Organic Patents (Class 210/500.27)
  • Patent number: 9276245
    Abstract: A film made of a fluorinated polymer of the polyvinylidene fluoride type having suitable properties for use as a lithium storage battery separator is produced using a phase inversion technique in which a solution containing the fluorinated polymer is brought into the presence of an atmosphere laden with water vapor to precipitate the fluorinated polymer. The fluorinated polymer can be precipitated by placing the support on which the solution is deposited, in which the fluorinated polymer has been previously dissolved, in an enclosure containing an atmosphere laden with water vapor and thermostatically regulated to a temperature comprised between 30° C. and 70° C. The relative humidity content during precipitation of the fluorinated polymer is advantageously between about 60% and about 98%.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: March 1, 2016
    Assignees: COMMISSARIAT À L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Sébastien Patoux, Fannie Alloin, Lise Daniel
  • Patent number: 9227360
    Abstract: Fabrication methods for selective membranes that include aligned nanotubes can advantageously include a mechanical polishing step. The nanotubes have their ends closed off during the step of infiltrating a polymer precursor around the nanotubes. This prevents polymer precursor from flowing into the nanotubes. The polishing step is performed after the polymer matrix is formed, and can open up the ends of the nanotubes.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: January 5, 2016
    Assignee: Porifera, Inc.
    Inventors: Valentin Lulevich, Olgica Bakajin, Jennifer E. Klare, Aleksandr Noy
  • Patent number: 9107950
    Abstract: A suspension of gas-filled microbubbles can be synthesized by sonicating a lipid solution and a first gas in a reaction volume. The resulting microbubble suspension can be stored for later use, for example, for infusion into a patient for gas delivery thereto. Various techniques can improve the shelf life of the microbubbles. For example, the microbubble suspension can be freeze-dried to remove water and the first gas therefrom while leaving the microbubble shells intact. In an alternative, the microbubble suspension can be frozen. In still another alternative, the microbubble suspension can be formed with a first gas that has a low solubility, thereby creating microbubbles with increased stability. Prior to use, the microbubble suspension can be prepared by exchanging the gas in the microbubble cores, rehydrating, and/or raising the temperature of the stored microbubbles.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: August 18, 2015
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Mark A. Borden, Edward J. Swanson
  • Patent number: 9048479
    Abstract: Provided are a tri-block copolymer and an electrolyte membrane prepared therefrom. The tri-block copolymer has a structure of polar moiety-containing copolymer block/non-polar moiety-containing copolymer block/polar moiety-containing copolymer block, or non-polar moiety-containing copolymer block/polar moiety-containing copolymer block/non-polar moiety-containing copolymer block, and is useful for an electrolyte membrane for fuel cells. The electrolyte membrane for fuel cells prepared from the tri-block copolymer exhibits superior dimensional stability and excellent fuel cell performance.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: June 2, 2015
    Assignee: LG CHEM, LTD.
    Inventors: Seong Ho Choi, Hyuk Kim, Sang Woo Lee, Tae Geun Noh, Ji Soo Kim
  • Publication number: 20150144552
    Abstract: With the subject invention, a method is provided for preparing a filter membrane including the steps of dispersing a liquid which is generally hydrophobic into the pores of a porous membrane, and applying a solution containing lipids onto at least a first surface of the porous membrane containing the liquid. Advantageously, the subject invention allows for filter membranes to be prepared which can be stored for periods of time without degradation in performance. The subject invention may have applicability in various contexts, but is well-suited for preparing filter membranes for permeability screening, particularly Parallel Artificial Membrane Permeability Assay (PAMPA).
