Forming Or Treating Article Containing Magnetically Responsive Material Patents (Class 216/22)
  • Patent number: 8333008
    Abstract: A method and system for fabricating a perpendicular magnetic recording head, and the head so formed, are described. The method includes depositing an underlayer directly on an insulating layer. The underlayer preferably includes at least one of a nonferromagnetic metal, silicon oxide, and silicon nitride. A pole layer, which has a pole removal rate, is provided on the underlayer. The method and system further include forming a perpendicular magnetic recording pole from the pole layer. The perpendicular magnetic recording pole has a top and a bottom that is narrower than the top. The process of forming the perpendicular magnetic recording pole further includes removing a portion of the pole layer such that a pole removal rate for the pole layer is less than or substantially equal to a removal rate of the underlayer during the removing step.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: December 18, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Kyusik Sin, Lei Wang, Yingjian Chen
  • Publication number: 20120314324
    Abstract: A PMR writer is disclosed that includes at least one of a recessed center section in the write pole trailing edge and a center recessed trailing shield to improve the field gradient at track edge. In all embodiments, there is a non-uniform write gap between the trailing edge and the trailing shield. The recessed portion of the write pole trailing edge and/or center recess of the trailing shield has a thickness from 10 to 40 nm in a down-track direction and a width in a cross-track direction of 20 to 200 nm. The distance between the center recess and a corner of the trailing edge is from 20 to 80 nm. A sequence of steps is provided to fabricate the two embodiments of the present invention.
    Type: Application
    Filed: June 10, 2011
    Publication date: December 13, 2012
    Inventor: Lijie Guan
  • Patent number: 8327523
    Abstract: There is provided a method of making two electrically separated inductors using deposition and wet-etching techniques, which inductors are formed by interwinding one of the inductors within the other inductor on the same planar level. In still another aspect of the invention, there is provided a method of making various levels inductors, each level having at least two electrically separated inductors, using deposition and wet-etching techniques. The inductors on each planar level are formed by interwinding one of the inductors within the other inductor, and then stacking these in a preferred manner. In still another aspect, there is provided a manner of connecting together inductors formed according to the above methods in order to achieve various inductor configurations.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: December 11, 2012
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Adam J. Whitworth, Wenjiang Zeng
  • Patent number: 8329053
    Abstract: In accordance with an illustrative embodiment, a method of fabricating a transducer is described. The method comprises providing a transducer over a first surface of a substrate, wherein the substrate comprises a thickness. The method further comprises patterning a mask over a second surface. The mask comprises an opening for forming a scribe etch. The method comprises etching through the opening in the mask and into but not through the thickness of the substrate to provide the scribe etch.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: December 11, 2012
    Assignee: Avago Technologies Wireless IP (Singapore) Pte. Ltd.
    Inventors: David Martin, Joel Philliber
  • Patent number: 8329001
    Abstract: To provide a filmy structure of a nanometer size having a phase-separated structure effective for the case where a compound can be formed between two kinds of materials. A structure constituted by a first member containing a compound between an element A except both Si and Ge and SinGe1-n (where 0?n?1) and a second member containing one of the element A and SinGe1-n (where 0?n?1), in which one of the first member and the second member is a columnar member, formed on a substrate, whose side face is surrounded by the other member, the ratio Dl/Ds of an average diameter Dl in the major axis direction to an average diameter Ds in the minor axis direction of a transverse sectional shape of the columnar member is less than 5, and the element A is one of Li, Na, Mg, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Cs, Ba, La, Hf, Ta, W, Re, Os, Ir, Pt, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and B.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: December 11, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Nobuhiro Yasui, Ryoko Horie, Toru Den
  • Patent number: 8323727
    Abstract: A method for manufacturing a magnetic write head that has a trailing magnetic shield with a tapered write pole trailing edge, a non-magnetic step layer and a Ru bump and an alumina bump formed at the front of the non-magnetic step layer. The process forms a Ru/alumina side wall at the sides of the write pole, such that the Ru side wall is closest to the write pole. The Ru is removed more readily than the alumina during the ion milling that is performed to taper the write pole. This causes the Ru portion of the side wall to taper away from the write pole rather than forming an abrupt step. This tapering prevents dishing of the trailing edge of the write pole for improved write head performance.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: December 4, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Aron Pentek, Yi Zheng
  • Patent number: 8323517
    Abstract: A method of forming a magnetic pole section of a perpendicular magnetic recording type thin-film magnetic head and a method of manufacturing a perpendicular magnetic recording type thin-film magnetic head that include forming on an under layer a resist pattern having an opening, forming a first nonmagnetic layer, forming a first magnetic layer forming a magnetic layer pattern, removing the resist pattern and then applying a resist layer onto a first nonmagnetic layer and a magnetic layer pattern, developing or ashing partway the applied resist layer and baking the remaining resist layer, removing the first nonmagnetic layer from at least a side surface of the magnetic layer pattern by etching with the baked resist layer being left, removing all of the resist layer and then forming a second nonmagnetic layer on at least the magnetic layer pattern, and forming a second magnetic layer on the formed second nonmagnetic layer.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: December 4, 2012
    Assignee: TDK Corporation
    Inventors: Hisayoshi Watanabe, Hideyuki Yatsu, Masachika Hashino, Koichi Otani
  • Patent number: 8323515
    Abstract: A method for making a master disk to be used for nanoimprinting patterned-media magnetic recording disks uses sidewall lithography. In one implementation, the master disk substrate has a first pattern of concentric rings formed on it by sidewall lithography, followed by a second pattern of generally radially-directed pairs of parallel lines, also formed by sidewall lithography, with the pairs of parallel lines intersecting the rings. An etching process is then performed, using the upper pattern as an etch mask, to remove unprotected portions of the underlying concentric rings. This leaves a pattern of pillars on the substrate, which then serve as an etch mask for an etching process that etches unprotected portions of the master disk substrate. The resulting master disk then has pillars of substrate material arranged in a pattern of concentric rings and generally radially-directed pairs of parallel lines.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: December 4, 2012
    Assignee: Hitachi Global Technologies Netherlands B.V.
