Etchant Contains Fluoride Ion Patents (Class 216/104)
  • Patent number: 11164744
    Abstract: There is provided a method of manufacturing a semiconductor device, comprising forming a film on a substrate in a process chamber by performing a cycle a predetermined number of times. The cycle includes alternately performing supplying a halogen-based first process gas to the substrate in the process chamber, and supplying a non-halogen-based second process gas to the substrate in the process chamber. Further, an internal pressure of the process chamber in the act of supplying the first process gas is set to be higher than an internal pressure of the process chamber in the act of supplying the second process gas.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: November 2, 2021
    Assignee: KOKUSAI ELECTRIC CORPORATION
    Inventors: Yugo Orihashi, Atsushi Moriya
  • Patent number: 9039915
    Abstract: Disclosed are etching solution compositions that comprise fluorine compounds and iron ions, which are used for bulk etching of metal laminate films wherein a layer comprising aluminum or an aluminum alloy is laminated on top and a layer comprising titanium or a titanium alloy on bottom, and an etching method using said etching solution compositions.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: May 26, 2015
    Assignee: Kanto Kagaku Kabushiki Kaisha
    Inventors: Kenji Kuroiwa, Kazuaki Nagashima, Masaru Kato, Masahiro Nohara
  • Publication number: 20150076114
    Abstract: A method for the surface preparation of devices made of titanium or titanium alloys, zirconium, zirconia, alumina or zirconia/alumina compounds, stainless steels and cobalt-base superalloys for medical use; the devices being implantable in the human body or in animals and attached extracorporeal parts made with the same materials, particularly for dental and orthopedic implantology. The implantable device is treated by exposing at least one portion of the surface of the device to a solution including hydrofluoric acid, phosphoric acid, at least one surfactant substance and water; for a time period and in conditions sufficient to provide the surface of the implant with the desired surface roughness and the formation of self-induced surface titanium dioxide, maintaining the structural integrity of the device and without altering the centesimal measurement size. The surface thus is rinsed with demineralized water and ultrasounds in order to prevent metalosis phenomena.
    Type: Application
    Filed: September 15, 2014
    Publication date: March 19, 2015
    Inventor: Cristiano Ugo CIRANNI
  • Publication number: 20150060403
    Abstract: A method for manufacturing a fuel contacting component that facilitates reducing coke formation on at least one surface of the fuel contacting component is disclosed herein. The method includes applying a slurry composition including a powder including aluminum to the component surface, wherein the fuel contacting component is formed by an additive manufacturing process. The slurry composition is heat treated to diffuse the aluminum into the component surface. The heat treatment comprises forming a diffusion aluminide coating on the component surface, wherein the diffusion coating comprises a diffusion sublayer formed on the component surface and an additive sublayer formed on the diffusion sublayer. The method further comprises removing the additive sublayer of the diffusion aluminide coating with at least one aqueous solution such that the diffusion sublayer and the component surface are substantially unaffected, wherein the diffusion layer facilitates preventing coke formation on component surface.
    Type: Application
    Filed: September 5, 2013
    Publication date: March 5, 2015
    Applicant: General Electric Company
    Inventors: William Thomas Carter, James Anthony Ruud, Lawrence Bernard Kool, Justin John Gambone, Jr., Christine Mary Furstoss
  • Patent number: 8945415
    Abstract: A method is described for etching ceramic phosphor converters. The method includes contacting a surface of the converter with a solution of phosphor acid for a time sufficient to etch the converter. The method is applicable to ceramic phosphor converters comprising a phosphor having a general formula MxAlyOz:RE wherein M is a metal and RE is a rare earth element.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: February 3, 2015
    Assignee: OSRAM SYLVANIA Inc.