    Type: Application
    Filed: February 4, 2015
    Publication date: May 28, 2015
    Inventors: XIAOXI (KEVIN) CHEN, CHARLES L. CRESPI
  • Patent number: 9039900
    Abstract: Membranes for membrane distillation include at least one hollow fiber porous hydrophobic membrane, the at least one membrane including carbon nanotubes incorporated into the pore structure of the membrane. Membrane distillation systems may include a heat exchanger operably connected to a hollow fiber membrane module with one or more membranes including carbon nanotubes. Methods of solvent removal, sample preconcentration and desalination employing hollow fiber porous hydrophobic membranes with carbon nanotubes are disclosed.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: May 26, 2015
    Assignee: New Jersey Institute of Technology
    Inventors: Somenath Mitra, Ken Gethard
  • Patent number: 9033159
    Abstract: Processes for preparation of macroporous membranes having unusually high equilibrium protein binding capacities are described. Membranes include a self-supporting porous membrane substrate and a grafted polymeric film on the pore surfaces of the substrate. A polymeric film may be grafted to the porous membrane substrate using surface-initiated polymerization. The grafted polymer chains within the polymeric film can act as molecular ‘brushes’ or ‘tentacles’ in solution and can contain one or more capture chemistries for biomolecules. Membranes can be used in the separation and purification of biomolecules such as proteins, nucleic acids, virus or virus-like particles, endotoxins, and the like.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: May 19, 2015
    Assignee: Clemson University
    Inventors: Scott M. Husson, Bharat V. Bhut
  • Patent number: 9027764
    Abstract: A moisture-permeable separating membrane material includes a porous fluororesin membrane, a continuous moisture-permeable resin layer formed on the surface of the porous fluororesin membrane, and a textile layer for reinforcing the porous fluororesin membrane and the continuous moisture-permeable resin layer. The textile layer contains a flame retardant in the inside of each fiber and the surface of each fiber has been treated with a flame retardant. The moisture-permeable separating membrane material makes it possible to improve flame retardancy without deteriorating heat exchange characteristics.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: May 12, 2015
    Assignee: W. L. Gore & Associates, Co., Ltd.
    Inventors: Kazuhiro Marutani, Satoshi Yamamoto, Takashi Imai
  • Patent number: 9004293
    Abstract: A semi-permeable film includes a nanoporous material and a polymer matrix. The nanoporous material includes a nanoporous core and a coating layer that is disposed on a surface of the nanoporous core. The coating layer may include a particle selected from a metal hydroxide particle, a metal oxide particle, and a combination thereof. A separation membrane may include the semi-permeable film. Example embodiments also relate to a method of manufacturing the semi-permeable film and the separation membrane.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: April 14, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: You Hwan Son, Hye Young Kong, Sung Soo Han
  • Publication number: 20150096935
    Abstract: Membranes including functionalized carbon nanotubes, nanodiamonds and/or graphene oxide immobilized in or on the membranes are disclosed. The membranes including the immobilized nanocarbons increase interactions with water vapor to improve desalination efficiency in membrane distillation. The membranes may be deployed in all modes of membrane distillation such as air gap membrane distillation, direct contact membrane distillation, vacuum membrane distillation and other separations.
    Type: Application
    Filed: October 6, 2014
    Publication date: April 9, 2015
    Inventors: Somenath Mitra, Sagar Roy, Madhulina Bhadra
  • Publication number: 20150076056
    Abstract: The present disclosure relates to a device for use in fluid purification, particularly to a membrane for use in fluid purification, the membrane comprising a porous basal layer in the form of polysulfone (PSF); a multitude of multi-walled carbon nanotubes (CNTs) dispersed within the basal layer; and a top layer in the form of polyvinyl alcohol (PVA). The disclosure extends to a method of manufacturing the device.
    Type: Application
    Filed: September 18, 2014
    Publication date: March 19, 2015
    Inventors: Sunny Esayegbemu Iyuke, Selby Maphutha
  • Patent number: 8980096
    Abstract: The present invention relates to a method for the modification of metal hydroxide and/or metal oxide surfaces of an inorganic matrix with an organometallic reagent for obtaining an organic functionalized matrix suitable for filtration processes. The method involves the direct covalent binding of organic functional groups by allowing a pre-treated matrix to react with organometallic reagents in the present of a suitable solvent. The present invention further relates to an organic functionalized matrix obtainable or obtained by carrying out a method according to the invention. The invention also provides various uses of a surface-modified matrices as described herein in various industrial applications, including for instance in filtration and/or adsorption and/or separation processes, or as support, e.g. for catalyst systems or for enzyme systems.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: March 17, 2015
    Assignees: Vito NV, Universiteit Antwerpen
    Inventors: Anita Buekenhoudt, Kenny Wyns, Vera Meynen, Bert Maes, Pegie Cool
  • Publication number: 20150068978
    Abstract: The disclosure is directed to an intermediate filtering membrane comprising: a filtering membrane having a charged or polar surface; and a transiently coupled charged compound, wherein the charged compound has an opposite charge to the membrane charge. Likewise, provided herein are methods and kits utilizing the intermediate membrane for various filtering membranes operations.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 12, 2015
    Inventors: Gilad Lando, Dikla Zadaka-Amir, Andrew Norman Shipway, Steve Daren
  • Publication number: 20150053610
    Abstract: Described herein are mixed matrix filtration membranes and related, compositions, methods and systems and in particular mixed matrix filtration membranes with an embedded polymer network and/or embedded polymeric micro/nanoparticles functionalized with a functionalization polymer covalently and/or non covalently linked to the micro/nanoparticles and related compositions, methods, and systems.
