With Solid Catalyst Or Absorbent Patents (Class 208/299)
  • Patent number: 6781023
    Abstract: Bromine reactive hydrocarbon contaminants are removed from aromatic streams by first providing an aromatic feedstream having a negligible diene level. The feedstream is contacted with an acid active catalyst composition under conditions sufficient to remove mono-olefins. An aromatic stream may be pretreated to remove dienes by contacting the stream with clay, hydrogenation or hydrotreating catalyst under conditions sufficient to substantially remove dienes but not mono-olefins.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: August 24, 2004
    Assignee: ExxonMobil Oil Corporation
    Inventors: Stephen H. Brown, Terry E. Helton, Arthur P. Werner
  • Publication number: 20040129607
    Abstract: A sorbent composition is provided which can be used in the desulfurization of a hydrocarbon-containing fluid such as cracked gasoline or diesel fuel. The sorbent composition contains a support component and a promoter component with the promoter component being present as a skin on said support component. Such sorbent composition is prepared by a process of impregnating a support component with a promoter component, wherein the promoter component has been melted under a melting condition, followed by drying, calcining, and reducing to thereby provide the sorbent composition. A process for the removal of sulfur from a hydrocarbon stream, wherein the hydrocarbon stream is a combination of cracked gasoline and diesel fuel, is also disclosed.
    Type: Application
    Filed: November 26, 2003
    Publication date: July 8, 2004
    Inventors: Peter N. Slater, Byron G. Johnson, Edward L. Sughrue, Dennis R. Kidd
  • Patent number: 6756022
    Abstract: There is provided a desulphurization apparatus to be mounted in automobiles, which is arranged between a fuel tank and an injector of an engine, the apparatus comprising a combination of a sulfur-containing compound adsorbent for adsorbing and concentrating the sulfur-containing compound and a sulfur-containing compound oxidizing agent or oxidation catalyst for oxidizing the adsorbed sulfur-containing compound, the apparatus further comprising a means for recovering and removing the resulting sulfur-containing oxide. According to this apparatus, the quantity of the particulate matter in an exhaust gas is reduced by half and the durability of the catalyst for removing a nitrogen oxide is improved by a factor of about two.
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: June 29, 2004
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takenobu Sakai, Tatsuji Mizuno, Hiroshi Suzuki
  • Publication number: 20040118751
    Abstract: A novel hydrocarbon feedstream catalyst bed for the desulfurization of a gas or a liquid hydrocarbon feedstream and a process comprising passing a hydrocarbon feedstream over the catalyst bed is described. The bed comprises at least two catalysts having different sulfur compound affinities and/or specificities thereby improving the overall amount of sulfur compound removal. The process reduces the sulfur content in a gas hydrocarbon feedstream from up to about 300 ppm to less than about 500 ppb, and in a liquid hydrocarbon feedstream from up to about 3% to less than about 500 ppb.
    Type: Application
    Filed: December 24, 2002
    Publication date: June 24, 2004
    Inventors: Jon P. Wagner, Eric J. Weston, R. Steve Spivey, R. Scott Osborne
  • Patent number: 6749742
    Abstract: A chemical treatment is disclosed for reducing the sulfur content of catalytically processed gasoline and intermediate crude-oil products, by absorbing the sulfur contained in such catalytically processed products on silica gel packed in a filter or assembly of filters, operating at the normal exit pressure from production of catalytically processed gasoline and distillation of intermediate crude-oil products.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: June 15, 2004
    Assignee: Fians Capital, S.A., de C.V.
    Inventors: Israel Quiroz Franco, Mariano Fernández Garcia
  • Publication number: 20040084352
    Abstract: A system for removing sulfur from a hydrocarbon-containing fluid stream wherein regeneration of sulfur-loaded sorbent particulates is enhanced by improving the contacting of an oxygen-containing regeneration stream and the sulfur-loaded solid particulates in a fluidized bed regenerator.