    Inventor: Alan Piquette
  • Patent number: 8821747
    Abstract: A method for manufacturing a glass substrate for a magnetic disk comprises a surface grinding step of processing a mirror-surface plate glass, having a main surface in the form of a mirror surface, to a required flatness and surface roughness using fixed abrasive particles. The method comprises, before the surface grinding step using the fixed abrasive particles, a surface roughening step of roughening the surface of the mirror-surface plate glass by frosting.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: September 2, 2014
    Assignee: Hoya Corporation
    Inventors: Takanori Mizuno, Yosuke Suzuki
  • Patent number: 8772174
    Abstract: A method for treating silicon to form pillars, especially for use as the active anode material in Li-ion batteries, is disclosed. The process is simple to operate on a commercial scale since it uses a solution containing only a small number of ingredients whose concentration needs to be controlled and it can be cheaper to operate than previous processes. The solution includes: 0.01 to 5M HF 0.002 to 0.2M of metal ions capable of nucleating on and forming a porous layer comprising regions of elemental metal on the silicon surface; 0.001 to 0.7M of an oxidant selected from the group O2, O3, H2O2, the acid, ammonium or alkali metal salt of NO3?, S2O82?, NO2?, B4O72? and ClO4? or a mixture thereof. The treated silicon is suitably removed from the solution.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: July 8, 2014
    Assignee: Nexeon Ltd.
    Inventors: Mino Green, Feng-Ming Liu, Yuxiong Jiang, Valerie Elizabeth Dawn Stevens, Benjamin Odarkwei Mills-Lamptey
  • Patent number: 8765002
    Abstract: A substrate processing apparatus includes a first processing chamber and a second processing chamber, a first substrate holding unit that holds a substrate in the first processing chamber, a chemical solution supply unit that supplies a chemical solution containing an etching component and a thickening agent to the substrate held by the first substrate holding unit, a substrate transfer unit that transfers the substrate from the first processing chamber to the second processing chamber in a state in which the chemical solution is held on the substrate, and a second substrate holding unit that holds a plurality of substrates on each of which the chemical solution is held in the second processing chamber.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: July 1, 2014
    Assignees: Mitsubishi Gas Chemical Company, Inc., Dainippon Screen Mfg. Co., Ltd.
    Inventors: Tomoyuki Azuma, Kenji Yamada, Hiroyuki Araki, Koji Ando
  • Patent number: 8747689
    Abstract: There are provided a liquid processing method and a liquid processing apparatus capable of providing a high etching rate and a high etching selectivity for silicon nitride against silicon oxide, and a storage medium storing the method thereon. In the method for etching, by an etching solution, a substrate on which silicon nitride and silicon oxide are exposed, the etching solution is produced by mixing a fluorine ion source material, water and a boiling point adjusting agent; the produced etching solution is heated to a substrate processing temperature equal to or higher than 140° C.; after a temperature of the etching solution reaches the substrate processing temperature, the temperature of the etching solution is maintained at the substrate processing temperature for a first preset time; and after a lapse of the first preset time, the substrate is etched by the etching solution maintained at the substrate processing temperature.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: June 10, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Hiroki Ohno, Takehiko Orii
  • Patent number: 8623236
    Abstract: A titanium nitride-stripping liquid for stripping a titanium nitride coating film, the titanium nitride-stripping liquid being capable of stripping a titanium nitride coating film even in a semiconductor multilayer laminate having particularly a layer that includes tungsten or a tungsten alloy, without corrosion of this layer is provided, and furthermore, a titanium nitride-stripping liquid which can strip a titanium nitride coating film without affecting an insulating layer is provided. A titanium nitride-stripping liquid including hydrofluoric acid, hydrogen peroxide and water, and further including an inorganic acid other than hydrofluoric acid.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: January 7, 2014
    Assignee: Tokyo Ohka Kogyo Co., Ltd.
    Inventors: Akira Kumazawa, Takahiro Eto, Takayuki Haraguchi
  • Patent number: 8613863
    Abstract: A method is disclosed for the selective etching of a multi-layer metal oxide stack comprising a platinum or tungsten layer on a TiN layer on an HfO2 or ZrO2 layer on a silicon substrate. In some embodiments, the method comprises a physical sputter process to selectively etch the platinum layer, followed by a first wet etch using a mixture of NH4OH and H2O2 to selectively etch the TiN layer, and a second wet etch using a dilute mixture of HF and HCl to selectively etch the HfO2 or ZrO2 layer.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: December 24, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Jinhong Tong, Frederick Fulgenico, ShouQian Shao
  • Publication number: 20130334173
    Abstract: The invention relates to compositions and methods that are useful in etching a metal surface. In particular, the invention relates to novel acid compositions and methods of using such compositions in etching a metal surface, preferably an aluminum surface prior to anodizing to dissolve impurities, imperfections, scale, and oxide. The compositions are effective in maintaining their etching capacity and in removing smut produced by the etching of a surface as well as in general cleaning.
    Type: Application
    Filed: August 21, 2013
    Publication date: December 19, 2013
    Applicant: Houghton Technical Corp.
