. A method of hydrogenating aromatic hydrocarbons in hydrocarbon oil containing 80 wt % or more of a fraction having a boiling point of 170 to 390° C. and said aromatic hydrocarbons is characterized in that the hydrocarbon oil is brought into contact with hydrogen in the presence of a catalyst containing clay minerals having principal ingredients of Si and Mg as carrier and at least one of the VIII-group metals of periodic table as active metal.
    Type: Grant
    Filed: May 13, 1998
    Date of Patent: January 16, 2001
    Assignee: Nippon Oil Company, Limited
    Inventors: Toshiyuki Enomoto, Yasuo Nakatsuka, Takashi Ino, Minoru Hatayama
  • Patent number: 6171479
    Abstract: A process comprises providing a catalyst comprising a support, a microwave absorption material, and a catalytically active phase; heating the catalyst with a source of microwave energy which is absorbed by said microwave absorption material to increase the temperature of the catalyst to a desired temperature; and contacting said heated catalyst with a hydrocarbon feedstock for upgrading same.
    Type: Grant
    Filed: May 18, 1999
    Date of Patent: January 9, 2001
    Assignee: Intevep, S.A.
    Inventors: Cesar Ovalles, Alfredo Morales, Luis A. Rivas, Nora Urbano
  • Patent number: 6169218
    Abstract: A process for the selective hydrogenation of the diolefins and acetylenic compounds in a olefin rich aliphatic hydrocarbon streams is disclosed wherein the selective hydrogenation is carried out at 40 to 300° F. under low hydrogen partial pressure in the range of about 0.1 psi to less than 70 psia at 0 to 350 psig in a distillation column reactor containing a hydrogenation catalyst which serves as a component of a distillation structure, such as supported PdO encased in tubular wire mesh. Essentially no hydrogenation of the olefins occurs.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: January 2, 2001
    Assignee: Catalytic Distillation Technologies
    Inventors: Dennis Hearn, Robert P. Arganbright, Edward M. Jones, Jr., Lawrence A. Smith, Jr., Gary R. Gildert
  • Patent number: 6165348
    Abstract: The invention concerns a petroleum product and a process for the production of a petroleum product which can form part of a blend for an internal combustion engine fuel, the process comprisinga) hydrotreating a hydrocarbon feedstock at a partial pressure of hydrogen at the reactor outlet of about 0.5 MPa to about 6 MPa,b) separating a product (P) from step a) into a product (P1) with a final boiling point of about 300.degree. C. and a product (P2) with an initial boiling point greater than the final boiling point of product (P1),c) performing a liquid-liquid extraction with a solvent (S1), to produce an extract (E1) and a raffinate (R1) from product (P2),d) recovering solvent (S1) from raffinate (R1) to produce a product (Q1), depleted in solvent (S1), which has improved qualities and contains less than 500 ppm by weight of sulphur.
    Type: Grant
    Filed: June 15, 1999
    Date of Patent: December 26, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Frederic Morel, Massimo Zuliani, Paul Mikitenko, Marc Boulet, Roben Loutaty, Jean Claude Company
  • Patent number: 6149799
    Abstract: The invention concerns a catalyst for hydrorefining and hydroconverting hydrocarbon feeds, comprising a mixed sulphide comprising at least two elements selected from elements with an atomic number selected from the group formed by the following numbers: 3, 11, 12, 19 to 33, 37, to 51, 55 to 83, 87 to 103, characterized in that the mixed sulphide results from a combination of at least one element the sulphide of which has a bond energy between the metal and sulphur of less than 50.+-.3 kcal/mol (209.+-.12 kJ/mol) and at least one element the sulphide of which has a bond energy between the metal and sulphur of more than 50.+-.3 kcal/mol (209.+-.12 kJ/mol), the mixed sulphide thus having a mean bond energy between the metal and sulphur which is in the range 30 to 70 kcal/mol (125 to 293 kJ/mol).
