Forming Or Treating Article Containing Magnetically Responsive Material Patents (Class 216/22)
  • Patent number: 8518279
    Abstract: A method for providing a capping layer configured for an energy assisted magnetic recording (EAMR) head including at least one slider. The method comprises etching a substrate having a top surface using an etch to form a trench in the substrate, the trench having a first surface at a first angle from the top surface and a second surface having a second angle from the top surface. The method further comprises providing a protective coating exposing the second surface and covering the first surface, removing a portion of the substrate including the second surface to form a laser cavity within the substrate configured to fit a laser therein, and providing a reflective layer on the first surface to form a mirror, the cavity and mirror being configured for alignment of the laser to the laser cavity and to the mirror and for bonding the laser to the laser cavity.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: August 27, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Lei Wang, Pezhman Monadgemi
  • Patent number: 8520338
    Abstract: Minute elements are formed while a photo deviation is suppressed between a spin torque oscillator and a main pole and damage is prevented on the ends of the spin torque oscillator in microwave-assisted recording. A magnetic recording head used for microwave-assisted recording includes: a main pole; a spin torque oscillator that is disposed on the main pole and includes a magnetization high-speed rotation layer for rotating magnetization at a high speed by a spin torque; a protective film that is disposed in the track width direction of the spin torque oscillator; an insulating film formed over the wall surfaces of the main pole and the wall surfaces of the protective film; and a magnetic film formed on the insulating film so as to cover at least the main pole.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: August 27, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Yuta Udo, Mikito Sugiyama, Masato Shiimoto, Nobuo Yoshida, Kenji Sugiura, Masashi Hattori
  • Patent number: 8511210
    Abstract: A method of cutting a laminated material 10A made of at least first and second plates that are laid one on another and fixed together includes holding the laminated material 10A between a pad 71 and a clamp base 73, so that an edge 14a of the first plate 14 is positioned between an edge 71a of the pad 71 and an edge 73a of the clamp base 73; and cutting a protrusion of the second plate 12 protruding from the edge 14a of the first plate 14 by moving a punch 75 along the pad 71 in a direction from the second plate 12 toward the first plate 14 and by using the first plate 14 as a die to cut the protrusion of the second plate 12. The method is capable of precisely cutting the protrusion of the second plate 12 protruding from the edge 14a of the first plate 14 through a reduced number of processes.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: August 20, 2013
    Assignee: NHK Spring Co., Ltd.
    Inventors: Hideki Fuchino, Hidenori Inoue
  • Patent number: 8512583
    Abstract: A method for making a master disk to be used in the nanoimprinting process to make patterned-media disks uses an electrically conductive substrate and guided self-assembly of a block copolymer to form patterns of generally radial lines and/or generally concentric rings of one of the block copolymer components. A metal is electroplated onto the substrate in the regions not protected by the lines and/or rings. After removal of the block copolymer component, the remaining metal pattern is used as an etch mask to fabricate either the final master disk or two separate molds that are then used to fabricate the master disk.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: August 20, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Christian Rene′ Bonhote, Jeffrey S. Lille, Ricardo Ruiz, Georges Gibran Siddiqi
  • Publication number: 20130206722
    Abstract: A method of producing bit-patterned media is provided whereby a shell structure is added on a bit-patterned media dot. The shell may be an antiferromagnetic material that will help stabilize the magnetization configuration at the remanent state due to exchange coupling between the dot and its shell. Therefore, this approach also improves the thermal stability of the media dot and helps each individual media dot maintain a single domain state.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 15, 2013
    Applicant: SEAGATE TECHNOLOGY, LLC
    Inventor: Seagate Technology, LLC
  • Publication number: 20130208378
    Abstract: The invention relates to bit patterned recording media having a stop layer for chemical mechanical polishing. One embodiment of the present invention is a method of manufacturing a magnetic recording medium comprising the step of planarizing by chemical mechanical polishing until the stop layer is reached. The present invention also provides a magnetic recording medium having a stop layer.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 15, 2013
    Applicant: SEAGATE TECHNOLOGY, LLC
    Inventor: Seagate Technology, LLC
  • Patent number: 8506828
    Abstract: A method and system for fabricating a read sensor on a substrate for a read transducer is described. A read sensor stack is deposited on the substrate. A mask is provided on the on the read sensor stack. The mask has a pattern that covers a first portion of the read sensor stack corresponding to the read sensor, covers a second portion of the read sensor stack distal from the read sensor, and exposes a third portion of the read sensor stack between the first and second portions. The read sensor is defined from the read sensor stack. A hard bias layer is deposited. An aperture free mask layer including multiple thicknesses is provided. A focused ion beam scan (FIBS) polishing step is performed on the mask and hard bias layers to remove a portion of the mask and hard bias layers based on the thicknesses.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: August 13, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Masahiro Osugi, Guanghong Luo, Ronghui Zhou, Danning Yang, Dujiang Wan, Ming Jiang
  • Publication number: 20130200041
    Abstract: A method for manufacturing a glass stamper includes the following steps. First, a diamond film is formed on a substrate. A resist is applied onto the diamond film and a pattern is formed by performing electron beam lithography and development. The diamond film is etched with any one of oxygen and Ar gas using the pattern on the resist as a mask, thereby transferring the pattern to the diamond film. The resist and the substrate are removed to fabricate a diamond mold. Then, a glass stamper is manufactured by glass molding using the diamond mold.