    Inventor: Mores Basaly
  • Publication number: 20130299456
    Abstract: Disclosed is a method of removing a work-affected layer formed on the worked surface of a TiAl-based alloy (base material) by machining work, without exerting any adverse effect on the base material. The method of removing a work-affected layer includes a step of dipping a TiAl-based alloy, having a work-affected layer formed on the surface thereof by machining, in an etchant containing predetermined concentrations of hydrofluoric acid and nitric acid, wherein within the etchant, the concentration of the hydrofluoric acid is not less than 5 g/L and not more than 56 g/L, and the concentration of the nitric acid is selected from within a range from not less than 50 g/L to not more than 260 g/L in accordance with a combination of the concentration of the hydrofluoric acid within the etchant and the etching treatment temperature.
    Type: Application
    Filed: March 12, 2013
    Publication date: November 14, 2013
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventor: Taisuke KAMIOKA
  • Patent number: 8518286
    Abstract: The invention relates to compositions and methods that are useful in etching a metal surface. In particular, the invention relates to novel acid compositions and methods of using such compositions in etching a metal surface, preferably an aluminum surface prior to anodizing to dissolve impurities, imperfections, scale, and oxide. The compositions are effective in maintaining their etching capacity and in removing smut produced by the etching of a surface as well as in general cleaning.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: August 27, 2013
    Assignee: Houghton Technical Corp.
    Inventor: Mores Basaly
  • Publication number: 20130126474
    Abstract: The invention describes a process to remove a recast layer and/or burrs from machining processes to provide a surface of a titanium medical device without dissipation of copper or zinc from the surface of the medical device.
    Type: Application
    Filed: November 21, 2011
    Publication date: May 23, 2013
    Inventors: Alan Shi, Bernard Q. Li, Daniel D. Sorensen, Darren A. Janzig
  • Publication number: 20120298626
    Abstract: The invention relates to compositions and methods that are useful in etching a metal surface. In particular, the invention relates to novel acid compositions and methods of using such compositions in etching a metal surface, preferably an aluminum surface prior to anodizing to dissolve impurities, imperfections, scale, and oxide. The compositions are effective in maintaining their etching capacity and in removing smut produced by the etching of a surface as well as in general cleaning.
    Type: Application
    Filed: August 2, 2012
    Publication date: November 29, 2012
    Applicant: Houghton Technical Corp
    Inventor: Mores Basaly
  • Patent number: 8308963
    Abstract: The present invention discloses an etchant for etching at least two different metal layers, the etchant comprising hydrogen peroxide (H2O2) and one of carboxylic acid, carboxylate salt, and acetyl group (CH3CO—). The present invention also discloses a method of fabricating a metal wiring on a substrate, the method comprising forming a first metal layer on a substrate, forming a second metal layer on the first metal layer, and simultaneously etching the first metal layer and the second metal layer with an etchant comprising hydrogen peroxide (H2O2) and one of carboxylic acid, carboxylate salt, and acetyl group (CH3CO—).
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: November 13, 2012
    Assignee: LG Display Co., Ltd.
    Inventors: Gee Sung Chae, Gyoo Chul Jo, Yong Sup Hwang
  • Patent number: 8273262
    Abstract: The invention provides a method for etching which is intended for reducing the thickness of a glass substrate, and which attains a high etching rate and is capable of inhibiting haze generation on the glass substrate surface. The invention relates to a method for etching a glass substrate surface, comprising etching the glass substrate surface in an amount of 1-690 ?m in terms of etching amount, in which the etching is conducted with an etchant having an HF concentration of 1-5 wt % and an HCl concentration of 1 wt % or higher.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: September 25, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Yoshitaka Saijo, Yuichi Suzuki, Ryoji Akiyama, Atsuyoshi Takenaka, Junichiro Kase
  • Patent number: 8257609
    Abstract: The present invention discloses an etchant for etching at least two different metal layers, the etchant comprising hydrogen peroxide (H2O2) and one of carboxylic acid, carboxylate salt, and acetyl group (CH3CO—). The present invention also discloses a method of fabricating a metal wiring on a substrate, the method comprising forming a first metal layer on a substrate, forming a second metal layer on the first metal layer, and simultaneously etching the first metal layer and the second metal layer with an etchant comprising hydrogen peroxide (H2O2) and one of carboxylic acid, carboxylate salt, and acetyl group (CH3CO—).
