Nongaseous Phase Etching Of Substrate Patents (Class 216/83)
  • Patent number: 10486101
    Abstract: A gas separation membrane, the gas separation membrane module, and the gas separation device include a first separation layer, and a second separation layer, the first separation layer has an Si/C ratio of 0.3 or less, the Si/C ratio being a ratio of the number of silicon atoms to the number of carbon atoms at the interface of the first separation layer on the second separation layer side, the second separation layer has a maximum value of an F/C ratio of 0.20 or more, the F/C ratio being a ratio of the number of fluorine atoms to the number of carbon atoms, and an Si/C ratio of 0.3 or less in a portion where the F/C ratio is maximum.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: November 26, 2019
    Assignee: FUJIFILM Corporation
    Inventors: Yusuke Mochizuki, Atsushi Mukai, Motoi Harada, Makoto Sawada
  • Patent number: 10421866
    Abstract: Embodiments described herein relate generally to systems and methods for creating durable lubricious surfaces (DLS) via interfacial modification. The DLS can be prepared via a combination of a solid, a liquid, and an additive that modifies the interface between the DLS and a contact liquid, resulting in an interfacial layer that acts as a lubricant and/or protective coating between the DLS and the contact liquid. The lubricating effect created between the additive and the contact liquid results in enhanced slipperiness, as well as the protective properties that can help with durability of the DLS.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: September 24, 2019
    Assignee: LiquiGlide Inc.
    Inventors: C. Benjamin Renner, Bahar M. Alipour, Sruti Balasubramanian, Justin Kleingartner, J. David Smith, Kripa Kiran Varanasi
  • Patent number: 10280367
    Abstract: A method of preparing a solution capable of etching a platable plastic. The method comprises the steps of: (a) providing an electrolyte comprising a solution of manganese(II) in a solution of 9 to 15 molar sulfuric acid or phosphoric acid to an electrolytic cell; (b) applying a current to the electrolytic cell, wherein the electrolytic cell comprises an anode and a cathode; and (c) oxidizing the electrolyte to form manganese(III) ions, wherein the manganese(III) ions form a metastable sulfate complex. Thereafter, a platable plastic may be immersed in the metastable sulfate complex for a period of time to etch the platable substrate prior to subsequent plating steps.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: May 7, 2019
    Inventors: Trevor Pearson, Craig Robinson
  • Patent number: 10227725
    Abstract: Described herein is a continuous process for modifying the properties of polyester and polyester based fibers, such as a poly(butylene terephthalate) (PBT) fiber, comprising subjecting the PBT fiber to alkaline hydrolysis, and optionally further comprising functionalizing the PBT fiber by solution grafting such as fluorination. The alkaline hydrolysis and optionally subsequent functionalization such as fluorination process can be continuous, following the melt blowing/spinning or spun-bonding process. Also described is a nonwoven PBT fiber mat obtained by the surface modification process. Further described is a filtration device comprising the nonwoven PBT fiber mat.