    Inventor: Thomas R. Albrecht
  • Publication number: 20120298621
    Abstract: A method for fabricating a structure in magnetic recording head is described. First and second hard mask layers are provided on the layer(s) for the structure. A BARC layer and photoresist mask having a pattern are provided on the second hard mask layer. The pattern includes a line corresponding to the structure. The pattern is transferred to the BARC layer and the second hard mask layer in a single etch using an etch chemistry. At least the second hard mask layer is trimmed using substantially the same first etch chemistry. A mask including a hard mask line corresponding to the line and less than thirty nanometers wide is thus formed. The pattern of the second hard mask is transferred to the first hard mask layer. The pattern of the first hard mask layer is transferred to the layer(s) such that the structure has substantially the width.
    Type: Application
    Filed: May 25, 2011
    Publication date: November 29, 2012
    Applicant: WESTERN DIGITAL (FREMONT), LLC
    Inventor: WEI GAO
  • Patent number: 8318031
    Abstract: A method for manufacturing a magnetic write head having a write pole with a tapered leading edge and a tapered trailing edge. The method includes forming a non-magnetic bump player over a surface, forming a mask over the non-magnetic bump layer and performing a first ion milling to form a tapered back edge on the non-magnetic bump layer. A magnetic write pole material is then deposited over the surface and over the non-magnetic bump layer. Then a non-magnetic step structure is formed over the magnetic write pole material and an ion milling is performed to form a taper on the upper surface of the write pole. The write pole lateral dimensions can then be defined, and a non-magnetic bump formed over the tapered portion of the upper surface of the write pole. Another ion milling can then be performed to extend the taper of the surface of the write pole.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: November 27, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Aron Pentek, Thomas J. A. Roucoux, Yi Zheng
  • Patent number: 8318030
    Abstract: A method of fabricating a magnetic device is described. A mask removing layer is formed on a layered sensing stack and a hard mask layer is formed on the mask removing layer. A first reactive ion etch is performed with a non-oxygen-based chemistry to define the hard mask layer using an imaged layer formed on the hard mask layer as a mask. A second reactive ion etch is performed with an oxygen-based chemistry to define the mask removing stop layer using the defined hard mask layer as a mask. A third reactive ion etch is performed to define the layered sensing stack using the hard mask layer as a mask. The third reactive ion etch includes an etching chemistry that performs at a lower etching rate on the hard mask layer than on the layered sensing stack.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: November 27, 2012
    Assignee: Seagate Technology LLC
    Inventors: Xilin Peng, Stacey C. Wakeham, Yifan Zhang, Zhongyan Wang, Konstantin R. Nikolaev, Mark Henry Ostrowski, Yonghua Chen, Juren Ding
  • Publication number: 20120292287
    Abstract: In a method of forming a main pole, an initial accommodation layer is etched by RIE using a first etching mask having a first opening, whereby a groove is formed in the initial accommodation layer. Next, a part of the initial accommodation layer including the groove is etched by RIE using a second etching mask having a second opening, so that the groove becomes an accommodation part. The main pole is then formed in the accommodation part. The first etching mask has first and second sidewalls that face the first opening and are opposed to each other at a first distance in a track width direction. The second etching mask has third and fourth sidewalls that face the second opening and are opposed to each other at a second distance greater than the first distance.
    Type: Application
    Filed: May 18, 2011
    Publication date: November 22, 2012
    Applicant: HEADWAY TECHNOLOGIES, INC.