    Type: Application
    Filed: October 31, 2002
    Publication date: May 6, 2004
    Inventors: Paul F. Meier, Douglas W. Hausler, Jan W. Wells, Max W. Thompson
  • Patent number: 6723230
    Abstract: A process to regenerate iron-based hydrogen sulfide sorbents using steam. The steam is preferably mixed with hydrogen-containing gas and/or an inert gas, such as nitrogen. In a preferred embodiment, the sorbent is first exposed to the steam and then exposed to a hydrogen-containing gas at regeneration conditions.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: April 20, 2004
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Jingguang G. Chen, Leo D. Brown, William C. Baird, Jr., Gary B. McVicker, Edward S. Ellis, Michele S. Touvelle, Darryl P. Klein, David E. W. Vaughan
  • Publication number: 20040065618
    Abstract: The present invention provides a solid adsorbent comprising at least two metals located upon a support wherein at least one first metal is copper and at least one second metal is cerium and a process for reducing the sulphur content of a crude oil distillate feed containing sulphur species which process comprises contacting said distillate with the solid adsorbent to produce a sulphur containing adsorbent and a distillate product of reduced sulphur content.
    Type: Application
    Filed: September 24, 2003
    Publication date: April 8, 2004
    Inventors: Ghaham Walter Ketley, Wei Liu, William Reagan
  • Publication number: 20040044262
    Abstract: CuY and AgY zeolites as selective sorbents for desulfurization of liquid fuels. Thiophene and benzene were used as the model system, and vapor phase isotherms were measured. Compared with NaY, CuY and AgY adsorbed significantly larger amounts of both thiophene and benzene at low pressures. It is hypothesized that this is due to &pgr;-complexation with Cu+ and Ag+. On a per-cation basis, more thiophene was adsorbed by Cu+ than by Ag+, e.g., 0.92 molecule/Cu+ versus 0.42 molecule/Ag+ at 2×10−5 atm and 120° C. Molecular orbital calculations confirmed the relative strengths of &pgr;-complexation: thiophene>benzene and Cu+>Ag+. The experimental heats of adsorption for &pgr;-complexation are in qualitative agreement with theoretical predictions. The invention further comprises a process and sorbents for removal of aromatics from hydrocarbons.
    Type: Application
    Filed: July 3, 2003
    Publication date: March 4, 2004
    Inventors: Ralph T. Yang, Frances H. Yang, Akira Takahashi, Arturo J. Hernandez-Maldonado
  • Publication number: 20040040890
    Abstract: A composition comprising a promoter and a metal oxide selected from the group consisting of tungsten oxide, a molybdenum oxide, and combinations of any two or more thereof, wherein at least a portion of the promoter is present as a reduced valence promoter and methods of preparing such composition are disclosed. The thus-obtained composition is employed in a desulfurization zone to remove sulfur from a hydrocarbon stream.
    Type: Application
    Filed: August 30, 2002
    Publication date: March 4, 2004
    Inventors: Robert W. Morton, Jason J. Gislason, Roland Schmidt, M. Bruce Welch
  • Publication number: 20040040887
    Abstract: A composition comprising a promoter and a metal oxide selected from the group consisting of a niobium oxide, a tantalum oxide, and combinations thereof, wherein at least a portion of the promoter is present as a reduced valence promoter and methods of preparing such composition are disclosed. The thus-obtained composition is employed in a desulfurization zone to remove sulfur from a hydrocarbon stream.
    Type: Application
    Filed: August 30, 2002
    Publication date: March 4, 2004
    Inventors: David E. Simon, Robert W. Morton, Roland Schmidt, Jason J. Gislason, M. Bruce Welch
  • Publication number: 20040040891
    Abstract: CuY and AgY zeolites as selective sorbents for desulfurization of liquid fuels. Thiophene and benzene were used as the model system, and vapor phase isotherms were measured. Compared with NaY, CuY and AgY adsorbed significantly larger amounts of both thiophene and benzene at low pressures. It is hypothesized that this is due to &pgr;-complexation with Cu+ and Ag+. On a per-cation basis, more thiophene was adsorbed by Cu+ than by Ag+, e.g., 0.92 molecule/Cu+ versus 0.42 molecule/Ag+ at 2×10−5 atm and 120° C. Molecular orbital calculations confirmed the relative strengths of &pgr;-complexation: thiophene>benzene and Cu+>Ag+. The experimental heats of adsorption for &pgr;-complexation are in qualitative agreement with theoretical predictions. The invention further comprises a process and sorbents for removal of aromatics from hydrocarbons.