    Type: Grant
    Filed: January 14, 1998
    Date of Patent: November 21, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Pascal Raybaud, Herve Toulhoat, Slavik Kasztelan
  • Patent number: 6139723
    Abstract: A highly dispersed iron-based ionic liquid or liquid-gel catalyst which may be anion-modified and metals-promoted has high catalytic activity, and is useful for hydrocracking/hydrogenation reactions for carbonaceous feed materials. The catalyst is produced by aqueous precipitation from saturated iron salt solutions such as ferric sulfate and ferric alum, and may be modified during preparation with anionic sulfate (SO.sub.4.sup.2-) and promoted with small percentages of at least one active metal such as cobalt, molybdenum, palladium, platinum, nickel, or tungsten or mixtures thereof. The resulting catalyst may be used in a preferred ionic liquid form or in a liquid-gel form, and either fluidic form can be easily mixed and reacted with carbonaceous feed materials such as coal, heavy petroleum fractions, mixed plastic waste, or mixtures thereof.
    Type: Grant
    Filed: January 28, 1999
    Date of Patent: October 31, 2000
    Assignee: Hydrocarbon Technologies, Inc.
    Inventors: Bruce P. Pelrine, Alfred G. Comolli, Lap-Keung Lee
  • Patent number: 6136181
    Abstract: The present invention relates to a novel platinum palladium alloy catalyst useful in hydrofinishing and hydrocracking non low sulfur content feedstock and the process of hydrofinishing and hydrocracking such non low sulfur content feedstock feeds. The catalyst maintains the activity of a palladium catalyst with the sulfur tolerance of a platinum catalyst without the need for the higher reaction temperatures normally associated with platinum based catalysts and thus avoid the higher rates of undesirable cracking reactions in the fabrication of a lubricating base oil stock.
    Type: Grant
    Filed: June 26, 1997
    Date of Patent: October 24, 2000
    Assignee: Chevron U.S.A. Inc.
    Inventor: James N. Ziemer
  • Patent number: 6132597
    Abstract: The present invention relates to the use of a catalyst comprising an extruded essentially alumina-based support, constituted by a plurality of juxtaposed agglomerates and partially in the form of packs of flakes and partially in the form of needles, and optionally comprising at least one catalytic metal or a compound of a catalytic metal from group VIB, and/or optionally at least one catalytic metal or compound of a catalytic metal from group VIII, in an ebullating bed process and for hydrorefining and hydroconverting hydrocarbon feeds.
    Type: Grant
    Filed: June 10, 1998
    Date of Patent: October 17, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Virginie Harle, Slavik Kazstelan, Frederic Morel, Stephane Kressmann, Philippe Courty
  • Patent number: 6124514
    Abstract: A process is disclosed for generating pure aromatic compounds from a reformed gasoline which contains aromatic compounds, olefins, diolefin, and triolefins, which comprises the steps of:(a) selectively hydrogenating the olefins, diolefins and triolefins in the reformed gasoline to obtain a mixture of hydrogenated, non-aromatic compounds and aromatic compounds; and(b) separating the aromatic compounds from the hydrogenated, non-aromatic compounds in the mixture formed during step (a) by either extractive distillation, liquid--liquid extraction or both to obtain the pure aromatic compounds.
    Type: Grant
    Filed: January 31, 1997
    Date of Patent: September 26, 2000
    Assignee: Krupp Uhde GmbH
    Inventors: Gerd Emmrich, Hans-Christoph Schneider, Helmut Gehrke, Bernhard Firnhaber
  • Patent number: 6103099
    Abstract: A lubricating base stock useful for forming lubricants such as a multigrade automotive oils, automatic transmission oils, greases and the like is prepared by hydroisomerizing a waxy hydrocarbon feed fraction having an initial boiling point in the 650-750.degree. F. range and an end point of at least 1050.degree. F., synthesized by a slurry Fischer-Tropsch hydrocarbon synthesis process. The hydroisomerization forms a hydroisomerate containing the desired base stock which is recovered, without dewaxing the hydroisomerate. The hydroisomerization is conducted at conditions effective to convert at least 67 wt. % of the 650-750.degree. F.+ waxy feed hydrocarbons to lower boiling hydrocarbons. When combined with a standard lubricant additive package, these base stocks have been formed into multigrade automotive crankcase oils, transmission oils and hydraulic oils meeting the specifications for these oils.