    Inventors: Hironori ARAKI, Yoshitaka SASAKI, Hiroyuki ITO, Kazuki SATO, Shigeki TANEMURA, Yukinori IKEGAWA
  • Publication number: 20120295442
    Abstract: A chemical mechanical polishing pad having a polishing layer with an integral window and a polishing surface adapted for polishing a substrate selected from a magnetic substrate, an optical substrate and a semiconductor substrate, wherein the formulation of the integral window provides improved defectivity performance during polishing. Also provided is a method of polishing a substrate using the chemical mechanical polishing pad.
    Type: Application
    Filed: July 31, 2012
    Publication date: November 22, 2012
    Applicant: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Mary Jo Kulp, Shannon Holly Williams
  • Publication number: 20120294474
    Abstract: An electromagnetic device includes a housing, a planar coil disposed inside the housing, and a magnetic diaphragm disposed inside the housing, wherein the plane of the planar coil is substantially in parallel with the plane of the magnetic diaphragm, wherein the planar coil is separated from the magnetic diaphragm, and wherein the magnetic diaphragm is moveable in the presence of an exterior pressure.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 22, 2012
    Inventor: Zonghan Wu
  • Patent number: 8308964
    Abstract: A planarization process may planarize a media disk that has data trenches between data features and larger servo trenches between servo features. A filler material layer is deposited on the media disk and provides step coverage of the trenches. The filler material has data recesses over the data trenches and servo recesses over the servo trenches that must be removed to produce a planar media surface. A first planarization process is used to remove the data recesses and a second planarization process is used to remove the servo recesses.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: November 13, 2012
    Assignee: Seagate Technology LLC
    Inventors: Yuan Xu, Wei Hu, Justin Jia-Jen Hwu, Gene Gauzner, Koichi Wago, David Shiao-Min Kuo
  • Patent number: 8303828
    Abstract: Provided is a method for manufacturing, in a simple process, a magnetic recording medium having a distinct magnetic recording pattern formed thereon. A method for manufacturing a magnetic recording medium having a magnetically-separated magnetic recording pattern MP, the method at least including; a first step of forming a first magnetic layer 11 on a non-magnetic substrate 10; a second step of forming a resist layer 12 on the first magnetic layer 11, the resist layer 12 being patterned in correspondence with the magnetic recording pattern MP; a third step of forming a second magnetic layer 13 so as to cover a surface of the first magnetic layer 11 having the resist layer 12 formed thereon; a fourth step of removing the resist layer 12 together with the second magnetic layer 13 formed thereon; and a fifth step of partially removing the first magnetic layer 11 or partially modifying magnetic property of the first magnetic layer 11.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: November 6, 2012
    Assignee: Showa Denko K.K.
    Inventors: Shinichi Ishibashi, Masato Fukushima, Akira Yamane
  • Publication number: 20120273456
    Abstract: According to one embodiment, a magnetic recording medium includes recording areas forming protrusions corresponding to servo signals and recording tracks and includes a crystalline magnetic layer, and non-recording areas comprising an amorphous damaged layer left in bottoms of recesses between the recording areas.
    Type: Application
    Filed: July 10, 2012
    Publication date: November 1, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Masatoshi Sakurai, Makoto Asakura
  • Patent number: 8298430
    Abstract: This etching method comprises the steps of forming first and second hard masks made of materials different from each other successively on a magnetoresistive film; forming a resist having a lower face opposing a front face of the second hard mask, a space being interposed between the front face and lower face; dry-etching the second hard mask by using the resist as a mask; etching the first hard mask by using the etched second hard mask; and etching the magnetoresistive film by using the first hard mask.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: October 30, 2012
    Assignee: TDK Corporation
    Inventor: Kosuke Tanaka
  • Publication number: 20120263024
    Abstract: A TAMR (Thermal Assisted Magnetic Recording) writer has a narrow pole tip with a trailing edge magnetic shield. The narrow pole tipped write head uses the energy of laser generated edge plasmons, formed in a plasmon generating layer, to locally heat a PMR magnetic recording medium below its Curie temperature, Tc. When combined with the effects of the narrow tip, this local heating to a temperature below Tc is sufficient to create good transitions and narrow track widths in the magnetic medium. The write head is capable of writing effectively on state-of-the-art PMR recording media having Hk of 20 kOe or more.