    Type: Application
    Filed: March 14, 2013
    Publication date: August 8, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Kabushiki Kaisha Toshiba
  • Publication number: 20130200042
    Abstract: In processing a magnetic film composed for example of Fe, Co or Ni formed on a substrate and a nonvolatile metal containing the same in a vacuum reactor using a plasma generating gas for generating plasma and a gas containing C and O, a power applied to an antenna for generating plasma is time-modulated, wherein the feeding of gas containing C and O to the vacuum reactor is synchronized with the time-modulated antenna power so that the supply of gas containing C and O to the vacuum reactor is suppressed when the antenna power is high and the gas containing C and O is fed to the vacuum reactor when the antenna power is low.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 8, 2013
    Inventors: Makoto SATAKE, Kenji MAEDA, Kenetsu YOKOGAWA, Tsutomu TETSUKA, Tatehito USUI, Ryoji NISHIO
  • Patent number: 8499435
    Abstract: A thin-film magnetic head is constructed such that a main magnetic pole layer, a lower shield layer, an upper shield layer and a thin-film coil are laminated on a substrate. A method of manufacturing the thin-film magnetic head has a lower shield layer forming step. This step comprises a step of forming a first lower shield part in a lower shield planned area, including a planned line along the medium-opposing surface, a step of forming a partial lower seed layer having a partial arrangement structure in which the partial lower seed layer is arranged on a lower formation zone except a lower exception zone including the planned line, a step of forming a second lower shield part on the partial lower seed layer.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: August 6, 2013
    Assignees: Headway Technologies, Inc., SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Shigeki Tanemura, Kazuki Sato, Atsushi Iijima
  • Patent number: 8501022
    Abstract: A method for making a master disk for nanoimprinting patterned-media magnetic recording disks has patterns for both the data islands and the nondata regions. The method uses guided self-assembly of a block copolymer (BCP) to form patterns of generally radial lines and/or generally concentric rings as well as patterns of gap regions of one of the BCP components. The pattern of lines and/or rings have the BCP components aligned as lamellae perpendicular to the substrate, while the pattern of gap regions has the BCP components aligned as lamellae parallel to the substrate. One of the BCP components is removed, leaving the other BCP component as an etch mask to fabricate either the final master disk or two separate molds that are then used to fabricate the master disk.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: August 6, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Thomas R. Albrecht, Elizabeth Ann Dobisz, Guoliang Liu, Ricardo Ruiz, Gabriel Zeltzer
  • Patent number: 8501629
    Abstract: A method of etching silicon-containing material is described and includes a SiConi™ etch having a greater or lesser flow ratio of hydrogen compared to fluorine than that found in the prior art. Modifying the flow rate ratios in this way has been found to reduce roughness of the post-etch surface and to reduce the difference in etch-rate between densely and sparsely patterned areas. Alternative means of reducing post-etch surface roughness include pulsing the flows of the precursors and/or the plasma power, maintaining a relatively high substrate temperature and performing the SiConi™ in multiple steps. Each of these approaches, either alone or in combination, serve to reduce the roughness of the etched surface by limiting solid residue grain size.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: August 6, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Jing Tang, Nitin Ingle, Dongqing Yang
  • Patent number: 8491800
    Abstract: Embodiments of the present invention relate to systems and methods for designing and manufacturing hard masks used in the creation of patterned magnetic media and, more particularly, patterned magnetic recording media used in hard disk drives (e.g., bit patterned media (BPM)). In some embodiments, the hard mask incorporates at least one layer of Ta (tantalum) and at least one layer of C (carbon) and is used during ion implantation of a pattern onto magnetic media. The hard mask can be fabricated with a high aspect ratio to achieve small feature sizes while maintaining its effectiveness as a mask, is robust enough to withstand the ion implantation process, and can be removed after the ion implantation process with minimal damage to the magnetic media.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: July 23, 2013
    Assignee: WD Media, LLC
    Inventor: Paul Dorsey
  • Patent number: 8491799
    Abstract: A method for forming a magnetic tunnel junction cell includes forming a pinning layer, a pinned layer, a dielectric layer and a free layer over a first electrode, forming a second electrode on the free layer, etching the free layer and the dielectric layer using the second electrode as an etch barrier to form a first pattern, forming a prevention layer on a sidewall of the first pattern, and etching the pinned layer and the pinning layer using the second electrode and the prevention layer as an etch barrier to form a second pattern.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: July 23, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jin-Ki Jung
  • Patent number: 8491801