    Type: Grant
    Filed: September 4, 1998
    Date of Patent: August 15, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Robert J. Wittenbrink, Daniel F. Ryan, Douglas R. Boate
  • Patent number: 6090274
    Abstract: A nitrided calcined modified zeolite composition having incorporated therein a molybdenum promoter and a co-promoter. A carburized nitrided calcined modified zeolite composition having incorporated therein a molybdenum promoter and a co-promoter. Producing the composition by incorporating a molybdenum promoter compound and a co-promoter compound into the zeolite followed by thermal treatment of the resulting zeolite with a nitriding agent and, optionally, further thermally treating the resulting zeolite with a hydrocarbon, preferably in the presence of hydrogen. A hydrotreating process that contacts a hydrocarbon-containing fluid with the nitrided, optionally carburized, calcined modified zeolite composition under a condition sufficient to effect the reduction of sulfur content in the hydrocarbon-containing fluid.
    Type: Grant
    Filed: December 29, 1998
    Date of Patent: July 18, 2000
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6084140
    Abstract: A palladium-base catalyst can selectively hydrogenate highly unsaturated hydrocarbon compounds contained in small amounts in an olefin compound prepared by steam cracking or the like of naphtha without causing hydrogenation of the olefin as a side reaction and the precipitation of a carbonaceous material. The catalyst comprises palladium and alumina, and the exposed face of each palladium crystallite is mainly accounted for by (100) and (110) faces. Further, in the desorption of absorbed hydrogen by heating, desorption peaks are observed in the temperature ranges of 40 to 90.degree. C. and of 120 to 170.degree. C. and the ratio of hydrogen desorption amount of the former to the latter is (4:6) to (3:7).
    Type: Grant
    Filed: April 15, 1999
    Date of Patent: July 4, 2000
    Assignee: Sud-Chemie Nissan Catalyst, Inc.
    Inventors: Tadakuni Kitamura, Kouzou Takeuchi, Junichi Yazaki, Yuzo Satou, Moriyasu Sugeta
  • Patent number: 6071402
    Abstract: The present invention concerns a hydrorefining and/or hydrocracking catalyst for hydrocarbon feeds, comprising at least one mixed sulphide comprising sulphur, at least one group VB element, preferably niobium, and at least one group VIB element, preferably molybdenum or tungsten, more preferably molybdenum, optionally combined with a support and/or at least one group VIIA metal and/or at least one group VIII metal and/or an element selected from the group formed by S, P, B, Si.
    Type: Grant
    Filed: December 29, 1997
    Date of Patent: June 6, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Michel Danot, Nabil Allali, Valerie Gaborit, Christophe Geantet, Pavel Afanassiev, Samuel Mignard, Slavik Kasztelan
  • Patent number: 6059961
    Abstract: A process and arrangement for contacting a moving bed of compact particulate material, usually catalyst, with a radial flow of fluid maintains an unconfined surface of catalyst particles in place by passing fluid axially into the upper surface of the bed and maintaining radial gas flow across an inlet screen at an elevation that is above the upper most elevation of perforations for withdrawing gas flow from the particulate bed. Two vertical screens confine the bed of catalyst. Perforations cover substantially the entire length of the inlet screen. The outlet portion of the screen has perforations that end below the top of the free surface of the catalyst bed and define an upper bed portion therebetween. The inlet screen directs gas flow radially across the inlet screen into an upper portion of the bed and cause at least partial axial flow of gas through the upper portion of the particle bed.
    Type: Grant
    Filed: April 27, 1998
    Date of Patent: May 9, 2000
    Assignee: UOP LLC
    Inventors: William John Koves, Gary Alan Schulz, Robert John Sanger
  • Patent number: 6059956
    Abstract: A process comprising incorporation of a sulphuration agent into a hydrocarbon treatment catalyst to a greater or lesser extent into the pores of the catalyst, the agent being selected from, for example, elemental sulphur and organic polysulphides, incorporation being effected in the presence of a solvent which is an olefinic or olefinic cut constituent, for example a vegetable oil, or a similar constituent, the process comprising hydrogen treatment of the catalyst at between 150.degree. C. and 700.degree. C., followed by a passivation step.
    Type: Grant
    Filed: October 10, 1995
    Date of Patent: May 9, 2000
    Assignee: Europeene de Retraitment de Catalyseurs Eurecat
    Inventor: Pierre Dufresne
  • Patent number: 6048450
    Abstract: A process for treating a feed comprising C.sub.5.sup.+ hydrocarbons and comprising at least one unsaturated C.sub.6.sup.+ compound including benzene, is such that the feed is treated in a distillation zone, associated with a hydrogenation zone, comprising at least one catalytic bed, in which the hydrogenation is carried out of unsaturated C.sub.6.sup.+ compounds contained in the feed, and whereof a charge for the hydrogenation step is removed at the height of a removal level and represents at least part of the liquid flowing in the distillation zone, and the effluent from the hydrogenation reaction zone is at least in part reintroduced into the distillation zone to ensure continuity of the distillation operation, the effluents at the top and bottom on the distillation zone being very depleted of unsaturated C.sub.6.sup.+ compounds. The effluent drawn off from the top of the distillation zone is treated in a zone for the isomerisation of C.sub.5 and/or C.sub.6 paraffins.