    Type: Application
    Filed: April 14, 2011
    Publication date: October 18, 2012
    Inventors: Xuhui Jin, Yuchen Zhou, Kenichi Takano, Joe Smyth
  • Patent number: 8287748
    Abstract: A magnetic head includes: a pole layer including a track width defining portion and a wide portion; and an accommodation layer disposed on a bottom forming layer and having a groove that accommodates the pole layer. The groove includes a first portion for accommodating at least part of the track width defining portion, and a second portion for accommodating at least part of the wide portion. A manufacturing method for the magnetic head includes the steps of: forming a groove defining layer on a nonmagnetic layer that is intended to later become the accommodation layer; forming a mask that covers an area of the nonmagnetic layer where to form the first portion of the groove; etching the nonmagnetic layer so that the second portion of the groove is formed in the nonmagnetic layer; removing the mask; and taper-etching the nonmagnetic layer so that the first portion of the groove is formed in the nonmagnetic layer and the groove is thereby completed.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: October 16, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Hironori Araki, Yoshitaka Sasaki, Hiroyuki Ito, Shigeki Tanemura, Jianing Zhou, Min Li
  • Patent number: 8282843
    Abstract: A method of manufacturing a perpendicular magnetic head having a writing element that writes magnetic information to a recording medium includes forming a main magnetic pole part generating a magnetic field on a substrate; removing at least a part of the substrate and a material existing at a circumference of the main magnetic pole part to expose an entire circumference of the main magnetic pole part at a surface that becomes an opposing medium surface (ABS) opposite to the recording medium; forming a shield gap film that is made of a nonmagnetic material so as to cover the entire circumference of the main magnetic pole part at least at the surface that becomes the ABS; and forming a shield layer so as to cover an entire circumference of the shield gap film at least at the surface that becomes the ABS.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: October 9, 2012
    Assignee: TDK Corporation
    Inventors: Tatsuhiro Nojima, Hisayoshi Watanabe, Masachika Hashino
  • Patent number: 8277667
    Abstract: A magnetic element and its manufacturing method are provided. A magnetic element includes an actuation part having a first surface and a second surface, a torsion bar connected to the actuation part, and a frame connected to the first torsion bar, wherein the first surface of the actuation part is an uneven surface. The manufacturing method of the magnetic element starts with forming an passivation layer on a substrate and defining a special area by the mask method, then continues with forming the adhesion layer and electroplate-initializing layer on the substrate sequentially. The photoresist layer are formed and the magnetic-inductive material is electroformed on the electroplate area. Finally, the substrate is etched and the passivation layer is removed to obtain the magnetic element. The manufacturing method of magnetic element of the present invention can be applied in the microelectromechanical system field and other categories.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: October 2, 2012
    Assignee: National Tsing Hua University
    Inventors: Hsueh-An Yang, Weileun Fang, Tsung-Lin Tang
  • Patent number: 8276258
    Abstract: A method and system provide a magnetic transducer that includes an underlayer and a first nonmagnetic layer on the underlayer. The method and system include providing a first trench in the first nonmagnetic layer. The first trench has at least one edge corresponding to at least one side shield. The method and system also include providing a second nonmagnetic layer in the first trench and providing a second trench in the second nonmagnetic layer. The method and system include providing the main pole. At least part of the main pole resides in the second trench. The method and system further include removing at least a portion of the second nonmagnetic layer between the edge(s) and the main pole. The method and system also provide the side shield(s) in the first trench. The side shield(s) extend from at least an air-bearing surface location to not further than a coil front location.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: October 2, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Ut Tran, Zhigang Bai
  • Patent number: 8277669
    Abstract: A method and system for providing a pole of magnetic transducer having an air-bearing surface (ABS) are described. Leading shield and planarization stop layers are provided. Portions of the planarization stop and shield layers distal from the ABS location are removed, providing a depression forming a bevel. The bevel has an angle greater than zero and less than ninety degrees. An intermediate layer having a top surface substantially perpendicular to the ABS location is provided. Part of the intermediate layer is removed, forming a trench having a bottom corresponding to the leading shield and a location and profile corresponding to the pole. A nonmagnetic layer is provided at least partially in the trench. The pole with a leading edge bevel corresponding to the bevel is provided in the trench. A capping layer covering the pole is provided, at least part of the intermediate layer removed, and a wrap-around shield provided.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: October 2, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Tsung Yuan Chen, Yimin Guo, Jinqiu Zhang, Ut Tran
  • Publication number: 20120237795
    Abstract: According to one embodiment, a magnetic recording medium includes a substrate, a magnetic recording layer formed on the substrate and containing a magnetic material, and a protective layer. The magnetic recording layer includes a recording portion having patterns regularly arranged in the longitudinal direction, and a non-recording portion having saturation magnetization lower than that in the recording portion. The non-recording portion contains the magnetic material, a deactivating species which makes the value of saturation magnetization smaller than that of saturation magnetization in the recording portion, and the component of the protective layer.
    Type: Application
    Filed: November 14, 2011
    Publication date: September 20, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: MASATOSHI SAKURAI, KAORI KIMURA, HIROYUKI HYODO, TAKESHI IWASAKI
  • Publication number: 20120236437
    Abstract: A magnetic writer comprises a write pole, a substrate and a non-magnetic, oxygen-free buffer material. The write pole has a leading edge, a trailing edge, a first side and second side. The substrate is at the leading edge of the write pole. The non-magnetic, oxygen-free buffer material is located between the write pole and the substrate, and the oxygen-free buffer material is selected from Re, Ru, Os, Rh, Ir, and combinations thereof.