    Type: Grant
    Filed: January 2, 2015
    Date of Patent: March 12, 2019
    Assignees: Cummins Filtration IP, Inc., Regents of the University of Minnesota
    Inventors: Zaifei Wang, Frank S. Bates, Christopher W. Macosko, Kan Wang, William C. Haberkamp, Christopher E. Holm
  • Patent number: 10199243
    Abstract: A substrate processing method is a substrate processing method which applies sequentially common etching processing which is common to each of a plurality of substrates. The common etching processing has an etching step and a high-temperature liquid discharge step. The substrate processing method further includes a piping heating step in which, of the plurality of common etching processings applied to the plurality of substrates, before the initial common etching processing, the pipe wall of the common piping is raised in temperature up to a predetermined second liquid temperature higher than a first liquid temperature and in each of the common etching processings, after each of high-temperature liquid discharge steps and before each of next etching steps, there is not performed a step in which the pipe wall of the common piping is lowered in temperature.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: February 5, 2019
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Kazuhiro Fujita, Atsuyasu Miura, Hiroki Tsujikawa, Yuya Tsuchihashi, Akihiko Taki
  • Patent number: 10100400
    Abstract: A method for recycling a substrate holder adapted to receive a substrate for at least one deposition step of a layer of a material on the substrate also leading to the depositing of a layer of a material on the substrate holder, the method including implanting ion species through a receiving surface of the substrate holder so as to form at least one buried weakened plane delimiting a thin film underneath the receiving surface of the substrate holder, exfoliating the thin film from the substrate holder so as to break up the thin film, and removing a stack including at least one layer of a material deposited on the thin film resulting from the at least one deposition step of the layer of a material on the substrate.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: October 16, 2018
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Frank Fournel, Hubert Moriceau, Marc Zussy
  • Patent number: 10074800
    Abstract: A method of an embodiment includes: mounting a workpiece, which includes the magnetic layer, on an electrostatic chuck provided in a processing container of a plasma processing apparatus; and etching the magnetic layer to generate plasma of a processing gas including isopropyl alcohol and carbon dioxide in the processing container. In an embodiment, a pressure of a space in the processing container is set to be 1.333 Pa or less, a temperature of the electrostatic chuck is set to be ?15° C. or lower, and a partial pressure of isopropyl alcohol is set to be equal to or lower than a saturation vapor pressure of the isopropyl alcohol.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: September 11, 2018
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Shigeru Tahara, Eiichi Nishimura
  • Patent number: 9899229
    Abstract: A substrate processing apparatus includes a phosphoric acid supply device for supplying phosphoric acid aqueous solution onto the upper surface of a substrate held on a spin chuck, a heater for emitting heat toward a portion of the upper surface of the substrate with the phosphoric acid aqueous solution being held on the substrate, a heater moving device for moving the heater to move a position heated by the heater within the upper surface of the substrate, a water nozzle for discharging water therethrough toward a portion of the upper surface of the substrate with the phosphoric acid aqueous solution being held on the substrate and a water nozzle moving device for moving the water nozzle to move the water landing position within the upper surface of the substrate.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: February 20, 2018
    Assignee: SCREEN HOLDINGS CO., LTD.
    Inventors: Taiki Hinode, Takashi Ota, Naoki Fujiwara
  • Patent number: 9837279
    Abstract: In accordance with an embodiment, a manufacturing method of a semiconductor device includes bringing a first catalyst into contact with a workpiece to form an oxide film on a surface of the workpiece, and bringing a second catalyst different from the first catalyst and the oxide film into contact with each other or moving the second catalyst and the oxide film closer to each other to elute the oxide film into a treatment liquid.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: December 5, 2017
    Assignee: Toshiba Memory Corporation
    Inventors: Akifumi Gawase, Yukiteru Matsui, Takahiko Kawasaki
  • Patent number: 9782748
    Abstract: Photo-initiated polymeric ionic liquids, methods of making and methods of using the same are disclosed. A preferred embodiment for making a photo-initiated polymeric ionic liquid (P-PIL) coated support, comprises: mixing at least one ionic liquid (IL) monomer with at least one photo-initiator; at least partially coating a support with the mixture; and exposing the coated support to UV light to form a photo-initiated polymeric ionic liquid (P-PIL) coated support.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: October 10, 2017
    Assignee: The University of Toledo
    Inventor: Jared L. Anderson
  • Patent number: 9739067
    Abstract: The present invention provides is a lightweight environment-friendly polypropylene composite floor comprising, from top to bottom: 1) a scratch-resistant coating layer, 2) a super-transparent wear-resistant layer, 3) a decorative layer, 4) a first substrate layer, 5) a second substrate layer, 6) a bottom connective layer, and optionally 7) a back adhesive layer. Also provided is a preparation process of the composite floor.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: August 22, 2017
    Assignee: MING HE (LUTAI) TECHNOLOGY CO., LTD.
    Inventor: Mingqi Zhang
  • Patent number: 9718336
    Abstract: According to one embodiment, an adhesive tape includes a film and an adhesive layer. The film includes polytetrafluoroethylene and a carbon filler. The adhesive layer is provided on a surface of the film, and includes a silicone pressure-sensitive adhesive.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: August 1, 2017
    Assignee: Chukoh Chemical Industries, Ltd.