    Type: Application
    Filed: March 21, 2003
    Publication date: March 4, 2004
    Inventors: Ralph T. Yang, Frances H. Yang, Akira Takahashi, Arturo J. Hernandez-Maldonado
  • Publication number: 20040038816
    Abstract: A composition comprising a tin oxide and a promoter, wherein at least a portion of the promoter is present as a reduced valence promoter and methods of preparing such composition are disclosed. The thus-obtained composition is employed in a desulfurization zone to remove sulfur from a hydrocarbon stream.
    Type: Application
    Filed: August 20, 2002
    Publication date: February 26, 2004
    Inventors: Robert W. Morton, Jason J. Gislason, Roland Schmidt, M. Bruce Welch
  • Publication number: 20040031729
    Abstract: A method and apparatus for removing sulfur from a hydrocarbon-containing fluid stream wherein desulfurization is enhanced by improving the contacting of the hydrocarbon-containing fluid stream and sulfur-sorbing solid particulates in a fluidized bed reactor.
    Type: Application
    Filed: August 16, 2002
    Publication date: February 19, 2004
    Inventors: Paul F. Meier, Edward L. Sughrue, Jan W. Wells, Douglas W. Hausler, Max W. Thompson
  • Publication number: 20040026299
    Abstract: A process for reducing the naphthenic acidity of petroleum oils, or their liquid fractions, is described, the process comprising a thermal treatment of the petroleum oils, or their liquid fractions, in the presence of an adsorbent the surface of which is covered by high molecular weight carbon compounds. Preferred adsorbents are the spent or coked FCC catalysts.
    Type: Application
    Filed: July 2, 2003
    Publication date: February 12, 2004
    Inventors: Oscar Rene Chamberlain Pravia, Henrique Soares Cerqueira, Elizabeth M. Moreira, Claudia Maria de L. Alvarenga Baptista, Jefferson Roberto Gomes, Paulo Cesar Peixoto Bugueta
  • Publication number: 20040007506
    Abstract: The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.
    Type: Application
    Filed: February 11, 2003
    Publication date: January 15, 2004
    Inventors: Chunshan Song, Xiaoliang Ma, Michael J. Sprague, Velu Subramani
  • Publication number: 20040007498
    Abstract: A composition comprising an iron oxide and a promoter, wherein at least a portion of the promoter is present as a reduced valence promoter and methods of preparing such composition are disclosed. The thus-obtained composition is employed in a desulfurization zone to remove sulfur from a hydrocarbon stream.
    Type: Application
    Filed: July 11, 2002
    Publication date: January 15, 2004
    Inventors: Jason J. Gislason, Robert W. Morton, Roland Schmidt, M. Bruce Welch
  • Publication number: 20040004023
    Abstract: An integrated fluid catalytic cracking (FCC) and desulfurization system for processing hydrocarbon-containing fluids. The integrated system employs a cracking/desulfurization unit having a reactor, a regenerator, and a reducer. A mixture of solid FCC catalyst particulates and solid sulfur sorbent particulates are circulated through the reactor, regenerator, and reducer to provide for substantially continuous cracking and desulfurization of the hydrocarbon-containing fluid, as well as substantially continuous regeneration of both the FCC catalyst and the sulfur sorbent.
    Type: Application
    Filed: July 5, 2002
    Publication date: January 8, 2004
    Inventors: Edward L. Sughrue, Gil J. Greenwood
  • Publication number: 20040004029
    Abstract: A monolith sorbent which defines a plurality of open-ended channels and comprises a reduced-valence promoter metal component and zinc oxide can be employed to desulfurize sulfur-containing fluids such as cracked-gasoline or diesel fuel.