    Type: Grant
    Filed: December 27, 1996
    Date of Patent: April 11, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Paul Mikitenko, Christine Travers, Jean Cosyns, Charles Cameron, Jean-Luc Nocca, Fran.cedilla.oise Montecot
  • Patent number: 6042716
    Abstract: A process for transforming a gas oil cut into a dearomatized fuel with a high cetane number comprises at least one first, deep desulphurization and deep denitrogenation step in which the gas oil cut and hydrogen are passed over a catalyst comprising a mineral support, at least one group VIB metal or metal compound, at least one group VIII metal or metal compound, and phosphorous or at least one phosphorous compound, and at least one subsequent second step, dearomatization, in which the desulphurized and denitrogenated product from the first step is passed with hydrogen over a catalyst comprising a mineral support and at least one group VIII noble metal or noble metal compound.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: March 28, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Frederic Morel, Henri Delhomme, Nathalie George-Marchal
  • Patent number: 6042719
    Abstract: Low sulfur gasoline of relatively high octane-barrel value is produced from cracked, sulfur containing olefinic naphthas by hydrodesulfurization at low temperature and low space velocity over either a conventional catalyst, such as CoMo/Al.sub.2 O.sub.3, or a dual functional catalyst, such as CoMo ZSM-5/Al.sub.2 O.sub.3. This approach also minimizes the olefins/hydrogen sulfide re-combination frequently observed at high temperature. The process produces a gasoline having a reduced sulfur content with a less than 5% change in motor octane number and a less than 10% change in research octane number.
    Type: Grant
    Filed: November 16, 1998
    Date of Patent: March 28, 2000
    Assignee: Mobil Oil Corporation
    Inventor: Stuart S. Shih
  • Patent number: 6036844
    Abstract: A three stage hydroprocessing process includes two liquid and one vapor reaction stages, with a hydrogen containing vapor effluent produced in both liquid stages. The second liquid stage vapor effluent comprises part of the first liquid stage feed and the first liquid stage vapor effluent is the feed for the vapor stage. At least a portion of the hydrogen for the first liquid stage and vapor stage reactions is respectively provided by the hydrogen in the second and first liquid stage vapor effluents.
    Type: Grant
    Filed: May 6, 1998
    Date of Patent: March 14, 2000
    Assignee: Exxon Research and Engineering Co.
    Inventors: Ramesh Gupta, Henry Jung, Edward S. Ellis, Gerald E. Markley
  • Patent number: 6031146
    Abstract: A thermowell assembly and method which allows for arresting leakage in the case a thermowell begins to leak in a hydroprocessing process without having to shut down a flow of a hydrocarbon feed stream through a hydroconversion reaction zone in the hydroprocessing process. The thermowell assembly comprises a first hollow sleeve section which supports a thermowell member, a ferrule sealing member which engages the first hollow sleeve section, a second generally cup-shaped second sleeve section wherethrough a thermocouple member slidably passes, and an outer sleeve member for maintaining the union of the first sleeve section, the ferrule sealing member, and the second sleeve section. The method comprises severing and/or removing the thermocouple member from the commenced-leaking thermowell member and placing a high pressure cap over an aperture left vacant by the thermocouple member to seal-off the leaking thermowell member from the atmosphere.
    Type: Grant
    Filed: October 2, 1998
    Date of Patent: February 29, 2000
    Assignee: Chevron U.S.A. Inc
    Inventor: Robert W. Bachtel
  • Patent number: 6015485
    Abstract: Provided are high activity catalysts based upon gamma alumina containing substrates impregnated with one or more catalytically active metals, which catalysts in addition contain a nanocrystalline phase of alumina of a crystallite size at the surface of less than 25 .ANG.. Also provided are processes for preparing such high activity catalysts and various uses thereof.