    Inventors: Kentaro Tanaka, Masayuki Sueishi
  • Patent number: 9718972
    Abstract: An ink disclosed herein comprises a carrier liquid with a dispersion of flakes derived from a layered material. The thickness of each flake depends on the number of layers of the layered material in the flake. The thickness distribution of the flakes includes: at least 20% by number of single layer flakes; at least 40% by number cumulatively of single, double and triple layer flakes; or not more than 40% by number of flakes having ten or more layers. The layered material is selected from one or more of elemental materials such as graphene (typically derived from pristine graphite), metals (e.g., NiTe2, VSe2), semi-metals (e.g., WTa2, TcS2), semiconductors (e.g., WS2, WSe2, MoS2, MoTe2, TaS2, RhTe2, PdTe2), insulators (e.g., h-BN, HfS2), superconductors (e.g., NbS2, NbSe2, NbTe2, TaSe2) and topological insulators and thermo-electrics (e.g., Bi2Se3, Bi2Te3). Also disclosed are methods of manufacturing suitable inks and uses of the inks.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: August 1, 2017
    Assignee: Cambridge Enterprise Limited
    Inventors: Felice Torrisi, Tawfique Hasan, Francesco Bonaccorso, Andrea Carlo Ferrari
  • Patent number: 9718710
    Abstract: According to one embodiment, a treatment apparatus includes a dialysis unit, a treatment unit and a recovery unit. The dialysis unit is configured to dialyze a solution including a phosphoric acid, a silicon compound, and water. The treatment unit is configured to perform treatment of an object to be treated using a dialyzed solution. The recovery unit is configured to recover a solution used in the treatment of the object to be treated and supply to the dialysis unit. The dialysis unit includes a transmission part which allows anions to be transmitted. The recovery unit supplies the solution used in the treatment of the object to be treated, to a region in the dialysis unit. The region is divided by the transmission part.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: August 1, 2017
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaaki Hirakawa, Emi Matsui
  • Patent number: 9640382
    Abstract: In a substrate processing apparatus, with an internal space of a chamber brought into a reduced pressure atmosphere, a first processing liquid is supplied onto an upper surface of a substrate while the substrate is rotated, and the first processing liquid is thereby quickly spread from a center portion toward a peripheral portion on the upper surface of the substrate. It is thereby possible to coat the upper surface of the substrate with the first processing liquid in a shorter time as compared with under normal pressure. Further, by sucking the first processing liquid from the vicinity of an edge of the substrate, it is possible to coat the upper surface of the substrate with the first processing liquid in a still shorter time. As a result, it is possible to shorten the time required for the processing of the substrate.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: May 2, 2017
    Assignee: SCREEN HOLDINGS CO., LTD.
    Inventors: Hirofumi Masuhara, Kenichiro Arai, Masahiro Miyagi, Toru Endo
  • Patent number: 9614261
    Abstract: Herein is disclosed a process for recycling electrode material from lithium-ion batteries, comprising harvesting a mixture of anode and cathode electrode materials from waste lithium-ion batteries, and separating the anode electrode material from the cathode electrode material by means of dense liquid separation. The mixed anode and cathode material is suspended in a liquid that has a density between those of the anode material and cathode material, such that the anode material rises to the top of the dense liquid and the cathode material sinks to the bottom of the dense liquid. The thus separated materials can easily be collected and further purified and regenerated for reuse in new lithium-ion batteries, providing an efficient and low-cost method for recycling electrode active materials from waste lithium-ion batteries.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: April 4, 2017
    Assignee: Farasis Energy, Inc.