    Type: Application
    Filed: July 8, 2002
    Publication date: January 8, 2004
    Inventors: Gyanesh P. Khare, Edward L. Sughrue
  • Patent number: 6673239
    Abstract: A system and process for removing water and heteroatom-containing compounds from hydrocarbons and for regenerating the adsorbent used in the system and process is disclosed and includes contacting the hydrocarbon stream with a water adsorbent and a heteroatom-containing compound adsorbent. The regeneration includes passing an isoparaffin over the water-adsorbent, then passing the isoparaffin over the heteroatom-containing compound adsorbent; and, optionally; cooling the effluent; separating such into a hydrocarbon phase and a water phase in a settler; removing a portion of the hydrocarbon phase for mixing with water; returning the hydrocarbon/water mixture to the settler; removing some of the hydrocarbon phase from the settler to form a recycle isoparaffin stream for use as a portion of the stripping stream; and removal of a portion of the water phase from the settler to form a waste water stream containing water and heteroatom-containing compound.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: January 6, 2004
    Assignee: ConocoPhillips Company
    Inventors: Marvin M. Johnson, Bruce B. Randolph
  • Publication number: 20030226786
    Abstract: A process for removing sulfur compounds from hydrocarbon streams by contacting the hydrocarbon stream, especially a gasoline stream, with an adsorbent material. The adsorbent material is regenerated with hydrogen or a hydrogen/H2S mixture.
    Type: Application
    Filed: April 25, 2003
    Publication date: December 11, 2003
    Inventors: Joseph L. Feimer, Bal K. Kaul, Lawrence J. Lawlor
  • Patent number: 6649555
    Abstract: A deactivated sorbent composition is reactivated by contacting the deactivated sorbent with a reducing stream under activation conditions sufficient to reduce the amount of sulfates associated with the sorbent composition.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: November 18, 2003
    Assignee: ConocoPhillips Company
    Inventors: Glenn W. Dodwell, Ronald E. Brown, Robert W. Morton, Jason J. Gislason
  • Patent number: 6635795
    Abstract: While contacting under regeneration conditions an oxygen-containing stream with a sorbent comprising a promoter metal and zinc sulfide which has been sulfurized by contact with sulfur-containing hydrocarbons such as cracked-gasolines and diesel fuel, the oxygen partial pressure is controlled in a range of 0.5 to 2.0 psig to minimize sulfation of the sorbent.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: October 21, 2003
    Assignee: ConocoPhillips Company
    Inventors: Jason J. Gislason, Ronald E. Brown, Robert W. Morton, Glenn W. Dodwell
  • Publication number: 20030192811
    Abstract: A hydrocarbon desulfurization system employing regenerable solid sorbent particulates in a fluidized bed desulfurization reactor. The sulfur-loaded sorbent particulates are continuously withdrawn from the reactor and transferred to a regenerator. A novel solids transport mechanism provides for the safe and effective transfer of the sulfur-loaded sorbent particulates from the high pressure hydrocarbon environment of the reactor to the low pressure oxygen environment of the regenerator.
    Type: Application
    Filed: April 11, 2002
    Publication date: October 16, 2003
    Inventors: Max W. Thompson, Behzad Jazayeri, Robert Zapata, Manuel Hernandez
  • Publication number: 20030194356
    Abstract: A method and apparatus for removing sulfur from a hydrocarbon-containing fluid stream wherein desulfurization is enhanced by improving the contacting of the hydrocarbon-containing fluid stream and sulfur-sorbing solid particulates in a fluidized bed reactor.
    Type: Application
    Filed: April 11, 2002
    Publication date: October 16, 2003
    Inventors: Paul F. Meier, Edward L. Sughrue, Jan W. Wells, Douglas W. Hausler, Max W. Thompson, Amos A. Avidan
  • Publication number: 20030188993
    Abstract: In a desulfurization process for the removal of organosulfur compounds from a hydrocarbon fluid stream such as cracked-gasoline or diesel fuel wherein a bifunctional sorbent system is employed, surface treatment of the bifunctional sorbent during the use of same for desulfurization results in an extension of the useful life of the bifunctional sorbent prior to the regeneration and reactivation of same for further use in the desulfiurization of the hydrocarbon fluid stream.