    Abstract: A method and system provides a near-field transducer (NFT) for an energy assisted magnetic recording (EAMR) transducer. The method and system include forming a sacrificial NFT structure having a shape a location corresponding to the NFT. A dielectric layer is deposited. A portion of the dielectric layer resides on the sacrificial NFT structure. At least this portion of the dielectric layer on the sacrificial structure is removed. The sacrificial NFT structure is removed, exposing an NFT trench in the dielectric layer. At least one conductive layer for the NFT is deposited. A first portion of the conductive layer(s) reside in the NFT trench. A second portion of the conductive layer(s) external to the NFT trench is removed to form the NFT.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: July 23, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Shawn M. Tanner, Yufeng Hu, Ut Tran, Zhongyan Wang
  • Publication number: 20130182351
    Abstract: A perpendicular magnetic recording medium according to an embodiment includes a substrate and perpendicular magnetic recording layer. The perpendicular magnetic recording layer includes a recording portion and non-recording portion. The recording portion has patterns regularly arranged in the longitudinal direction, and includes magnetic layers containing Fe or Co and Pt as main components, and at least one additive component selected from Ti, Si, Al, and W. The non-recording portion includes oxide layers formed by oxidizing the side surfaces of the magnetic layers, and nonmagnetic layers formed between the oxide layers.
    Type: Application
    Filed: July 19, 2012
    Publication date: July 18, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Takeshi IWASAKI, Kazutaka TAKIZAWA, Akira WATANABE, Kaori KIMURA, Akihiko TAKEO
  • Publication number: 20130180948
    Abstract: According to one embodiment, a release layer is formed on a magnetic recording layer, a mask layer is formed on the release layer, projecting patterns are formed on the mask layer, the projecting patterns are transferred onto the mask layer, the projecting patterns are transferred onto the release layer, the projecting patterns are transferred onto the magnetic recording layer, the release layer is removed by a solvent, and a remaining mask layer is removed from the surface of the magnetic recording layer. The release layer is made of a polymeric material. The mask layer is made of at least one of a metal or a metal compound. The projecting patterns are formed by using a self-organized layer made of a block copolymer having at least two of polymer chains.
    Type: Application
    Filed: July 27, 2012
    Publication date: July 18, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kazutaka TAKIZAWA, Akira WATANABE, Kaori KIMURA, Takeshi IWASAKI, Tsuyoshi ONITSUKA, Akihiko TAKEO
  • Patent number: 8486285
    Abstract: A method for forming a write pole comprises forming a stop layer over a substrate layer of a wafer, the stop layer having an opening above a damascene trench in the substrate layer, and forming a buffer layer over the stop layer, the buffer layer having an opening above the opening of the stop layer. The method further comprises plating a layer of magnetic material over the wafer, disposing a first sacrificial material over a region of the magnetic material above the damascene trench, performing a milling or etching operation over the wafer to remove the magnetic material not covered by the first sacrificial material and to remove the first sacrificial material, disposing a second sacrificial material over the wafer, and performing a polishing operation over the wafer to remove the region of the magnetic material above the damascene trench, the second sacrificial material, and the buffer layer.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: July 16, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Ronghui Zhou, Ming Jiang, Xiaohai Xiang, Jinwen Wang, Guanghong Luo, Yun-Fei Li
  • Patent number: 8486286
    Abstract: A method and system for providing an energy assisted magnetic recording (EAMR) transducer coupled with a laser are described. The laser provides energy. The EAMR transducer has an air-bearing surface (ABS) configured to reside in proximity to a media during use. The EAMR transducer includes a near field transducer (NFT) proximate to the ABS for focusing the energy onto the region of the media. The method and system include providing a heat sink having a bottom thermally coupled with the NFT and a top surface at an angle with respect to the ABS. The angle is greater than zero and less than ninety degrees. The method and system also include providing a write pole and at least one coil. The write pole is configured to write to a region of the media. The write pole has a bottom surface thermally coupled with the top surface of the heat sink. The at least one coil is for energizing 24.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: July 16, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Wei Gao, Shing Lee
  • Patent number: 8480911
    Abstract: A read sensor for a read transducer is fabricated. The read transducer has field and device regions. A read sensor stack is deposited. A mask covering part of the stack corresponding to the read sensor is provided. The read sensor having inboard and outboard junction angles is defined from the stack in a track width direction. A critical junction (CJ) focused ion beam scan (FIBS) polishing that removes part of the read sensor based on the junction angles is performed. A hard bias structure is deposited and the transducer planarized. A remaining portion of the mask is removed. A stripe height mask covering part of the read sensor and hard bias structure in a stripe height direction is provided. The read sensor stripe height is defined. A tunneling magnetoresistance (TMR) FIBS polishing that removes part of the stack in the field region is performed. An insulating layer is provided.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: July 9, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Masahiro Osugi, Guanghong Luo, Lily Yao, Ming Jiang