    Inventors: Keith D. Kepler, Floris Tsang, Robbert Vermeulen, Phillip Hailey
  • Patent number: 9599892
    Abstract: A composition for pattern formation includes a block copolymer and a solvent. The block copolymer includes a group including a reactive group on at least one end of a main chain of the block copolymer. A pattern-forming method includes providing a directed self-assembling film directly or indirectly on a substrate using the composition. The directed self-assembling film includes a phase separation structure which includes a plurality of phases. A part of the plurality of phases of the directed self-assembling film is removed.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: March 21, 2017
    Assignee: JSR CORPORATION
    Inventors: Hiroyuki Komatsu, Takehiko Naruoka, Shinya Minegishi, Tomoki Nagai
  • Patent number: 9587065
    Abstract: A composition for pattern formation includes a block copolymer. The block polymer includes a first labile group at an end of a main chain of the block copolymer. The first acid liable group is capable of being dissociated by an acid or heat. The composition preferably further contains an acid generator that generates an acid upon application of an energy. The block copolymer is preferably capable of forming a phase separation structure through directed self-assembly. The first labile group is preferably represented by formula (a). R represents a monovalent organic group having 1 to 20 carbon atoms; R? represents a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms; and * denotes a binding site to an atom at the end of the main chain of the block copolymer.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: March 7, 2017
    Assignee: JSR CORPORATION
    Inventors: Hiroyuki Komatsu, Shinya Minegishi, Takehiko Naruoka, Tomoki Nagai
  • Patent number: 9558953
    Abstract: An etching method, having the step of applying an etching liquid onto a TiN-containing layer in a semiconductor substrate thereby etching the TiN-containing layer, the etching liquid comprising water, and a basic compound and an oxidizing agent in water thereof to be within the range of pH from 8.5 to 14, and the TiN-containing layer having a surface oxygen content from 0.1 mol % to 10 mol %.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: January 31, 2017
    Assignee: FUJIFILM Corporation
    Inventors: Naotsugu Muro, Tetsuya Kamimura, Tadashi Inaba, Takahiro Watanabe, Kee Young Park
  • Patent number: 9528188
    Abstract: The present invention provides a method of improving lifetime of etching liquid and yield in Cu-interconnection process and a Cu-interconnection etching device. The method comprises: step 1, providing an etching spray rising tank (1) and an etching liquid tank (2) connected to the etching spray rising tank (1), and the etching liquid tank (2) contains etching liquid; step 2, employing a first concentration monitoring device (4) to measure a copper ion concentration of the etching liquid in the etching liquid tank (2), and employing a filter (5) to perform copper ion filtering to the etching liquid in the etching liquid tank (2); step 3, employing a second concentration monitoring device (6) to measure a copper ion concentration of the etching liquid after filtering in the step 2, and controlling an amount of the filters (5) employed in the step 2 and reflowing the etching liquid after filtering to the etching liquid tank (2).
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: December 27, 2016
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd
    Inventor: Xudong Zhang
  • Patent number: 9506150
    Abstract: The plastisol coated plating tools are used to secure polymer containing substrates in electroless plating baths during electroless plating of the polymers. To prevent metallization of the plastisol coated plating tools during electroless metallization, compositions of sulfur compounds are applied to the plastisol. After metallization the plastisol coated plating tools may be re-used without the need to strip the unwanted metal from the tools.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: November 29, 2016
    Inventors: Katharina Weitershaus, Andreas Scheybal, Wan Zhang-Beglinger
  • Patent number: 9460934
    Abstract: An silicon-containing antireflective coating (SiARC) material is applied on a substrate. The SiARC material which includes a base polymer and may include a boron silicate polymer including silsesquioxane. An etch sequence is utilized, which includes a first wet etch employing a basic solution, a second wet etch employing an acidic solution, and a third wet etch employing another basic solution. The first wet etch can be employed to break up the boron silicate polymer, and the second wet etch can remove the base polymer material, and the third wet etch can remove the residual boron silicate polymer and other residual materials. The SiARC material can be removed from a substrate employing the etch sequence, and the substrate can be reused for monitoring purposes.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 4, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Martin Glodde, Wu-Song Huang, Javier J. Perez, Takeshi Kinsho, Tsutomu Ogihara, Seiichiro Tachibana, Takeru Watanabe
  • Patent number: 9431277
    Abstract: A substrate treatment method for treating a substrate including a first silicon nitride film provided on a front surface thereof and a silicon oxide film provided on the first silicon nitride film to remove the first silicon nitride film and the silicon oxide film from the substrate includes: a first phosphoric acid treatment step of supplying a phosphoric acid aqueous solution having a predetermined first concentration to the substrate held by a substrate holding unit to treat the substrate with the first concentration phosphoric acid aqueous solution for the removal of the first silicon nitride film; and a second phosphoric acid treatment step of supplying a phosphoric acid aqueous solution having a second concentration lower than the first concentration to the substrate to treat the substrate with the second concentration phosphoric acid aqueous solution for the removal of the silicon oxide film after the first phosphoric acid treatment step.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: August 30, 2016
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Taiki Hinode, Takashi Ota, Kazuhide Saito
  • Patent number: 9423606
    Abstract: A method of manufacturing an electrowetting device including dispensing a fluid from a channel and onto a surface of a support plate. The channel is formed by a part of the surface of the support plate, an interface between the fluid and another fluid, and a further surface which is for example a surface of a roller.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: August 23, 2016
    Assignee: Amazon Technologies, Inc.