    Type: Application
    Filed: April 5, 2002
    Publication date: October 9, 2003
    Inventors: Gyanesh P. Khare, Bryan W. Cass, Donald R. Engelbert, Edward L. Sughrue, Dennis R. Kidd, Max W. Thompson
  • Patent number: 6623629
    Abstract: The invention concerns a process for eliminating arsenic from a hydrocarbon cut in which said cut is brought into contact with an absorption mass that is at least partially pre-sulfurized and comprises a support and lead oxide. The support, for example alumina, or said mass preferably has a specific surface area in the range 10 to 300 m2/g, a total pore volume in the range 0.2 to 1.2 cm3/g and a macroporous volume in the range 0.1 to 0.5 cm3/g. The lead content of said mass, expressed as lead oxide, is preferably in the range of 5% to 50% by weight. The fraction of the sulfurized mass preferably represents at least {fraction (1/20)}th of the total volume of the absorption mass.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: September 23, 2003
    Assignee: Institut Francais du Petrole
    Inventors: Blaise Didillon, Laurent Savary
  • Publication number: 20030168381
    Abstract: The reforming of heavy oil with supercritical water or subcritical water is accomplished by mixing together supercritical water, heavy oil, and oxidizing agent, thereby oxidizing vanadium in heavy oil with the oxidizing agent at the time of treatment with supercritical water and separate vanadium oxide. The separated vanadium oxide is removed by the scavenger after treatment with supercritical water. In this way it is possible to solve the long-standing problem with corrosion of turbine blades by vanadium which arises when heavy oil is used as gas turbine fuel.
    Type: Application
    Filed: September 18, 2002
    Publication date: September 11, 2003
    Inventors: Nobuyuki Hokari, Tomohiko Miyamoto, Hirokazu Takahashi, Hiromi Koizumi
  • Publication number: 20030166464
    Abstract: A composition comprising manganese oxide and a promoter, wherein at least a portion of the promoter is present as a reduced valence promoter and methods of preparing such composition are disclosed. The thus-obtained composition is employed in a desulfurization zone to remove sulfur from a hydrocarbon stream.
    Type: Application
    Filed: March 4, 2002
    Publication date: September 4, 2003
    Inventors: Ashley G. Price, Jason J. Gislason, Glenn W. Dodwelll, Robert W. Morton, George D. Parks
  • Publication number: 20030150780
    Abstract: A process and an apparatus for the preparation of petroleum hydrocarbon solvent with improved color stability from crude oils having high concentration of nitrogenous compounds which comprises passing said petroleum hydrocarbon stream containing substantial amount of nitrogenous compounds over a column of molecular sieves/modified clays at ambient to elevated temperature and pressure maintaining the feed in the liquid state, thereby obtaining the petroleum hydrocarbon stream with desired color stability.
    Type: Application
    Filed: March 4, 2002
    Publication date: August 14, 2003
    Applicant: INDIA OIL CORPORATION LIMITED
    Inventors: Anurag Ateet Gupta, Suresh Kumar Puri, Muniaswamy Rajesh, Ambrish Kumar Misra, Bijendra Singh Rawat, Akhilesh Kumar Bhatnagar
  • Publication number: 20030118495
    Abstract: A sorbent composition comprising a reduced-valence promoter and a steam-treated support can be used to desulfurize a hydrocarbon-containing fluid such as cracked-gasoline or diesel fuel.
    Type: Application
    Filed: December 20, 2001
    Publication date: June 26, 2003
    Inventors: Gyanesh P. Khare, Donald R. Engelbert
  • Publication number: 20030111389
    Abstract: A process for desulfurizing middle distillates by charging a sulfur-containing middle distillate and a hydrogen-containing diluent to a reaction zone in respective amounts and under reaction conditions sufficient to vaporize substantially all of the sulfur-containing middle distillate present in the reaction zone. In the reaction zone, the vaporized middle distillate is contacted with a sorbent comprising a promoter metal and zinc oxide to thereby provide a desulfurized middle distillate comprising less sulfur than the sulfur-containing middle distillate initially charged to the reaction zone.
    Type: Application
    Filed: December 19, 2001
    Publication date: June 19, 2003
    Inventors: Marvin M. Johnson, Edward L. Sughrue, Steven A. Owen, Peter N. Slater, Byron G. Johnson
  • Patent number: 6579441
    Abstract: A base oil feed having a tendency to form a haze at ambient or sub-ambient temperatures is contacted with a solid adsorbent to remove at least a portion of the haze precursors, thereby reducing the haze-forming tendency of the base oil feed.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: June 17, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventors: Joseph A. Biscardi, Darren P. Fong
  • Publication number: 20030106840
    Abstract: A chemical treatment is disclosed for reducing the sulfur content of catalytically processed gasoline and intermediate crude-oil products, by absorbing the sulfur contained in such catalytically processed products on silica gel packed in a filter or assembly of filters, operating at the normal exit pressure from production of catalytically processed gasoline and distillation of intermediate crude-oil products.