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: September 4, 2012
    Assignee: LG Display Co., Ltd.
    Inventors: Gee Sung Chae, Gyoo Chul Jo, Yong Sup Hwang
  • Patent number: 8252195
    Abstract: The invention relates to compositions and methods that are useful in etching a metal surface. In particular, the invention relates to novel acid compositions and methods of using such compositions in etching a metal surface, preferably an aluminum surface prior to anodizing to dissolve impurities, imperfections, scale, and oxide. The compositions are effective in maintaining their etching capacity and in removing smut produced by the etching of a surface as well as in general cleaning.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: August 28, 2012
    Assignee: Houghton Technical Corp.
    Inventor: Mores Basaly
  • Patent number: 8153095
    Abstract: Methods for producing highly pure solutions containing hydrogen fluoride, one or more salts thereof or a mixture of two or more thereof, by adding hydrogen fluoride to at least one anhydrous solvent, wherein the hydrogen fluoride is added to the anhydrous solvent or solvents in the form of a gas or as a liquified gas or as a mixture of gas and liquefied gas. High purity hydrogen fluoride and ammonium fluoride solutions produced by the inventive method are also disclosed.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: April 10, 2012
    Assignee: Honeywell International Inc.
    Inventors: Michael A. Dodd, John McFarland, Wolfgang Sievert
  • Patent number: 8021491
    Abstract: A method for selectively removing an aluminum-poor overlay coating from a substrate of a component, which as a result of its low aluminum content is highly resistant to a selective stripping solution. The method entails diffusing aluminum into the overlay coating to form an aluminum-infused overlay coating having an increased aluminum level in at least an outer surface thereof. The diffusion step is carried out so that the increased aluminum level is sufficient to render the aluminum-infused overlay coating removable by selective stripping. The outer surface of the aluminum-infused overlay coating is then contacted with an aqueous composition to remove the aluminum-infused overlay coating from the substrate. The aqueous composition includes at least one acid having the formula HxAF6, and/or precursors thereof, wherein A is Si, Ge, Ti, Zr, Al, and/or Ga, and x is from 1 to 6.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: September 20, 2011
    Inventors: Lawrence Bernard Kool, Michael Howard Rucker, David Edwin Budinger
  • Patent number: 7935642
    Abstract: A method for calculating the amount of solution components to add to an advanced coating removal (ACR) stripping solution in a coating removal stripping bath to replenish and recover stripping potential. The stripping effectiveness may be restored by the addition of only the primary acid of the composition of acids of the stripping bath and fresh water, in an amount necessary to restore the stripping solution to its original density.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: May 3, 2011
    Assignee: General Electric Company
    Inventors: Lawrence B. Kool, Gabriel K. Ofori-Okai
  • Patent number: 7910010
    Abstract: An inkjet head having an electrostatic actuator and a manufacturing method of the same are disclosed. The inkjet head having an electrostatic actuator, comprising a stator, on which is formed a plurality of comb pattern shaped first protrusion parts and second protrusion parts in both directions, and a rotor consisting of a first component and a second component, the ends of which join with the diaphragm, wherein a third protrusion part is formed on the first component, facing the first protrusion parts and meshing with the first protrusion parts without contact; and a fourth protrusion part is formed on the second component, facing the second protrusion parts and meshing with the second protrusion parts without contact, may decrease the size of the head composition and may increase the electrostatic force so that a large displacement may be obtained with little voltage to increase the ink discharge pressure.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: March 22, 2011
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Young-Jae Kim, Jae-Seong Lim, Sung-Il Oh
  • Patent number: 7902081