    Type: Application
    Filed: July 30, 2014
    Publication date: February 26, 2015
    Inventors: Mamadou S. DIALLO, Madhusudhana Rao KOTTE
  • Patent number: 8945390
    Abstract: A carbon membrane formed by carbonizing a phenol resin having at least one kind of atomic groups among a methylene bond, a dimethylene ether bond, and a methylol group, wherein the total mole content of the atomic groups is 100 to 180% with respect to the phenolic nuclei. A pervaporation separation method using the carbon membrane is also disclosed.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: February 3, 2015
    Assignee: NGK Insulators, Ltd.
    Inventors: Akimasa Ichikawa, Kenji Suzuki, Naoto Kinoshita, Yoshinori Isoda, Takafumi Kimata
  • Patent number: 8945389
    Abstract: There is proposed a separation method for mixtures of materials, using a cellulose hydrate membrane having a porous double structure which consists of micropores having a diameter in the range from >100 nm to 20 ?m and ultrapores which have a diameter of <100 nm and which are not accessible to Blue Dextran having an average molecular weight Mw of 2 000 000, wherein the fraction of the volume of the ultrapores is more than 15% of the entire pore volume accessible to water, and wherein, in a preferred embodiment, sulfonic acid ligands are bonded to the membrane.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: February 3, 2015
    Assignee: Sartorius Stedim Biotech GmbH
    Inventors: René Faber, Wolfgang Demmer
  • Patent number: 8945391
    Abstract: The object of the invention is to provide an organic polymers-separation membrane filter capable of physically separating organic polymers based on their molecular stereostructure difference without giving rise to chemical changes in them and without selecting their chemical compositions. The organic polymers-separation membrane filter comprising an ultrafilter membrane is characterized in that a path taken by a nano permeation pore has a narrower path portion having a width narrower than that of the rest, wherein organic polymers capable of changing in their stereostructure are passed through the path while their width is transformed into a configuration along the narrower path portion, thereby separating the organic polymers. In the ultrafilter membrane, particulate materials are mutually coupled together in its thickness and planar directions. The particulate materials comprise a protein.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: February 3, 2015
    Assignee: National Institute for Materials Science
    Inventors: Izumi Ichinose, XinSheng Peng
  • Patent number: 8940173
    Abstract: Provided herein composition and methods for nanoporous membranes comprising single walled, double walled, or multi-walled carbon nanotubes embedded in a matrix material. Average pore size of the carbon nanotube can be 6 nm or less. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: January 27, 2015
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Olgica Bakajin, Aleksandr Noy, Francesco Fornasiero, Hyung Gyu Park, Jason K. Holt, Sangil Kim
  • Patent number: 8939295
    Abstract: A multi-layer, fluid transmissive structure is provided that comprises first and second fiber layers each comprising a plurality of polymeric fibers bonded to each other at spaced apart contact points. The polymeric fibers of these fiber layers have diameters greater than one micron and collectively define interconnected interstitial spaces providing tortuous fluid flow paths through the first and second fiber layers. The structure also comprises a plurality of nanofibers disposed intermediate at least a portion of the first fiber layer and at least a portion of the second fiber layer.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: January 27, 2015
    Assignee: Essentra Porous Technologies Corp.