    Type: Application
    Filed: December 5, 2001
    Publication date: June 12, 2003
    Applicant: Fians Capital, S.A. de C.V.
    Inventors: Israel Quiroz Franco, Mariano Fernandez Garcia
  • Patent number: 6544409
    Abstract: A process for the catalytic oxidation of sulfur and nitrogen contaminants as well as unsaturated compounds present in a hydrocarbon fossil oil medium is described, the process comprising effecting the oxidation in the presence of at least one peroxide, at least one acid and a pulverized raw iron oxide. The process shows an improved oxidation power towards the contaminants typically present in a fossil oil medium, this deriving from the combination of the peroxyacid and the hydroxyl radical generated in the reaction medium due to the presence of an iron oxyhydroxide such as a limonite clay, which bears a particular affinity for the oil medium. The process finds use in various applications, from a feedstock for refining until the preparation of deeply desulfurized and deeply denitrified products.
    Type: Grant
    Filed: May 16, 2001
    Date of Patent: April 8, 2003
    Assignee: Petroleo Brasileiro S.A. - Petrobras
    Inventor: Wladmir Ferraz De Souza
  • Patent number: 6544410
    Abstract: During the regeneration of a sulfurized sorbent comprising zinc aluminate, a promoter metal and zinc sulfide by contact with an oxygen-containing stream to convert at least a portion of said zinc sulfide to zinc oxide the average sulfur dioxide partial pressure in the regeneration zone is controlled within the range of from about 0.1 to about 10 psig to minimize sulfation of the sorbent.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: April 8, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Jason J. Gislason, Ronald E. Brown, Robert W. Morton, Glenn W. Dodwell
  • Patent number: 6537443
    Abstract: Mercury is removed from crude oils, natural gas condensates and other liquid hydrocarbons by first removing colloidal mercury and solids that contain adsorbed mercury and then treating the hydrocarbons with an organic or inorganic compound containing at least one sulfur atom reactive with mercury. The sulfur compound reacts with dissolved mercury that contaminates the hydrocarbons to form mercury-containing particulates that are then removed from the hydrocarbons to produce a purified product having a reduced mercury content. Preferably, the treating agent is an organic sulfur-containing compound such as a dithiocarbamate or sulfurized isobutylene.
    Type: Grant
    Filed: February 24, 2000
    Date of Patent: March 25, 2003
    Assignee: Union Oil Company of California
    Inventors: Theodore C. Frankiewicz, John Gerlach
  • Patent number: 6533924
    Abstract: A fuel processing method is operable to remove substantially all of the sulfur present in an undiluted oxygenated hydrocarbon fuel stock supply which contains an oxygenate and which is used to power an internal combustion engine in a mobile environment, such as an automobile, bus, truck, boat, or the like, or in a stationary environment. The fuel stock can be gasoline, diesel fuel, or other like fuels which contain relatively high levels of organic sulfur compounds such as mercaptans, sulfides, disulfides, and the like. The undiluted hydrocarbon fuel supply is passed through a nickel reactant desulfurizer bed wherein essentially all of the sulfur in the organic sulfur compounds reacts with the nickel reactant, and is converted to nickel sulfide, while the desulfurized organic remnants continue through the remainder of the fuel processing system. The method can be used to desulfurize either a liquid or a gaseous fuel stream, which contains an oxygenate such as MTBE, ethanol, methanol, or the like.
    Type: Grant
    Filed: February 24, 2000
    Date of Patent: March 18, 2003
    Assignee: UTC Fuel Cells, LLC
    Inventors: Roger R. Lesieur, Christopher Teeling, Joseph J. Sangiovanni, Laurence R. Boedeker, Zissis A. Dardas, He Huang, Jian Sun, Xia Tang, Louis J. Spadaccini
  • Publication number: 20030024856
    Abstract: This invention provides a facile method for removing odor-causing species from lubricants. In this method, such species are removed by contacting the lubricant composition with at least one zeolite. Preferred zeolites include the type 13X Molecular Sieve, i.e., Na86[(AlO2)86(SiO2)106].276 H2O.