    Abstract: A method of etching polysilicon includes exposing a substrate comprising polysilicon to a solution comprising water, HF, and at least one of a conductive metal nitride, Pt, and Au under conditions effective to etch polysilicon from the substrate. In one embodiment, a substrate first region comprising polysilicon and a substrate second region comprising at least one of a conductive metal nitride, Pt, and Au is exposed to a solution comprising water and HF. The solution is devoid of any detectable conductive metal nitride, Pt, and Au prior to the exposing. At least some of the at least one are etched into the solution upon the exposing. Then, polysilicon is etched from the first region at a faster rate than any etch rate of the first region polysilicon prior to the etching of the at least some of the conductive metal nitride, Pt, and Au.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: March 8, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Prashant Raghu, Vishwanath Bhat, Niraj Rana
  • Patent number: 7892978
    Abstract: A method of imaging and identifying materials, contamination, fabrication errors, and defects on and below the surface of an integrated circuit (IC) is described. The method may be used in areas smaller than one micron in diameter, and may remove IC layers, either selectively or non-selectively, until a desired depth is obtained. An energetic beam, such as an electron beam, is directed at a selected IC location. The IC has a layer of a solid, fluid or gaseous reactive material, such as a directed stream of a fluorocarbon, formed over the surface of the IC. The energetic beam disassociates the reactive material in or on the region into chemical radicals that chemically attack the surface. The surface may be examined as various layers are selectively removed in the controlled area spot etch, and SEM imaging may then be used to diagnose problems.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: February 22, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Mark J. Williamson, Gurtej S. Sandhu, Justin R. Arrington
  • Patent number: 7887736
    Abstract: A superhydrophobic polymer fabrication is provided. According to one method for preparing a superhydrophobic polymer fabrication, the superhydrophobic polymer fabrication can be fabricated quickly and easily, and the superhydrophobic surface can be repeatedly imprinted using a template, so that mass production of the superhydrophobic polymer fabrication over a large area can be economically implemented.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: February 15, 2011
    Inventors: Jin-Kyu Lee, Yuwon Lee, Kuk-Youn Ju
  • Patent number: 7824564
    Abstract: A method for flattening a glass substrate includes the steps of preparing plural kinds of etching liquids different from one another in an etching rate, preparing the glass substrate, and etching the glass substrate at least one time with each of the etching liquids and executing the etching a plurality of times in total. When the etchings are executed the plurality of times, an etching rate of the glass substrate with one etching liquid used for one etching of plural etchings is slower than that of the glass substrate with the another etching liquid used for another etching executed after the one etching process of the plural etching processes.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: November 2, 2010
    Assignees: Casio Computer Co., Ltd., Sanwa Frost Industries Co., Ltd., Nagase & Co., Ltd.
    Inventor: Kazuyuki Hiroki
  • Patent number: 7628932
    Abstract: A single crystal silicon etching method includes providing a single crystal silicon substrate having at least one trench therein. The substrate is exposed to a buffered fluoride etch solution which undercuts the silicon to provide lateral shelves when patterned in the <100> direction. The resulting structure includes an undercut feature when patterned in the <100> direction.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: December 8, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Whonchee Lee, Janos Fucsko, David H. Wells
  • Publication number: 20090261068
    Abstract: A method for selectively removing an aluminum-poor overlay coating from a substrate of a component, which as a result of its low aluminum content is highly resistant to a selective stripping solution. The method entails diffusing aluminum into the overlay coating to form an aluminum-infused overlay coating having an increased aluminum level in at least an outer surface thereof. The diffusion step is carried out so that the increased aluminum level is sufficient to render the aluminum-infused overlay coating removable by selective stripping. The outer surface of the aluminum-infused overlay coating is then contacted with an aqueous composition to remove the aluminum-infused overlay coating from the substrate. The aqueous composition includes at least one acid having the formula HxAF6, and/or precursors thereof, wherein A is Si, Ge, Ti, Zr, Al, and/or Ga, and x is from 1 to 6.