    Inventors: Bennett C. Ward, Geoffrey M. Stoltz
  • Publication number: 20150014244
    Abstract: To provide a composite semipermeable membrane capable of maintaining high removal performance even after its supporting membrane has come into contact with an aqueous solution high in salt concentration. A composite semipermeable membrane including: a supporting membrane which includes a substrate and a porous supporting layer; and a separation functional layer provided on the porous supporting layer, in which a strength to peel the porous supporting layer away from the substrate is 1.1 N/25 mm or higher.
    Type: Application
    Filed: February 28, 2013
    Publication date: January 15, 2015
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Harutoki Shimura, Jun Okabe, Kiyohiko Takaya, Masahiro Kimura
  • Patent number: 8932470
    Abstract: An aggregate-removing filter material efficiently removes aggregates that are contained in a blood product for transfusion and may cause transfusion reactions without clogging, and exhibits excellent quality stability, and a blood product filtration method uses a filter apparatus that includes the aggregate-removing filter material and a leukocyte-removing filter material. The aggregate-removing filter material includes short fibers having a fineness of 0.7 to 4.0 dtex and a fiber length of 1 to 80 mm, and a ground fabric that includes long fibers, a fiber axis of the long fibers being oriented in a planar direction of the ground fabric, the short fibers being entangled with the ground fabric so that the aggregate-removing filter material has a total weight per unit area of 10 to 80 g/m2, and a layer of the short fibers forming a three-dimensional structure.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: January 13, 2015
    Assignee: Asahi Kasei Medical Co., Ltd.
    Inventors: Tatsuya Fukuda, Yoshimasa Matsuura
  • Patent number: 8925737
    Abstract: A crystalline polymer microporous membrane, which contains: a laminate of two or more layers including a layer containing a first crystalline polymer and a layer containing a second crystalline polymer, the laminate having a plurality of pores each piercing through the laminate in a thickness direction thereof, wherein the first crystalline polymer has higher crystallinity than crystallinity of the second crystalline polymer, and the layer containing the first crystalline polymer has the maximum thickness thicker than the maximum thickness of the layer containing the second crystalline polymer, and wherein at least one layer in the laminate has a plurality of pores whose average diameter continuously or discontinuously changes along with a thickness direction of the laminate at least at part thereof.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: January 6, 2015
    Assignee: FUJIFILM Corporation
    Inventors: Kenichi Ishizuka, Nobuhiro Nishita
  • Publication number: 20150001150
    Abstract: Membranes for membrane distillation include at least one hollow fiber porous hydrophobic membrane, the at least one membrane including carbon nanotubes incorporated into the pore structure of the membrane. Membrane distillation systems may include a heat exchanger operably connected to a hollow fiber membrane module with one or more membranes including carbon nanotubes. Methods of solvent removal, sample preconcentration and desalination employing hollow fiber porous hydrophobic membranes with carbon nanotubes are disclosed.
    Type: Application
    Filed: April 13, 2011
    Publication date: January 1, 2015
    Applicant: New Jersey Institute of Technology
    Inventors: Somenath Mitra, Ken Gethard
  • Patent number: 8920654
    Abstract: Forward osmosis membranes having a hydrophilic support layer and a polyamide rejection layer in a thin film composite membrane are considered. Preferred support layer materials include aramid polymers and PVDF. A woven or non-woven mesh can be incorporated into the support layer to improve handling properties of the membrane. Flat sheet and hollow fiber configurations are possible. Antifouling techniques are provided. The polyamide layer can be formed on the hydrophilic support layer by interfacial polymerization. Applications include forward osmosis and pressure retarded osmosis applications, such as industrial product and/or waste concentration, hydration bags, energy/pressure generation, and controlled delivery of chemicals (e.g., for pharmaceutical applications).
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: December 30, 2014
    Assignee: Porifera, Inc.