    Inventor: Ivar Schram
  • Patent number: 9416454
    Abstract: A method for conversion treating a surface of a magnesium alloy workpiece includes the following steps: providing a magnesium alloy workpiece, degreasing the magnesium alloy workpiece, acid pickling the magnesium alloy workpiece in a first acid pickling treatment step, surface conditioning the magnesium alloy workpiece in a first surface conditioning treatment step, acid pickling the magnesium alloy workpiece in a second acid pickling treatment step, surface conditioning the magnesium alloy workpiece in a second surface conditioning treatment step, pre-phosphating the magnesium alloy workpiece in a pre-phosphating treatment step, and phosphating the magnesium alloy workpiece in a phosphating treatment step to form a phosphating film on the surface of the magnesium alloy workpiece.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: August 16, 2016
    Assignees: Fu Zhun Precision Industry (Shen Zhen) Co., Ltd., Foxconn Technology Co., Ltd.
    Inventors: Hao-Wei Chen, Wu-Bin Li, Yong-Hui Gao, Kun Qian
  • Patent number: 9387444
    Abstract: A pressure-based chemical etch method is used to shape polymer nanopores into cones. By varying the pressure, the pore tip diameter can be controlled, while the pore base diameter is largely unaffected. The method provides an easy, low-cost approach for conically etching high density nanopores.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: July 12, 2016
    Assignee: Sandia Corporation
    Inventors: Leo J. Small, Erik David Spoerke, David R. Wheeler
  • Patent number: 9384990
    Abstract: The present invention relates to a method for decreasing the impedance of a titanium nitride element for use in an electrode component. The method comprises obtaining a titanium nitride element and hydrothermally treating the titanium nitride element by immersing the titanium nitride element in a liquid comprising water while heating said liquid.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: July 5, 2016
    Assignee: IMEC VZW
    Inventor: Silke Musa
  • Patent number: 9340729
    Abstract: A high-efficiency and high-quality acidic cupric chloride etchant for printed circuit board, which contains cupric chloride, a sub-etchant and an oxidant, where the sub-etchant includes (in percentage by weight) 1%-36.5% of Hcl; 0.01%-45% of one or more compounds selected from FeCl3, FeCl2, Fe, FeO and Fe2O3. The etchant is used in connection with an automatic detection and charging control during the etching process to ensure the concentration of copper ions, the concentration of dissociated hydrogen ions and the oxidation-reduction potential in the solution arriving at set numerical values.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: May 17, 2016
    Inventor: Tao Ye
  • Patent number: 9327966
    Abstract: A composition is provided that is effective for removing post etch treatment (PET) polymeric films and photoresist from semiconductor substrates. The composition exhibits excellent polymer film removal capability while maintaining compatibility with copper and low-? dielectrics and contains water, ethylene glycol, a glycol ether solvent, morpholinopropylamine and a corrosion inhibiting compound and optionally one or more metal ion chelating agent, one or more other polar organic solvent, one or more tertiary amine, one or more aluminum corrosion inhibition agent, and one or more surfactant.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: May 3, 2016
    Assignee: AVANTOR PERFORMANCE MATERIALS, INC.