    Type: Application
    Filed: June 15, 2009
    Publication date: October 22, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Lawrence Bernard Kool, Michael Howard Rucker, David Edwin Budinger
  • Patent number: 7578889
    Abstract: Systematic and effective methodology to clean capacitively coupled plasma reactor electrodes and reduce surface roughness so that the cleaned electrodes meet surface contamination specifications and manufacturing yields are enhanced. Pre-cleaning of tools used in the cleaning process helps prevent contamination of the electrode being cleaned.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: August 25, 2009
    Assignee: Lam Research Corporation
    Inventors: Hong Shih, Yaobo Yin, Shun Jackson Wu, Armen Avoyan, John E. Daugherty, Linda Jiang
  • Patent number: 7575694
    Abstract: A process for chemically stripping a metallic coating on an external surface of a substrate without attacking an internal surface defined by an internal passage within the substrate. Processing steps include depositing within the internal passage a thermally-decomposable wax having a melting temperature above 75° C. so as to mask the internal surface of the substrate, and then treating the substrate with an aqueous solution containing an acid having the formula HxAF6 where A is silicon, germanium, titanium, zirconium, aluminum, or gallium, and x has a value of one to six. The aqueous solution is at a temperature below the melting temperature of the wax and substantially removes the metallic coating from the external surface of the substrate, while the wax is substantially unreactive with the aqueous solution and prevents the aqueous solution from contacting the internal surface of the substrate. Thereafter, the substrate is heated to thermally decompose the wax without producing hazardous byproducts.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: August 18, 2009
    Assignee: General Electric Company
    Inventors: Lawrence Bernard Kool, Stephen Francis Rutkowski
  • Patent number: 7531492
    Abstract: A composition for the production of semiconductors, comprising H2SiF6 and/or HBF4 in a total amount of 10-500 mg/kg, 1-17 % by weight of H2S04, 1-15% by weight of H202, optionally in combination with additives, in aqueous solution and a process of removing residual polymers using the composition.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: May 12, 2009
    Assignee: BASF SE
    Inventors: Raimund Mellies, Marc Boerner, Lucia Arnóld, Andrea Barko, Rudolf Rhein
  • Patent number: 7521373
    Abstract: An improved composition and method for cleaning the surface of a semiconductor wafer are provided. The composition can be used to selectively remove a low-k dielectric material such as silicon dioxide, a photoresist layer overlying a low-k dielectric layer, or both layers from the surface of a wafer. The composition is formulated according to the invention to provide a desired removal rate of the low-k dielectric and/or photoresist from the surface of the wafer. By varying the fluorine ion component, and the amounts of the fluorine ion component and acid, component, and controlling the pH, a composition can be formulated in order to achieve a desired low-k dielectric removal rate that ranges from slow and controlled at about 50 to about 1000 angstroms per minute, to a relatively rapid removal of low-k dielectric material at greater than about 1000 angstroms per minute.
    Type: Grant
    Filed: July 12, 2004
    Date of Patent: April 21, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Donald L Yates
  • Patent number: 7417016
    Abstract: The present invention relates to a composition for the removal of so-called “sidewall residues” from metal surfaces, in particular from aluminium or aluminium-containing surfaces, in particular from aluminium or aluminium-containing surfaces, during the production of semiconductor elements.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: August 26, 2008
    Assignee: BASF SE
    Inventors: Raimund Mellies, Marc Boerner, Lucia Arnold, Andrea Barko, Rudolf Rhein
  • Patent number: 7316785
    Abstract: In a plasma processing system, including a plasma processing chamber, a method of optimizing the etch resistance of a substrate material is described. The method includes flowing pre-coat gas mixture into the plasma processing chamber, wherein the pre-coat gas mixture has an affinity for a etchant gas flow mixture; striking a first plasma from the pre-coat gas mixture; and introducing a substrate comprising the substrate material. The method also includes flowing the etchant gas mixture into the plasma processing chamber; striking a second plasma from the etchant gas mixture; and etching the substrate with the second plasma. Wherein the first plasma creates a pre-coat residual on a set of exposed surfaces in the plasma processing chamber, and the etch resistance of the substrate material is maintained.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: January 8, 2008
    Assignee: Lam Research Corporation
    Inventors: Yoko Yamaguchi Adams, George Stojakovic, Alan Miller
  • Patent number: 7306681
    Abstract: A cleaning method and cleaning recipes are disclosed. The present invention relates to a method for cleaning a semiconductor substrate and cleaning recipes. The present invention utilizes a first cleaning solution including diluted hydrofluoric acid and a second cleaning solution including hydrogen chloride and hydrogen peroxide (H2O2) to clean a semiconductor substrate without using an alkaline solution including ammonium hydroxide. Accordingly, a clean surface of a semiconductor substrate is provided in selective epitaxial growth (SEG) process to grow an epitaxial layer with smooth surface.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: December 11, 2007
    Assignee: United Microelectronics Corp.
    Inventors: Ya-Lun Cheng, Yi-Chia Lee, Yu-Ren Wang, Neng-Hui Yang
  • Patent number: 7172708
    Abstract: A thin-film device is fabricated by forming a protective layer and a thin-film device layer one by one on a first substrate and bonding a second substrate on the thin-film device layer via a first adhesive layer or a coating layer and first adhesive layer, removing the first substrate at least in a part thereof by etching with a chemical solution, bonding the protective layer, which covers the thin-film device layer on a side of the first substrate, to a third substrate via a second adhesive layer, and removing the second substrate. The protective layer is formed of at least two layers having resistance to the chemical solution used upon removal of the first substrate.