    Inventors: Ravindra Revanur, Iljuhn Roh, Jennifer E. Klare, Aleksandr Noy, Olgica Bakajin
  • Patent number: 8911648
    Abstract: A reactive polymer-supported porous film for separator, that has sufficient adhesiveness between electrodes and separator and can suitably be used to produce a battery having low internal resistance and high rate performance, a method for producing the porous film, a method for producing a battery using the porous film, and an electrode/porous film assembly are disclosed. The reactive polymer-supported porous film for battery separator includes a porous film substrate having supported thereon a reactive polymer obtained by reacting a crosslinkable polymer having at least one reactive group selected from the group consisting of 3-oxetanyl group and epoxy group in the molecule, with an acid anhydride, thereby partially crosslinking the polymer.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: December 16, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Yoshihiro Uetani, Keisuke Kii, Tomoaki Ichikawa, Michio Satsuma, Satoshi Nishikawa, Shinji Bessho
  • Patent number: 8895104
    Abstract: A polymeric membrane on a support, wherein the polymeric membrane includes a crosslinked polymer covalently bound to a molecular cage compound. An interfacial polymerization method for making the polymeric membrane is also disclosed.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: November 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Young-Hye Na, Ratnam Sooriyakumaran, Ankit Vora, Jacquana Diep
  • Publication number: 20140339165
    Abstract: Membranes having a single layer comprising first and second porous portions, wherein the first portion has a more open pore structure than the second portion, wherein the first porous portion includes a surface prepared by removing introduced particles, as well as methods of making and using the membranes, are disclosed
    Type: Application
    Filed: May 14, 2013
    Publication date: November 20, 2014
    Applicant: Pall Corporation
    Inventors: Binbing Han, Xuemei Liang, Richard Alan Morris, Donald Carl Simonton, SR.
  • Publication number: 20140339167
    Abstract: The present invention generally relates to polymeric membrane materials formed, at least in part, from monomeric material selected from 2,3,3,3-tetrafluoropropene (CF3CF?CH2, HFO-1234yf) or trans-1,3,3,3-tetrafluoropropene (CF3CH?CFH, HFO-1234ze), and to membrane preparations and uses thereof in water desalination, filtration, membrane distillation, pervaporation, and selective gas separation.
    Type: Application
    Filed: April 29, 2014
    Publication date: November 20, 2014
    Inventors: Changqing Lu, Andrew J. Poss, Rajiv R. Singh
  • Publication number: 20140339166
    Abstract: Membranes having first and second porous portions, wherein the first portion has a more open pore structure than the second portion, wherein the first porous portion includes channels prepared by removing introduced fibers, as well as methods of making and using the membranes, are disclosed.
    Type: Application
    Filed: May 14, 2013
    Publication date: November 20, 2014
    Applicant: Pall Corporation
    Inventors: Wilfrid Klaus Wixwat, Binbing Han
  • Publication number: 20140339164
    Abstract: Membranes having first and second porous portions, wherein the first portion has a more open pore structure than the second portion, wherein the first porous portion includes pores prepared by removing introduced particles, as well as methods of making and using the membranes, are disclosed.
    Type: Application
    Filed: May 14, 2013
    Publication date: November 20, 2014
    Applicant: Pall Corporation
    Inventors: Xuemei Liang, Binbing Han, Richard Alan Morris
  • Patent number: 8887927
    Abstract: A method of preparation for polyimine self-supported dynamic polymeric membranes (called “dynameric” membranes) is provided along with their use in separation processes, especially for separating gaseous species.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: November 18, 2014
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Gihane Nasr, Mihail-Dumitru Barboiu, Christophe Charmette, José Gregorio Sanchez Marcano
  • Publication number: 20140332462
    Abstract: Hierarchical porous membranes suitable for use in oil/water separation processes are provided. The membranes described herein are particularly well suited for separating trace amounts of water (e.g., no greater than 3 wt % water content, no greater than 1 wt % water content, or 50-1000 ppm water) from oil in droplets less than 1 um in size. The membranes have a wide range of applications, including deep seep oil exploration, oil purification, and oil spill cleanup.
    Type: Application
    Filed: June 12, 2014
    Publication date: November 13, 2014
    Inventors: Brian Richmond Solomon, Kripa K. Varanasi, Md. Nasim Hyder
  • Publication number: 20140332459
    Abstract: The invention provides a novel type of filter media that offers efficient disinfection effects, while achieving a low water pressure drop and a high water flow rate when in use. Specifically, the filter media of the invention comprises a microorganism-killing membrane containing electro spun nanofiber fabrics loaded with biocidal nano-particles. The filter media of the invention is adhesive-layer free and contains at least one thermal binding layer that are made of spunbonded nonwoven polymeric fabrics. The invention also provides a water-purification cartridge and a portable water system thereof.