    Inventors: William R. Gemmill, Glenn Westwood
  • Patent number: 9276059
    Abstract: Methods of forming metal oxide structures and methods of forming metal oxide patterns on a substrate using a block copolymer system formulated for self-assembly. A block copolymer at least within a trench in the substrate and including at least one soluble block and at least one insoluble block may be annealed to form a self-assembled pattern including a plurality of repeating units of the at least one soluble block laterally aligned with the trench and positioned within a matrix of the at least one insoluble block. The self-assembled pattern may be exposed to a metal oxide precursor that impregnates the at least one soluble block. The metal oxide precursor may be oxidized to form a metal oxide. The self-assembled pattern may be removed to form a pattern of metal oxide lines on the substrate surface. Semiconductor device structures are also described.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: March 1, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Dan B. Millward, Timothy A. Quick, J. Neil Greeley
  • Patent number: 9263162
    Abstract: A method is provided for producing a microstructure. The method includes the first step of forming a supporting layer on a base substrate including a silicon substrate provided with recessed sections at a first surface thereof and a metal structure filling the recessed sections so as to come in contact with the metal structure at the first surface, the second step of forming a structure including the metal structure and the supporting layer by selectively etching the silicon substrate to expose at least the surface of the metal structure opposite the surface in contact with the supporting layer from the silicon substrate, and the third step of selectively etching the supporting layer of the metal structure.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: February 16, 2016
    Assignee: Canon Kabushiki Kaisha
    Inventor: Takayuki Teshima
  • Patent number: 9142420
    Abstract: Methods for fabricating sublithographic, nanoscale arrays of openings and linear microchannels utilizing self-assembling block copolymers, and films and devices formed from these methods are provided. Embodiments of the invention use a self-templating or multilayer approach to induce ordering of a self-assembling block copolymer film to an underlying base film to produce a multilayered film having an ordered array of nanostructures that can be removed to provide openings in the film which, in some embodiments, can be used as a template or mask to etch openings in an underlying material layer.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: September 22, 2015
    Assignee: Micron Technology, Inc.
    Inventor: Dan B. Millward
  • Patent number: 9130110
    Abstract: Hot melt etch resist is selectively applied to an anti-reflective coating or a selective emitter on a semiconductor wafer. The exposed portions of the anti-reflective coating or selective emitter are etched away using an inorganic acid containing etch to expose the semiconductor surface. The hot melt etch resist is then stripped from the semiconductor with an alkaline stripper which does not compromise the electrical integrity of the semiconductor. The exposed semiconductor is then metalized to form current tracks.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: September 8, 2015
    Inventors: Hua Dong, Robert K. Barr
  • Patent number: 9092004
    Abstract: There is provided a process for producing an end member capable of improving adhesiveness without not always requiring grooves or rough surfaces at a fitting portion of the end member, at the time of joining a photo conductor drum having an aluminum-made or aluminum alloy-made substrate and a crystalline resin-made end member with an adhesive. A process for producing an end member to be mounted on an end portion of a photo conductor drum and formed of a material including a crystalline resin, wherein the end member has a fitting portion to be fitted to the end portion of the photo conductor drum and the process has a step of subjecting at least an outer surface of the fitting portion to an oxidation treatment.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: July 28, 2015
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shuichi Ikeda, Takeshi Hiramatsu, Masakatsu Murayama
  • Patent number: 9053923
    Abstract: Methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes forming etch resistant fill control topographical features that overlie a semiconductor substrate. The etch resistant fill control topographical features define an etch resistant fill control confinement well. A block copolymer is deposited into the etch resistant fill control confinement well. The block copolymer is phase separated into an etchable phase and an etch resistant phase. The etch resistant fill control topographical features direct the etch resistant phase to form an etch resistant plug in the etch resistant fill control confinement well.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: June 9, 2015
    Assignee: GLOBALFOUNDRIES, INC.