    Type: Application
    Filed: March 26, 2001
    Publication date: February 6, 2003
    Inventors: Phil Surana, Norman Yang
  • Publication number: 20020189975
    Abstract: A process for the catalytic oxidation of sulfur and nitrogen contaminants as well as unsaturated compounds present in a hydrocarbon fossil oil medium is described, the process comprising effecting the oxidation in the presence of at least one peroxide, at least one acid and a pulverized raw iron oxide. The process shows an improved oxidation power towards the contaminants typically present in a fossil oil medium, this deriving from the combination of the peroxy-acid and the hydroxyl radical generated in the reaction medium due to the presence of an iron oxyhydroxide such as a limonite clay, which bears a particular affinity for the oil medium. The process finds use in various applications, from a feedstock for refining until the preparation of deeply desulfurized and deeply denitrified products.
    Type: Application
    Filed: May 16, 2001
    Publication date: December 19, 2002
    Applicant: PETROLEO BRASILEIRO S.A. - PETROBRAS
    Inventor: Wladmir Ferraz De Souza
  • Patent number: 6482316
    Abstract: The instant invention is directed to a method for reducing the amount of sulfur in hydrocarbon streams comprising the steps of: (a) contacting a hydrocarbon stream comprising hydrocarbons and sulfur compounds with an adsorbent selective for adsorption of said sulfur compounds, under adsorption conditions capable of retaining said sulfur compounds on said adsorbent and obtaining an adsorption effluent comprising a desulfurized hydrocarbon stream, (b) collecting said desulfurized hydrocarbon stream, (c) desorbing said sulfur compounds from said adsorbent by passing a desorbent through said adsorbent under desorption conditions to obtain a desorption effluent comprising sulfur compounds and said desorbent, (d) treating said desorption effluent to remove said sulfur compounds from said desorption effluent and collecting a desulfurized desorbent effluent comprising desorbent.
    Type: Grant
    Filed: March 10, 2000
    Date of Patent: November 19, 2002
    Assignee: ExxonMobil Research and Engineering Company
    Inventor: Kaul Krishan Bal
  • Patent number: 6483001
    Abstract: The present invention describes a pressure swing adsorption (PSA) apparatus and process for the production of purified hydrogen from a feed gas stream containing heavy hydrocarbons (i.e., hydrocarbons having at least six carbons). The apparatus comprises at least one bed containing at least three layers. The layered adsorption zone contains a feed end with a low surface area adsorbent (20 to 400 m2/g) which comprises 2 to 20% of the total bed length followed by a layer of an intermediate surface area adsorbent (425 to 800 m2/g) which comprises 25 to 40 % of the total bed length and a final layer of high surface area adsorbent (825 to 2000 m2/g) which comprises 40 to 78% of the total bed length.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: November 19, 2002
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Edward Landis Weist, Jr
  • Patent number: 6468418
    Abstract: A base oil feed having a tendency to form a haze at ambient or sub-ambient temperatures is contacted with a solid adsorbent to remove at least a portion of the haze precursors, thereby reducing the haze-forming tendency of the base oil feed.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: October 22, 2002
    Assignee: Chevron U.S.A. Inc.
    Inventors: Joseph A. Biscardi, Kamala R. Krishna, John M. Rosenbaum, Nadine L. Yenni, R. Larry Howell, Krishnia Parimi
  • Patent number: 6468417
    Abstract: A dewaxed oil having a tendency to form a haze at ambient or sub-ambient temperatures is contacted with a solid adsorbent to remove at least a portion of the haze precursors, thereby reducing the haze-forming tendency of the dewaxed oil.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: October 22, 2002
    Assignee: Chevron U.S.A. Inc.