    Type: Application
    Filed: May 10, 2013
    Publication date: November 13, 2014
    Applicant: Goodrich Corporation
    Inventor: Jin Hu
  • Publication number: 20140326669
    Abstract: Synthetic membranes for the removal, isolation or purification of substances from a liquid. The membranes include at least one hydrophobic polymer and at least one hydrophilic polymer. 5-40 wt.-% of particles having an average particles size of between 0.1 and 15 ?m are entrapped. The membrane has a wall thickness of below 150 ?m. Methods for preparing the membranes in various geometries, and use of the membranes for the adsorption, isolation and/or purification of substances from a liquid are explored.
    Type: Application
    Filed: December 10, 2012
    Publication date: November 6, 2014
    Inventors: Ralf Flieg, Markus Storr, Bernd Krause, Markus Hornung, Karl Heinz Klotz
  • Patent number: 8877062
    Abstract: The invention relates to extracorporeal blood circuits, and components thereof (e.g., hollow fiber membranes, potted bundles, and blood tubing), including 0.005% to 10% (w/w) surface modifying macromolecule. The extracorporeal blood circuits have an antithrombogenic surface and can be used in hemofiltration, hemodialysis, hemodiafiltration, hemoconcentration, blood oxygenation, and related uses.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: November 4, 2014
    Assignee: Interface Biologics, Inc.
    Inventors: Sanjoy Mullick, Weilun Chang, Hanje Chen, Mark Steedman, Roseita Esfand
  • Publication number: 20140319047
    Abstract: The disclosure provides a filtration material and a method for fabricating the same. The filtration material includes a supporting layer, and a composite layer, wherein the composite layer includes an ionic polymer and an interfacial polymer. Particularly, the ionic polymer and the interfacial polymer are intertwined with each other, resulting from ionic bonds formed between the ionic polymer and the interfacial polymer.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 30, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Shu-Hui CHENG, Wei-Cheng TSAI, Shan-Shan LIN, Yu-Chuan HSU, Yin-Ju YANG
  • Publication number: 20140305863
    Abstract: A process for making a composite membrane comprising the steps: (i) providing a moving poriferous support (1) impregnated with a curable composition, wherein the composition is present in the pores of the support and on a surface of the support; (ii) scraping or squeezing the poriferous support and thereby removing at least some of the curable composition (2) from the surface of the support; and (iii) after performing step (ii), irradiating the support, thereby curing the composition present therein. Composite membranes are also claimed having a surface layer thickness of below 0.5 microns.
    Type: Application
    Filed: July 5, 2012
    Publication date: October 16, 2014
    Applicant: FUJIFILM MANUFACTURING EUROPE BV
    Inventor: Johannes Adrianus Wilhelmus Van Engelen
  • Patent number: 8839961
    Abstract: An object of the present invention is to provide a biosensor comprising a hydrogel capable of immobilizing a physiologically active substance thereon, which can be produced conveniently by use of a safe material, and a method for producing the same. The present invention provides a method for producing a biosensor, which comprises bringing a polymer containing an activated carboxyl group into contact with a substrate surface coated with an organic layer having an amino group to thereby bind the polymer to the organic layer.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: September 23, 2014
    Assignee: FUJIFILM Corporation
    Inventors: Taisei Nishimi, Toshihide Ezoe, Koji Kuruma, Masayuki Kawakami
  • Patent number: 8840791
    Abstract: A microfiltration membrane comprising (a) an asymmetric layer, (b) an isometric layer, and (c) an interface layer between the asymmetric layer and the isometric layer, the interface layer having a first portion contacting the asymmetric layer and a second portion contacting the isometric layer; wherein, (i) the asymmetric layer has a region contacting the first portion of the interface layer, the region including cells having a first porous structure; (ii) the isometric layer has a region contacting the second portion of the interface layer, the region including cells having a second porous structure; the first porous structure being larger than the second porous structure; and the first portion of the interface layer comprises cells having the first porous structure, and the second portion of the interface layer comprises cells having the second porous structure, and methods of making and using the membrane, are disclosed.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: September 23, 2014
    Assignee: Pall Corporation
    Inventors: I-Fan Wang, Richard Morris, Xuemei Liang
  • Patent number: 8839960
    Abstract: The present disclosure relates to polymeric matrices composed of protected amine compound residues and membranes composed from such polymeric matrices. In particular, the present disclosure relates to a polymeric matrix comprising amine compound residues, acyl compound residues and protected amine compound residues.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: September 23, 2014
    Assignee: General Electric Company
    Inventor: Qingshan Jason Niu
  • Publication number: 20140263035