    Inventors: Azat Latypov, Edward Teoh Kah Ching, He Yi
  • Publication number: 20150148436
    Abstract: A pressure-based chemical etch method is used to shape polymer nanopores into cones. By varying the pressure, the pore tip diameter can be controlled, while the pore base diameter is largely unaffected. The method provides an easy, low-cost approach for conically etching high density nanopores.
    Type: Application
    Filed: November 17, 2014
    Publication date: May 28, 2015
    Inventors: Leo J. Small, Erik David Spoerke, David R. Wheeler
  • Patent number: 9034201
    Abstract: A method of forming an implant to be implanted into living bone is disclosed. The method comprises the act of roughening at least a portion of the implant surface to produce a microscale roughened surface. The method further comprises the act of immersing the microscale roughened surface into a solution containing hydrogen peroxide and a basic solution to produce a nanoscale roughened surface consisting of nanopitting superimposed on the microscale roughened surface. The nanoscale roughened surface has a property that promotes osseointegration.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: May 19, 2015
    Assignee: Biomet 3i, LLC
    Inventors: Robert L. Mayfield, Ross W. Towse
  • Patent number: 9034277
    Abstract: A microfluidic cartridge having a microfluidic channel may have at least one surface that has been roughened, etched or otherwise treated to alter its surface characteristics. In some instances, a microfluidic cartridge may have a microfluidic channel that is configured to provide even distribution of a lysing reagent across the channel. The surface may be roughened or etched using a laser, an abrasive, application of a solvent or in any other suitable manner.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: May 19, 2015
    Assignee: Honeywell International Inc.
    Inventors: Alex Gu, Mark Washa
  • Publication number: 20150129547
    Abstract: Coated film is removed at an outer peripheral edge of a substrate before heat-treating in CSD method by spraying or dropping liquid for removing CSD coated film including water and organic solvent mixed in a weight ratio of 50:50 to 0:100, in which the organic solvent is one or more selected from the group consisting of ?-diketones, ?-ketoesters, polyhydric alcohol, carboxylic acids, alkanolamines, ?-hydroxy carboxylic acid, ?-hydroxy carbonyl derivatives, and hydrazone derivatives.
    Type: Application
    Filed: January 16, 2015
    Publication date: May 14, 2015
    Inventors: Nobuyuki Soyama, Toshiaki Watanabe, Hideaki Sakurai
  • Patent number: 9023217
    Abstract: A patterned transparent conductor including a conductive layer coated on a substrate is described. More specifically, the transparent conductor can be patterned by screen-printing an acidic etchant formulation on the conductive layer. A screen-printable etchant formulation is also disclosed.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: May 5, 2015
    Assignee: Cambrios Technologies Corporation
    Inventors: Adrian Winoto, Jeffrey Wolk
  • Patent number: 9023228
    Abstract: A pickling solution for the surface pre-treatment of plastic surfaces in preparation for metallization, the solution comprising a source of Mn(VII) ions; and an inorganic acid; wherein the pickling solution is substantially free of chromium (VI) ions, alkali ions, and alkaline-earth ions.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: May 5, 2015
    Assignee: Enthone Inc.
    Inventors: Mark Peter Schildmann, Ulrich Prinz, Christoph Werner
  • Patent number: 9023218
    Abstract: Methods of fabricating the fusible link are directed to processing a multi-layer clad foil having a first layer suitable for forming a fusible link and a second layer suitable for forming one or more welding tabs. In some embodiments, the first layer is an aluminum layer and the second layer is a nickel layer. A two-step etching process or a single step etching process is performed on the clad foil to form an etched clad foil having multiple tabs made of the second layer and connected to the current collector conductor pads and battery cell conductor pads, and one or more connections made of the first layer that form aluminum conductors. The aluminum conductors are shaped and sized to form aluminum fusible conductors during either the etching process or a subsequent stamping process. A single fusible link or an array of fusible links can be formed.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: May 5, 2015
    Assignee: SinoElectric Powertrain Corporation
    Inventors: Peng Zhou, Paul Tsao
  • Publication number: 20150119238
    Abstract: A method for marking an item including a shape memory polymer (SMP) having a visual readable and/or machine readable graphic element on the surface of the item. The method includes pretreating the surface of the item; colouring the surface of the item with a dye solution containing an organic dye and an organic solvent; cleaning and drying the surface of the item; and engraving by at least partially ablating the surface of the item. The dyeing process is suitable for colouring the surface of a shape memory polymer (SMP), wherein the information is engraved in a form of a code or other label on the coloured surface. The colouring causes an increased contrast and thus facilitates machine readability of marking and coding without affecting the other properties of the SMP.