    Type: Grant
    Filed: February 19, 2004
    Date of Patent: February 6, 2007
    Assignee: Sony Corporation
    Inventors: Tomoatsu Kinoshita, Akihiko Asano
  • Patent number: 7163897
    Abstract: The invention provides a method of assaying at least one element in a material including silicon. The method includes the steps of decomposing a portion of the material with an etching agent to form a solution containing hexafluorosilicic acid and at least one element to be assayed, heating the solution to a temperature sufficient to transform a substantial portion of the hexafluorosilicic acid into silicon tetrafluoride and to cause at least some of the silicon tetrafluoride to evaporate, such that a solution for assaying is obtained in which the silicon content is reduced while and the elements to be assayed are conserved; and assaying at least one element contained in the solution. The invention is applicable to the field of manufacturing substrates or components for optics, electronics, or optoelectronics, and in particular to the field of quality control.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: January 16, 2007
    Assignee: S.O.I.Tec Silicon on Insulator Technologies S.A.
    Inventor: Laurent Viravaux
  • Patent number: 7135413
    Abstract: A cleaning solution for use in removing a damaged portion of a ferroelectric layer, and a cleaning method using the solution. The cleaning solution includes a fluoride, an organic acid with carboxyl group, an alkaline pH adjusting agent and water.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: November 14, 2006
    Assignee: Samsung Electronics, Co., Ltd.
    Inventors: Kwang-wook Lee, Im-soo Park, Kun-tack Lee, Young-min Kwon, Sang-rok Hah
  • Patent number: 6916429
    Abstract: A process for removing aluminosilicate-based material (e.g., “CMAS”) from a substrate is described. The material is treated with an aqueous composition containing at least one acid having the formula HxAF6, in which A is Si, Ge, Ti, Zr, Al, and Ga; and x is 1-6. Treatment of the substrate is often carried out by immersion in an aqueous bath. The process is also very effective for removing CMAS-type material from cavities in the substrate, e.g., cooling holes in a gas turbine component. Related compositions are also described.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: July 12, 2005
    Assignee: General Electric Company
    Inventors: Lawrence Bernard Kool, Stephen Joseph Ferrigno, Robert George Zimmerman, Jr., Mark Alan Rosenzweig, Curtis Alan Johnson
  • Patent number: 6852472
    Abstract: The removal of defect particles that may be created during polysilicon hard mask etching, and that are embedded within the polysilicon layer, is disclosed. Oxide is first grown in the polysilicon layer exposed through the patterned hard mask layer, so that the defect particle becomes embedded within the oxide. Oxide growth may be accomplished by rapid thermal oxidation (RTO). The oxide is then exposed to an acidic solution, such as hydrofluoric (HF) acid, to remove the oxide and the embedded defect particle embedded therein.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: February 8, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., LTD
    Inventors: Chu-Sheng Lee, Tou-Yu Chen
  • Patent number: 6793738
    Abstract: A method for preparing a solution for treating an article, a treatment solution made thereby, and a method for treating an article with the solution are presented with, for example, the treatment method comprising providing a quantity of treatment solution, the treatment solution comprising an acid having the formula HxAF6, wherein A is selected from the group consisting of Si, Ge, Ti, Zr, Al, and Ga, and x is in the range from about 1 to about 6; determining a concentration of free acid contaminant in the treatment solution; and removing the concentration of free acid contaminant.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: September 21, 2004
    Assignee: General Electric Company
    Inventors: Lawrence Bernard Kool, James Anthony Ruud, Ralph James Carl, Jr., Gabriel Kwadwo Ofori-Okai
  • Publication number: 20040112870
    Abstract: A cleaning solution for use in removing a damaged portion of a ferroelectric layer, and a cleaning method using the solution. The cleaning solution includes a fluoride, an organic acid with carboxyl group, an alkaline pH adjusting agent and water.