    Type: Application
    Filed: June 1, 2012
    Publication date: September 20, 2012
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventor: Michael Christopher Kautzky
  • Publication number: 20120231296
    Abstract: A method for manufacturing a magnetic sensor that minimizes topography resulting from stripe height defining masking and patterning in order to facilitate definition of track width. The method includes depositing a series of mask layers and then masking and ion milling the series of sensor layers to define a back edge of a sensor. A non-magnetic fill layer is then deposited, the magnetic fill layer being constructed of a material that has an ion mill rate that is similar to that of the series of sensor layers. A second masking and milling process is then performed to define the track width of the sensor and hard bias is deposited. Because the non-magnetic fill layer is removed at substantially the same rate as the sensor material the structure has a very flat topography on which to form the sensor track width.
    Type: Application
    Filed: March 11, 2011
    Publication date: September 13, 2012
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Quang Le, Jui-Lung Li, Yongchul Ahn, Simon H. Liao, Guangli Liu, Masaya Nishioka
  • Patent number: 8262919
    Abstract: A method and system for providing a pole of magnetic transducer having an intermediate layer are described. The method and system include providing a trench in the intermediate layer and depositing a nonmagnetic liner. A portion of the nonmagnetic liner resides in the trench. At least one seed layer is deposited. A portion of the at least one seed layer resides in the trench. The method and system include depositing at least one main pole layer. The at least one main pole layer is magnetic. A portion of the main pole layer(s) reside in the trench. The method and system also include performing a first chemical mechanical planarization (CMP). An excess portion of the seed layer(s) external to the trench are removed through an ion beam etch. The method and system further include performing a second CMP to remove an excess portion of the nonmagnetic liner external to the trench.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: September 11, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Guanghong Luo, Changqing Shi, Danning Yang, Jinwen Wang, Ming Jiang
  • Patent number: 8262918
    Abstract: Methods of producing magnetic recording heads are disclosed. The methods can include providing a wafer comprising a substrate layer in which are disposed a plurality of damascene trenches. The method can further include depositing a pole material across the whole wafer, wherein the plurality of trenches are filled with the pole material. The methods can further include depositing a mask material over the pole material across the whole wafer. The methods can further include performing a first material removal process across the whole wafer to remove the mask material and a first portion of the pole material at a same material removal rate. The methods can further include performing a second material removal process to remove a second portion of the pole material above the substrate layer.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: September 11, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Yun-Fei Li, Ronghui Zhou, Guanghong Luo, Ming Jiang
  • Patent number: 8263496
    Abstract: A method of preparing a stepped structure in a multi-layer film stack on a substrate is described. The multi-layer film stack includes alternating layers of differing composition, wherein the alternating layers of differing composition include one or more layers of a first composition and one or more layers of a second composition. The method includes transferring a mask pattern to the one or more layers of the first composition to form a first layer pattern in the one or more layers of the first composition using a first etch process, trimming the mask pattern to expose another portion of the one or more layers of the first composition using a mask trim process, and following the trimming, transferring the first layer pattern to the one or more layers of the second composition using a second etch process.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: September 11, 2012
    Assignee: Tokyo Electron Limited
    Inventor: Norman Wodecki
  • Publication number: 20120223048
    Abstract: An inline processing system for patterning magnetic recording layers on hard discs for use in a hard disc drive. Discs are processed on both sides simultaneously in a vertical orientation, in round plate-like holders called MDCs. A plurality (as many as 10) discs are held in a dial carrier of the MDC, and transferred from one process station to another. The dial carrier of the MDC may be rotated and/or angled at up to 70° from normal in each process station, so that one or a plurality of process sources may treat the discs simultaneously. This configuration provides time savings and a reduction in the number and size of process sources needed. A mask enhancement process for patterning of magnetic media, and a filling and planarizing process used therewith, are also disclosed.
    Type: Application
    Filed: August 26, 2010
    Publication date: September 6, 2012
    Applicant: VEECO PROCESS EQUIPMENT INC.