    Type: Application
    Filed: October 26, 2012
    Publication date: April 30, 2015
    Inventors: Thorsten Pretsch, Melanie Ecker, Markus Schildhauer
  • Patent number: 9017561
    Abstract: A piezo-resistive MEMS resonator comprising an anchor, a resonator mounted on the anchor, an actuator mounted to apply an electrostatic force on the resonator and a piezo-resistive read-out means comprising a nanowire coupled to the resonator.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: April 28, 2015
    Assignee: NXP, B.V.
    Inventors: Gerhard Koops, Jozef Thomas Martinus van Beek
  • Patent number: 9017567
    Abstract: A chemical treatment apparatus and a method for performing a chemical treatment of a wafer, etc., by supplying a chemical via a cell. The apparatus includes a cylindrical inner cell and a cylindrical outer cell with open ends disposed at an outer circumference of the inner cell. The outer cell is axially movable to vary the width of a slit formed between a bottom end of the outer cell and a top surface of the substrate-holding means by the axial movement, thereby adjusting the discharge rate of the chemical and varying the pressure of the chemical.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: April 28, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yoshiaki Tomari
  • Patent number: 9011704
    Abstract: A method according to one embodiment includes contacting an oxidant with an AlTiC portion of a magnetic head for recessing TiC grains of the AlTiC portion. A method according to another embodiment includes contacting a peroxide with an AlTiC portion of a magnetic head for recessing TiC grains of the AlTiC portion from a media bearing surface of the AlTiC portion.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: April 21, 2015
    Assignee: International Business Machines Corporation
    Inventors: Robert G. Biskeborn, Cherngye Hwang, Jason Liang, Calvin S. Lo
  • Patent number: 9011707
    Abstract: An etching method that uses an etch reactant retained within at least a semi-solid media (120, 220, 224, 230). The etch reactant media is applied to selectively etch a surface layer (106, 218, 222). The etch reactant media may be applied to remove metal shorts (222), smearing and eaves resulting from CMP or in failure analysis for uniform removal of a metal layer (218) without damaging the vias, contact, or underlying structures.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: April 21, 2015
    Assignee: Texas Instruments Incorporated
    Inventor: Darwin Rusli
  • Patent number: 9005458
    Abstract: Disclosed method and apparatus embodiments provide a photonic device with optical isolation from a supporting substrate. A generally rectangular cavity in cross section is provided below an element of the photonic device and the element may be formed from a ledge of the supporting substrate which is over the cavity.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: April 14, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Sandhu, Roy Meade
  • Patent number: 9005456
    Abstract: Disclosed herein is a method for manufacturing a printed circuit board, wherein a protective film for stripping and a metal layer closely adhered to the protective film for stripping are formed on an inner layer pad to protect the inner layer pad at the time of laser processing related to cavity processing and applying an etchant, thereby making it possible to improve reliability of a product.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: April 14, 2015
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Kwang Sun You, Seung Ryeol Lee, Sang Hoon Park, Kyung Jin Heo, Jae Ho Shin, Joong Hyuk Jung
  • Patent number: 9005464
    Abstract: A tool and method is provided for mixing multiple components and feeding a single blend of the multiple components into the tool. The method includes adjusting a concentration of etchant solution. The method includes determining an etch target for each batch of wafers of a plurality of batches of wafers entering an etch chamber of a wafer processing tool. The method further includes adjusting a concentration of 40% NH4F to 49% HF for the each batch of wafers of the plurality of batches of wafers entering the wafer processing tool during a single run.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: April 14, 2015
    Assignee: International Business Machines Corporation
    Inventors: Russell H. Arndt, David F. Hilscher