    Type: Application
    Filed: December 4, 2003
    Publication date: June 17, 2004
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kwang-Wook Lee, Im-Soo Park, Kun-Tack Lee, Young-Min Kwon, Sang-Rok Hah
  • Patent number: 6706121
    Abstract: In a method of treating substrates a treatment fluid is fed into a collection vessel after treatment, at least a portion of the treatment fluid is withdrawn from the collection vessel and returned to respective reservoir and the collection vessel is rinsed before receiving another treatment fluid.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: March 16, 2004
    Assignee: Mattson Wet Products
    Inventors: Manfred Schenkl, Robert Pesce, John Oshinowo, Uwe Müller
  • Patent number: 6692580
    Abstract: A method of cleaning a dual damascene structure. A first metal layer, a cap layer, and a dielectric layer are formed on a substrate in sequence. Then a dual damascene opening is formed in the dielectric layer and the cap layer, exposing the first metal layer. Then, a post-etching cleaning step is carried out to clean the dual damascene opening, and there are two types of cleaning methods. The first method uses a fluorine-based solvent to clean the dual damascene opening. An alternative cleaning method uses a hydrogen peroxide based solvent at a high temperature, followed by a hydrofluoric acid solvent cleaning step. Then, an argon gas plasma is sputtered to clean the dual damascene opening before a second metal layer fills in the dual damascene opening.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: February 17, 2004
    Assignee: United Microelectronics Corp.
    Inventors: Chih-Ning Wu, Sun-Chieh Chien
  • Patent number: 6638365
    Abstract: A method of preparing a silicon surface for a subsequent processing said such as thermal oxidation, or metal silicide formation, via use of a novel wet chemical clean procedure, has been developed. The novel wet chemical clean procedure is comprised of three specific stages, with the first stage featuring the removal of organic contaminants and the growth of a native oxide layer on the silicon surface. A second stage features removal of the native oxide layer and removal of metallic contaminants from the silicon surface, while the third stage is used to dry the silicon surface. The novel wet chemical clean procedure is performed in less time, and using less chemicals, then counterpart wet chemical cleans also used for the preparation of silicon surfaces for subsequent processing steps.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: October 28, 2003
    Assignees: Chartered Semiconductor Manufacturing Ltd., Institute of Materials Research and Engineering
    Inventors: Jianhui Ye, Simon Chooi, Alex See
  • Patent number: 6605230
    Abstract: The present invention relates to a novel process for removing sidewall residue after dry-etching process. Conventionally, after dry-etching, photoresist and sidewall residues are removed by ozone ashing and hot sulfuric acid. Normally, they are hard to be removed completely. It was found in the present invention that the addition of fluorine-containing compound, preferably hydrogen fluoride and ammonium fluoride, in sulfuric acid results in complete removal of photoresist and sidewall residue without the need for stripper. The process is simple and does not affect the original procedures or the other films on the substrate. The present invention also relates to a novel solution for removing sidewall residue after dry-etching, which comprises sulfuric acid and a fluorine-containing compound, preferably hydrogen fluoride and ammonium fluoride, in the range of from 10:1 to 1000:1 by weight.
    Type: Grant
    Filed: March 26, 1999
    Date of Patent: August 12, 2003
    Assignee: Merck Patent GmbH
    Inventors: Ming-Chi Liaw, Tien-Sheng Chao, Tan-Fu Lei
  • Patent number: 6589882
    Abstract: The invention includes a method of cleaning a surface of a copper-containing material by exposing the surface to an acidic mixture comprising NO3−, F− and one or more organic acid anions having carboxylate groups. The invention also includes a semiconductor processing method of forming an opening to a copper-containing material. A mass is formed over a copper-containing material within an opening in a substrate. The mass contains at least one of an oxide barrier material and a dielectric material. A second opening is etched through the mass into the copper-containing material to form a base surface of the copper-containing material that is at least partially covered by particles comprising at least one of a copper oxide, a silicon oxide or a copper fluoride. The base surface is cleaned with a solution comprising nitric acid, hydrofluoric acid and one or more organic acids to remove at least some of the particles.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: July 8, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Michael T. Andreas, Paul A. Morgan
  • Patent number: 6585910
    Abstract: An etching treatment agent which can etch insulating film with high speeds without damaging the resist pattern, provide realistic throughput when the insulting film etching process in the semiconductor manufacturing process is replaced with the single wafer processing etching treatment method, and prevent roughness on the surface of the semiconductor after etching.
    Type: Grant
    Filed: March 26, 1999
    Date of Patent: July 1, 2003
    Assignee: Stella Chemifa Kabushiki Kaisha
    Inventors: Hirohisa Kikuyama, Masayuki Miyashita, Tatsuhiro Yabune, Tadahiro Ohmi