    Abstract: A method of forming a filter with uniform pore sizes includes synthesizing a moiety so as to form a plurality of like platelets having a precisely sized pore extending therethrough, distributing the plurality of like platelets about a membrane having apertures therethrough, and bonding the plurality of platelets around the apertures to form precisely sized pores through the membrane. A filtration membrane is also disclosed which provides a porous membrane having a plurality of apertures therethrough, and a plurality of platelets, wherein each platelet has a pore therethrough. The platelets are positioned over or in the apertures.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Inventors: Randall M. Stoltenberg, Peter V. Bedworth
  • Publication number: 20140251897
    Abstract: The present invention relates to a composite membrane for gas separation and/or nanofiltration of a feed stream solution comprising a solvent and dissolved solutes and showing preferential rejection of the solutes. The composite membrane comprises a separating layer with intrinsic microporosity. The separating layer is suitably formed by interfacial polymerisation on a support membrane. Suitably, at least one of the monomers used in the interfacial polymerisation reaction should possess concavity, resulting in a network polymer with interconnected nanopores and a membrane with enhanced permeability. The support membrane may be optionally impregnated with a conditioning agent and may be optionally stable in organic solvents, particularly in polar aprotic solvents. The top layer of the composite membrane is optionally capped with functional groups to change the surface chemistry. The composite membrane may be cured in the oven to enhance rejection.
    Type: Application
    Filed: October 18, 2012
    Publication date: September 11, 2014
    Inventors: Andrew Guy Livingston, Maria Fernanda Jimenez Solomon
  • Patent number: 8827085
    Abstract: A hollow fiber membrane is formed by embedding a braid having a spiral open weave of monofilaments only, to avoid a “whiskering” problem common in prior art multifilament braid-supported tubular membranes. The open weave is characterized by contiguous, circumferential, rhomboid-shaped areas of polymer film separated by monofilaments. When the braid is supported on a plasticized PVA cable it can be infiltrated with membrane polymer which, when coagulated embeds the braid positioning it around the lumen. The spiral weave, free of any circumferentially constricting monofilament, when embedded in film, allows the membrane to be biaxially distensible. In other words, the membrane has “give” not only in the axial or longitudinal direction but also in the radial direction. “Give” in the radial direction permits soiled membranes to be backwashed under higher pressure than in a comparable braid which is not radially distensible.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: September 9, 2014
    Assignee: Cheil Industries Inc.
    Inventors: Chang Min Seo, Gyeong Mo Lee
  • Patent number: 8815092
    Abstract: A microfiltration apparatus and method for separating cells, such as circulating tumor cells, from a sample using a microfiltration device having a top porous membrane and a bottom porous membrane. The porous membranes are formed from parylene and assembled using microfabrication techniques. The porous membranes are arranged so that the pores in the top membrane are offset from the pores in the bottom membrane.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: August 26, 2014
    Assignees: California Institute of Technology, University of Southern California
    Inventors: Siyang Zheng, Richard Cote, Henry Lin, Bo Lu, Yu-Chong Tai
  • Patent number: 8808541
    Abstract: A dialysis cell is provided for the measurement of free thyroxine. The dialysis cell preferably includes a polyhedral housing including a top, a bottom and four sides. The dialysis cell is made up of a buffer portion and serum portion. The buffer portion includes a cavity and the serum portion includes a cavity which, when the buffer portion and serum portion are assembled together, form a central chamber. The central chamber is divided by a vertically aligned dialysis membrane held in place by two O-rings. Buffer is introduced into the dialysis cell's buffer portion through a buffer inlet extending from the dialysis cell's top side to the buffer portion's cavity. Similarly, serum is introduced into the serum portion through an inlet which extends from an opening formed on the dialysis cell's top to the serum portion's cavity.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: August 19, 2014
    Inventor: Marwan Nasralla
  • Patent number: 8807350
    Abstract: There is provided a composite membrane, which may include an electronically conductive asymmetric porous support and an electro-polymerized selective layer. There is also provided a composite membrane for water application(s), which may include an electronically conductive porous support and an electro-polymerized selective layer. Moreover, there is provided a composite membrane for gas application(s), which may include an electronically conductive asymmetric porous support and an electro-polymerized selective layer. There is also provided a membrane system which may include at least one composite membrane which may include an electronically conductive asymmetric porous support and an electro-polymerized selective layer. In addition there is provided a method for the preparation of a composite membrane.