    Inventors: Ajit Paranjpe, Todd A. Luse, Roger P. Fremgen, Narasimhan Srinivasan, Boris L. Druz, Katrina Rook, Adrian Celaru
  • Patent number: 8257598
    Abstract: The invention is a method for making a master mold to be used for nanoimprinting patterned-media magnetic recording disks. The method uses conventional optical or e-beam lithography to form a pattern of generally radial stripes on a substrate, with the stripes being grouped into annular zones or bands. A block copolymer material is deposited on the pattern, resulting in guided self-assembly of the block copolymer into its components to multiply the generally radial stripes into generally radial lines of alternating block copolymer components. The radial lines of one of the components are removed and the radial lines of the remaining component are used as an etch mask to etch the substrate. Conventional lithography is used to form concentric rings over the generally radial lines. After etching and resist removal, the master mold has pillars arranged in circular rings, with the rings grouped into annular bands.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: September 4, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas R. Albrecht, Ricardo Ruiz
  • Patent number: 8257560
    Abstract: A patterned media has a substrate, and a magnetic recording layer on the substrate including protruded magnetic patterns and a nonmagnetic material filled in between the protruded magnetic patterns. In the patterned media, a depth Db and a depth Da, which are defined that Db is a depth from a surface of the magnetic patterns to a surface of the nonmagnetic material filled in a first central part between the magnetic patterns adjacent to each other in a cross-track direction or a down-track direction, and Da is a depth from a surface of the magnetic patterns to a surface of the nonmagnetic material filled in a second central part in a portion surrounded by the magnetic patterns, have a relationship that the depth Da is greater than the depth Db.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: September 4, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiyuki Kamata, Masatoshi Sakurai, Satoshi Shirotori, Kaori Kimura
  • Patent number: 8257597
    Abstract: Methods of forming a write pole are disclosed. A first photomask having a first opening over one of a yoke region and a pole tip region of the write pole is formed over an insulation layer having an insulator material. A first etch process is performed on the insulation layer via the first opening, the first etch process removing the insulator material from a corresponding one of the yoke region and the pole tip region. A second photomask having a second opening over the other one of the yoke region and the pole tip region is formed over the insulation layer. A second etch process is performed on the insulation layer via the second opening, the second etch process removing the insulator material from a corresponding one of the yoke region and the pole tip region.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: September 4, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Lijie Guan, Changqing Shi, Ming Jiang, Yun-Fei Li
  • Patent number: 8257596
    Abstract: A fabrication process and apparatus provide a high-performance magnetic field sensor (200) from two differential sensor configurations (201, 211) which require only two distinct pinning axes (206, 216) which are formed from a single reference layer (60) that is etched into high aspect ratio shapes (62, 63) with their long axes drawn with different orientations so that, upon treating the reference layer with a properly aligned orienting field (90) and then removing the orienting field, the high aspect ratio patterns provide a shape anisotropy that forces the magnetization of each patterned shape (62, 63) to relax along its respective desired axis.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: September 4, 2012
    Assignee: Everspin Technologies, Inc.
    Inventors: Phillip G. Mather, Jon M. Slaughter
  • Patent number: 8256095
    Abstract: An example method for manufacturing a magneto-resistance effect element includes forming a free magnetization layer and forming a spacer layer. The spacer layer is formed, for example, by forming a non-magnetic first metallic layer and forming a second metallic layer on a surface of the non-magnetic first metallic layer. A first irradiating process includes irradiating, onto the second metallic layer, first ions or plasma including at least one of oxygen and nitrogen and at least one selected from the group consisting of Ar, Xe, He, Ne, Kr, so as to convert the second metallic layer into an insulating layer and to form a non-magnetic metallic path penetrating through the insulating layer and containing elements of the non-magnetic first metallic layer. A second irradiating process includes irradiating second ions or plasma onto the insulating layer. A non-magnetic third metallic layer is formed on the non-magnetic metallic path.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: September 4, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiromi Yuasa, Hideaki Fukuzawa, Yoshihiko Fuji
  • Patent number: 8256096
    Abstract: Using a beam of xenon ions together with a suitable mask, a stack is ion milled until a part of it, no more than about 0.1 microns thick, has been removed so that a pedestal having sidewalls, including a vertical section and a shortened taper portion, has been formed. This is followed by formation of conductive lead layers as needed. Using xenon as the sputtering gas enables the point at which milling is terminated to be more precisely controlled.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: September 4, 2012
    Assignees: Headway Technologies, Inc., TDK Corporation
    Inventors: Stuart Kao, Chunping Luo, Chaopeng Chen, Takahiko Machita, Daisuke Miyauchi, Jeiwei Chang
  • Patent number: 8250736
    Abstract: A magnetic recording medium which does not easily cause a material containing Fe or Co to corrode is disclosed. The method for manufacturing a magnetic recording medium 122 includes a process of forming a magnetic layer 30 on a non-magnetic substrate 10, a process of forming a recessed area 65 in the magnetic layer 30, a process of forming a corrosion-resistant film 60 to cover an exposure surface 65c of the recessed area 65, and a process of forming a magnetic recording pattern made of the magnetically separated magnetic layer 30 by forming a non-magnetic layer 40 to fill in the recessed area 65.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: August 28, 2012
    Assignee: Showa Denko K.K.