    Type: Grant
    Filed: September 25, 1995
    Date of Patent: January 18, 2000
    Assignee: Cytec Technology Corporation
    Inventors: Peter Joseph Shukis, James Donald Carruthers, Vincent Joseph Lostaglio
  • Patent number: 5989410
    Abstract: The invention relates to a process for improving the pour point of a feedstock that comprises paraffins of more than 10 carbon atoms, in which the feedstock that is to be treated is brought into contact with a catalyst that comprises the IM-5 zeolite and at least one hydro-dehydrogenating element, at a temperature of between 170 and 500.degree. C., a pressure of between 1 and 250 bar, and an hourly volume velocity of between 0.05 and 100 h.sup.-1, in the presence of hydrogen at a ratio of 50 to 2000 l/l of feedstock. The oils that are obtained have good pour points and high viscosity indices (VI). The process can also be applied to gas-oils and other feedstocks whose pour points need to be lowered.
    Type: Grant
    Filed: October 15, 1998
    Date of Patent: November 23, 1999
    Assignee: Institut Francais du Petrole
    Inventors: Eric Benazzi, Nathalie George-Marchal, Christophe Gueret, Patrick Briot, Alain Billon, Pierre Marion
  • Patent number: 5986154
    Abstract: The invention concerns a process for the hydrogenation of aromatic compounds contained in feeds with an initial boiling point of more than 100.degree. C. and which contain at least 10% by weight of aromatic compounds. It consists of introducing chlorine in a concentration of 0.5-500 ppm by weight with respect to the feed at a temperature of between 200.degree. C. and 450.degree. C., a pressure in the range 1 MPa to 25 MPa, an HSV of between 0.1 h.sup.-1 and 10 h.sup.-1 and a volume ratio of hydrogen to feed of 100-2000. The catalyst used is a noble metal type and contains less than 1% of at least one halogen. Preferably, the catalyst is fluorinated or chlorinated.
    Type: Grant
    Filed: June 26, 1998
    Date of Patent: November 16, 1999
    Assignee: Institut Francais du Petrole
    Inventors: Samuel Mignard, Virginie Harle, Slavik Kasztelan, Nathalie Marchal-George
  • Patent number: 5968343
    Abstract: A catalyst composition and a process for converting a hydrocarbon stream such as, for example, gasoline to olefins and C.sub.6 to C.sub.8 aromatic hydrocarbons such as toluene and xylenes are disclosed. The catalyst composition comprises a zeolite, a binder, and boron wherein the weight of boron is in the range of from about 0.01 to about 10 weight %. The process comprises contacting a hydrocarbon stream with the catalyst composition under a condition sufficient to effect the conversion of a hydrocarbon to an olefin and a C.sub.6 to C.sub.8 aromatic hydrocarbon. Also disclosed is a process for producing the catalyst composition which comprises: (1) combining a zeolite with a coke-reducing amount of a binder under a condition effective to produce a zeolite-binder mixture; (2) contacting said zeolite-binder mixture with coke-reducing amount of a boron compound under a condition effective to produce a boron-incorporated or -impregnated zeolite; and (3) calcining the boron-incorporated or -impregnated zeolite.
    Type: Grant
    Filed: May 5, 1997
    Date of Patent: October 19, 1999
    Assignee: Phillips Petroleum Company
    Inventors: Charles A. Drake, An-hsiang Wu
  • Patent number: 5961815
    Abstract: The hydroconversion of heavy petroliferous stocks boiling mainly above 400.degree. F. is carried out in a distillation column reactor where concurrently a petroleum stream is fed into a feed zone; hydrogen is fed at a point below said feed zone; the petroleum stream is distilled and contacted in the presence of a cracking catalyst prepared in the form of a catalytic distillation structure at total pressure of less than about 300 psig and a hydrogen partial pressure in the range of 1.0 to less than 70 psia and a temperature in the range of 400 to 1000.degree. F. whereby a portion of the petroleum stream is cracked to lighter products boiling below the boiling point of the feed and products are distilled to remove a vaporous overhead stream comprising products mainly boiling below the boiling point of the feed and a liquid bottoms stream.
    Type: Grant
    Filed: September 23, 1996
    Date of Patent: October 5, 1999
    Assignee: Catalytic Distillation Technologies
    Inventors: Thomas P. Hickey, Dennis Hearn, Hugh M. Putman