    Type: Grant
    Filed: July 16, 2006
    Date of Patent: August 19, 2014
    Assignee: Ben-Gurion University of The Negev Research & Development Authority
    Inventors: Charles Linder, Viatcheslav Freger, Yoram Oren
  • Publication number: 20140217013
    Abstract: To provide a polyketone porous film having heat resistance and chemical resistance and useful as a filter for filtration having a high particle collection efficiency and as a battery or capacitor separator having a low permeation resistance to ion and the like. A polyketone porous film comprising from 10 to 100 mass % of a polyketone as a copolymer of carbon monoxide and one or more olefins, wherein the polyketone porous film has a pore formed only by a polyketone, the pore diameter uniformity parameter as a value obtained by dividing the standard deviation of the pore diameter in the pore by an average pore diameter is from 0 to 1.0, and the average through hole diameter of the polyketone porous film is from 0.01 to 50 ?m.
    Type: Application
    Filed: September 5, 2012
    Publication date: August 7, 2014
    Inventors: Daisuke Sato, Masayuki Kaneda, Takashi Komatsu
  • Publication number: 20140209539
    Abstract: This invention relates to an asymmetric composite membrane containing a polymeric matrix and carbon nanotubes within a single membrane layer, where the carbon nanotubes are randomly oriented within the polymeric matrix and the composite membrane is formed by phase inversion. This invention also relates to a method for producing the composite membrane which includes: coating a surface with a film of a polymer solution containing a polymeric matrix and carbon nanotubes dissolved in at least one solvent; immersing the coated surface in a non-solvent to affect solvent/non-solvent demixing resulting in phase inversion to form a carbon nanotube-containing membrane; and optionally, removing the carbon nanotube-containing membrane from the surface. The invention also relates to a desalination method using the composite membrane.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Inventors: Nouran Ashraf Abdel Hamied EL BADAWI, Amal Mohamed Kamal Esawi, Adham Ramzy Ramadan
  • Patent number: 8778186
    Abstract: The invention provides a method of contacting a membrane having a highly cross-linked polydicyclopentadiene matrix with a feed solution having a) a first component with a molecular weight in the range of from about 100 g mol?1 to about 600 g mol?1 and a cross-sectional area of less than about 0.40 nm2 and b) a second component with a molecular weight in the range of from about 100 to about 600 grams g mol?1 and a cross-sectional area of greater than about 0.50 nm2 so that the feed solution is fractionated into a permeate comprising the first component and a retentate enriched in the second component.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: July 15, 2014
    Assignee: University of Iowa Research Foundation
    Inventors: Ned B. Bowden, Abhinaba Gupta, Tyler R. Long
  • Patent number: 8753524
    Abstract: Systems and methods for treating a stream comprising a hydrocarbon liquid and an aqueous-based liquid are provided. The systems and methods may utilize a media composite comprising a mixture of a cellulose-based material and a polymer. In certain systems and methods, the media composite is capable of being backwashed. The stream comprising the hydrocarbon liquid and aqueous-based liquid may be separated by contacting the stream with the media composite. In certain system and methods, the stream comprising the hydrocarbon liquid and aqueous-based liquid may be coalesced by contacting the stream with the media composite.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: June 17, 2014
    Assignee: Siemens Energy, Inc.
    Inventors: Chad L. Felch, Matthew Patterson, Shane Wiercinski