    Inventors: Masato Fukushima, Shinichi Ishibashi, Akira Yamane
  • Patent number: 8252190
    Abstract: A method for manufacturing a magnetic write head having a write pole with a tapered trailing edge step. The resulting tapered trailing edge step maximizes write field at very small bit sizes by preventing the magnetic saturation of the write pole at the pole tip. The method includes depositing a magnetic write pole material and then depositing a magnetic material over the magnetic write pole material. A RIE mask and hard mask are deposited over the magnetic bump material. A resist mask is formed over the RIE mask and hard mask, and a reactive ion etching is performed to transfer the pattern of the resist mask onto the underlying hard mask. Then an ion milling is performed to form a the magnetic step layer with a tapered edge that defines a tapered trailing edge step structure of the write pole.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: August 28, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Aron Pentek, Sue Siyang Zhang, Yi Zheng
  • Patent number: 8240026
    Abstract: A method for manufacturing a magneto-resistive device. The magneto-resistive device is for reducing the deterioration in the characteristics of the device due to annealing. The magneto-resistive device has a magneto-resistive layer formed on one surface side of a base, and an insulating layer formed of two layers and deposited around the magneto-resistive layer. The layer of the insulating layer closest to the base is made of a metal or semiconductor oxide. This layer extends over end faces of a plurality of layers made of different materials from one another, which make up the magneto-resistive device, and is in contact with the end faces of the plurality of layers with the same materials.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: August 14, 2012
    Assignee: TDK Corporation
    Inventors: Takeo Kagami, Tetsuya Kuwashima, Norio Takahashi
  • Patent number: 8240024
    Abstract: In one general embodiment, a method for fabricating magnetic structures using post-deposition tilting includes forming a thin film magnetic transducer structure on a substantially planar portion of a substrate such that a plane of deposition of the thin film transducer structure is substantially parallel to a plane of the substrate. Additionally, the thin film transducer structure is caused to tilt at an angle relative to the plane of the substrate. The thin film transducer is fixed at the angle after being tilted.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: August 14, 2012
    Assignee: International Business Machines Corporation
    Inventors: Robert Glenn Biskeborn, Laurent Dellmann, Michel Despont, Philipp Herget, Pierre-Olivier Jubert
  • Publication number: 20120200956
    Abstract: A method for producing a magnetic recording medium which includes: forming a magnetic layer on a non-magnetic substrate; forming a dissolution layer on the magnetic layer; forming a mask layer on the dissolution layer; patterning the dissolution layer and the mask layer so as to have a pattern corresponding to a magnetic recording pattern; partially modifying or removing a part of the magnetic layer and the mask layer not covered with the dissolution layer; and dissolving the dissolution layer and removing the dissolution layer together with the mask layer which is on the dissolution layer from the surface of the magnetic layer. The dissolution layer is formed by coating a solution containing an organic silicon compound dissolved in an organic solvent on the magnetic layer, and solidifying the coated chemical solution in the step in which the dissolution layer is formed on the magnetic layer.
    Type: Application
    Filed: January 31, 2012
    Publication date: August 9, 2012
    Applicant: SHOWA DENKO K.K.
    Inventors: Shinichi ISHIBASHI, Tsubasa OKADA, Akira YAMANE, Tomoo SHIGE, Manabu UEDA, Zhipeng WANG, Yuji MURAKAMI
  • Patent number: 8233248
    Abstract: A method and system for fabricating a magnetic transducer is described. The transducer has a device region, a field region, and a magnetoresistive stack. The method and system include providing a hard mask on the magnetoresistive stack. The hard mask is inorganic and includes a sensor portion and a line frame. The sensor portion covers a first portion of the magnetoresistive stack corresponding to a magnetoresistive structure. The line frame covers a second portion of the magnetoresistive stack in the device region. The method and system include defining the magnetoresistive structure in a track width direction using the hard mask and providing at least one hard bias material after the magnetoresistive structure is defined. A first portion of the hard bias material(s) is substantially adjacent to the magnetoresistive structure in the track width direction. The method and system also include removing a second portion of the hard bias material(s).