    Inventors: Joseph A. Biscardi, Kamala R. Krishna, John M. Rosenbaum, Nadine L. Yenni, R. Larry Howell
  • Publication number: 20020139720
    Abstract: A process for capturing mercury and possibly arsenic comprising at least:
    Type: Application
    Filed: June 29, 2001
    Publication date: October 3, 2002
    Applicant: Institut Francais du Petrole
    Inventors: Blaise Didillon, Carine Petit-Clair, Laurent Savary
  • Patent number: 6454934
    Abstract: A petroleum processing method comprising the steps of: performing an atmospheric distillation of crude oil; collectively hydrodesulfurizing the resultant distillates consisting of gas oil and fractions whose boiling point is lower than that of gas oil in a reactor in the presence of a hydrogenation catalyst at 310 to 370° C. under 30 to 70 kg/cm2G (first hydrogenation step); and further performing hydrodesulfurization at lower temperatures (second hydrogenation step). When the second hydrogenation step is carried out only for the heavy naphtha obtained by separating the distillates after the first hydrogenation step, the second hydrogenation temperature can be in the range of 250 to 400° C.
    Type: Grant
    Filed: September 10, 1998
    Date of Patent: September 24, 2002
    Assignee: JGC Corporation
    Inventors: Makoto Inomata, Toshiya Okumura, Shigeki Nagamatsu
  • Patent number: 6454935
    Abstract: A fuel processing method is operable to remove substantially all of the sulfur present in an undiluted oxygenated hydrocarbon fuel stock supply which contains an oxygenate and which is used to power a fuel cell power plant in a mobile environment, such as an automobile, bus, truck, boat, or the like, or in a stationary environment. The power plant hydrogen fuel source can be gasoline, diesel fuel, or other like fuels which contain relatively high levels of organic sulfur compounds such as mercaptans, sulfides, disulfides, and the like. The undiluted hydrocarbon fuel supply is passed through a desulfurizer bed wherein essentially all of the sulfur in the organic sulfur compounds reacts with the nickel reactant, and is converted to nickel sulfide, while the now desulfurized hydrocarbon fuel supply continues through the remainder of the fuel processing system.
    Type: Grant
    Filed: December 22, 1999
    Date of Patent: September 24, 2002
    Assignee: UTC Fuel Cells, LLC
    Inventors: Roger R. Lesieur, Christopher Teeling, Joseph J. Sangiovanni, Laurence R. Boedeker, Zissis A. Dardas, He Huang, Jian Sun, Xia Tang, Louis J. Spadaccini
  • Patent number: 6454936
    Abstract: The instant invention is directed to a process for decreasing the amount of acids contained in oils by forming a water-in-oil emulsion and utilizing solids.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: September 24, 2002
    Assignee: ExxonMobil Research and Engineering Company
    Inventor: Ramesh Varadaraj
  • Publication number: 20020112992
    Abstract: A system and process for removing water and heteroatom-containing compounds from hydrocarbons and for regenerating the adsorbent used in the system and process is disclosed and includes contacting the hydrocarbon stream with a water adsorbent and a heteroatom-containing compound adsorbent. The regeneration includes passing an isoparaffin over the water-adsorbent followed by passing the isoparaffin over the heteroatom-containing compound adsorbent; and, optionally; cooling the resulting effluent; separating such into a hydrocarbon phase and a water phase in a settler; removing a portion of the hydrocarbon phase for contact with and mixing with water; returning the hydrocarbon/water mixture to the settler; removing a portion of the hydrocarbon phase from the settler to form a recycle isoparaffin stream for use as at least a portion of the stripping stream; and removal of at least a portion of the water phase from the settler to form a waste water stream containing water and heteroatom-containing compound.
    Type: Application
    Filed: December 21, 2000
    Publication date: August 22, 2002
    Inventors: Marvin M Johnson, Bruce B. Randolph
  • Patent number: 6428685
    Abstract: Particulate sorbent compositions which are suitable for the removal of sulfur from streams of cracked-gasoline or diesel fuel are provided which have increased porosity, improved resistance to deactivation through the addition of a calcium compound selected from the group consisting of calcium sulfate, calcium silicate, calcium phosphate or calcium aluminate to the support system comprised of zinc oxide, silica and alumina having thereon a promotor wherein the promotor is metal, metal oxide or metal oxide precursor with the metal being selected from the group consisting of cobalt, nickel, iron, manganese, copper, molybdenum, tungsten, silver, tin and vanadium or mixtures thereof and wherein the valence of such promotor has been substantially reduced to 2 or less. Process for the preparation such sorbent systems as well s the use of same for the desulfurization of cracked-gasolines and diesel fuels are also provided.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: August 6, 2002
    Assignee: Phillips Petroleum Company
    Inventor: Gyanesh P. Khare