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: July 31, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Guanxiong Li, Wei Zhang, Ming Mao
  • Patent number: 8230583
    Abstract: A method for self aligning a lapping guide with a structure of a write pole. A write pole is formed over a substrate and an electrically conductive material lapping guide material is deposited in a location that is removed from the write pole. A mask is then formed over a portion of the write pole and a portion of the electrically conductive material. A material removal process such as reactive ion etching can then be performed to remove a portion of the magnetic material that is not protected by the mask structure. An magnetic material is then electroplated over the write pole with the write pole, with the mask still in place. In this way, the electroplated material has an edge that is self aligned with an edge of the electrically conductive lapping guide material, both being defined by the same mask structure.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: July 31, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Jeffrey S. Lille
  • Patent number: 8231796
    Abstract: A method and system provide a magnetic transducer that includes an underlayer and a nonmagnetic layer on the underlayer. The method and system include providing a trench in the nonmagnetic layer. The trench has a plurality of sides. The method and system also include providing a separation layer in the trench. A portion of the separation layer resides on the sides of the trench. The method and system include providing the main pole. At least part of the main pole resides in the trench on the portion of the separation layer and has a plurality of pole sides. The method and system further include removing at least a portion of the second nonmagnetic layer, thereby exposing the portion of the separation layer. The method and system also include providing a side shield. The separation layer magnetically separates the pole sides from the side shield.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: July 31, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Yun-Fei Li, Yingjian Chen
  • Publication number: 20120187079
    Abstract: A method for manufacturing a magnetic sensor that has a flat upper shield. A sensor stack is formed with a sensor capping layer at its top and a first CMP stop layer over the sensor capping layer and a mask formed over the CMP stop layer. A hard bias layer and second CMP stop layer are deposited over the sensor stack, capping layer, first CMP stop layer and mask. A chemical mechanical polishing process is then performed to remove the mask, leaving a portion of the hard bias layer exposed between the first and second CMP stop layers. An ion milling is then performed to etch back the exposed portions of the hard magnetic bias layer. A reactive ion etching is then performed to remove the remaining first and second CMP top layers. An upper shield can then be formed on a substantially flat surface.
    Type: Application
    Filed: January 21, 2011
    Publication date: July 26, 2012
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hideki Mashima, Nobuo Yoshida
  • Publication number: 20120187080
    Abstract: A method of row bar for manufacturing slider includes steps: providing a plurality of row bars arranged in rows, with each row bar having slider regions and bar grooves adjacent to the slider region; providing photoresist on the row bar; providing a bar mask, having slider cover and groove cover which is transparent, the slider cover having two extending portions and a ABS portion arranged therebetween with some transparent patterns formed thereon; arranging the ABS portion on the slider region of the third said row bar, with two extending portion being covered respectively on the slider region of the second row bar and the fourth row bar, then exposing the bar mask to the light, the bar groove being exposed to the light via the groove cover; carrying out the above step until the ABS portions are arranged on the last row bar; developing and etching the row bars.
    Type: Application
    Filed: April 8, 2011
    Publication date: July 26, 2012
    Applicant: SAE Magnetics (H.K.) Ltd.
    Inventors: Bing Ma, Weirong Shen, Chuanyu Mo
  • Patent number: 8221637
    Abstract: According to one embodiment, a method for manufacturing a magnetic recording medium includes forming patterns having protrusions and recesses of a ferromagnetic material onto a recording track section and a servo section on a substrate, forming a flattening film, a top surface of which is higher than that of the protrusion of the ferromagnetic material, onto the ferromagnetic material, and performing ion beam etching onto the flattening film up to a top surface of the protrusion of the ferromagnetic material, and determining an end point of flattening etching on the basis of a change in the total number of incident particles by means of an ion counter installed so as to be at an angle ? with respect to a perpendicular direction to the substrate in accordance with a material of the flattening film.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: July 17, 2012
    Assignees: Kabushiki Kaisha Toshiba, Showa Denko K.K.
    Inventors: Yoshiyuki Kamata, Katsuyuki Naito, Akira Kikitsu, Masatoshi Sakurai, Masahiro Oka
  • Patent number: 8221636
    Abstract: A magnetic head includes a pole layer, and an encasing layer having a groove that accommodates the pole layer. A manufacturing method for the magnetic head includes the steps of forming a nonmagnetic layer that will later undergo formation of the groove therein and will thereby become the encasing layer; forming the groove in the nonmagnetic layer so that the nonmagnetic layer becomes the encasing layer; and forming the pole layer such that the pole layer is accommodated in the groove of the encasing layer. The nonmagnetic layer is formed of Al2O3. The step of forming the groove in the nonmagnetic layer includes the step of taper-etching the nonmagnetic layer by reactive ion etching with an etching gas containing at least BCl3 and N2 among BCl3, Cl2 and N2.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: July 17, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Yoshitaka Sasaki, Hiroyuki Itoh, Hironori Araki, Shigeki Tanemura, Kazuo Ishizaki, Takehiro Horinaka
  • Publication number: 20120175342
    Abstract: A novel, technique: for manufacturing bit patterned media is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for manufacturing hit pattern media. The technique, which may be realized as a method comprising: forming a non-catalysis region on a first portion of a catalysis layer; forming a non-magnetic separator on the non-catalysis region; and forming a magnetic active region on it second portion of the catalysis layer adjacent to the first portion of the catalysis layer.
    Type: Application
    Filed: January 3, 2012
    Publication date: July 12, 2012
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Frank Sinclair, Julian G. Blake, Helen L. Maynard, Alexander C. Kontos