  • Patent number: 8475669
    Abstract: A system, method, and apparatus for forming a high quality master pattern for patterned media, including features to support servo patterns, is disclosed. Block copolymer self-assembly is used to facilitate the formation of a track pattern with narrower tracks. E-beam lithography forms a chemical contrast pattern of concentric rings, where the spacing of the rings is equal to an integral multiple of the target track pitch. The rings include regions within each servo sector header where the rings are offset radially by a fraction of a track pitch. Self-assembly is performed to form a new ring pattern at the target track pitch on top of the chemical contrast pattern, including the radial offsets in the servo sector headers. When this pattern is transferred to disks via nanoimprinting and etching, it creates tracks separated by nonmagnetic grooves, with the grooves and tracks including the radial offset regions.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: July 2, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Thomas Robert Albrecht, Bruno Marchon, Ricardo Ruiz
  • Patent number: 8475670
    Abstract: A method for manufacturing a patterned magnetic media. The method allows both a data region and a servo region to be patterned without the patterning of one region adversely affecting the patterning of the other region. The method results in a patterned data region a patterned servo region and intermediate regions between the servo and data regions. The intermediate regions, which are most likely, but not necessarily, asymmetrical with one another indicate that the method has been used to pattern the media.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: July 2, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Michael K. Grobis, Jeffrey S. Lille, Ricardo Ruiz
  • Publication number: 20130163121
    Abstract: A magnetic read sensor having a hard bias structure that extends beyond the back edge of the sensor stack by a controlled, distance that is chosen to maximize both hard bias field and hard bias magnetic coercivity and anisotropy. The hard bias structure has a back edge that is well defined and that has a square corner at its innermost end adjacent to the sensor stack. The magnetic sensor can be constructed by a process that includes a separate making an milling process that is dedicated to defining the back edge of the hard bias structure.
    Type: Application
    Filed: December 22, 2011
    Publication date: June 27, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Quang Le, David J. Seagle, Guangli Liu, Yongchul Ahn, Simon H. Liao
  • Patent number: 8470189
    Abstract: In the present invention, provided is a method of forming a mask pattern by which a fine thin film pattern may be formed more easily with higher resolution and precision. In the method of forming a mask pattern, a photoresist pattern having an opening is formed on a substrate, then, an inorganic film is formed so as to cover the upper surface of the photoresist pattern and the inside of the opening, then the inorganic film on the upper surface of the photoresist pattern is removed by a dry etching process. Subsequently, an inorganic mask pattern is formed by removing the photoresist pattern. The inorganic mask pattern thus formed hardly produces an issue of deformation such as physical displacement even when it is heated in the dry etching process.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: June 25, 2013
    Assignee: TDK Corporation
    Inventors: Akifumi Kamijima, Hideyuki Yatsu, Hitoshi Hatate
  • Patent number: 8470186
    Abstract: A perpendicular write head having a wrap around shield and a conformal side gap. In fabricating the write head, the leading edge shield may be chemical mechanical polished down to a level that is substantially even with a chemical mechanical polishing stop layer. Because the leading edge shield and the chemical mechanical polishing stop layer are used as RIE stop for trench RIE, a fully conformal side shield may be formed with a LTE/LES.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: June 25, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Yingjian Chen, Shiwen Huang, Fenglin Liu, Kyusik Shin
  • Patent number: 8470185
    Abstract: A method of manufacturing a perpendicular magnetic write head capable of precisely narrowing a side gap is provided. A tip portion having a cross sectional geometry of an inverted trapezoid is formed in an opening portion of a non-magnetic layer and thereafter, the non-magnetic layer is etched with the tip portion as a mask. Thereby, a portion adjacent to the tip portion in a writing track width direction remains and an outermost edge portion of the tip portion in that direction is located on a plane which coincides with an etching face (side face) of the non-magnetic layer. When a gap layer is formed with a vapor phase growth such as a sputtering method to cover the side face of the non-magnetic layer and thereafter a side shield layer is formed adjacently to the tip portion therethrough, a thickness of the gap layer becomes extremely thin and is reproduced precisely. Therefore, the side gap is narrowed with high precision.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: June 25, 2013
    Assignee: SAE Magnetics (H.K.) Ltd.
    Inventors: Tetsuya Mino, Naoto Matono, Ikuhito Onodera, Kazushi Nishiyama, Michitoshi Tsuchiya, Kenji Sasaki
  • Patent number: 8465658
    Abstract: In a method of forming a main pole, an initial accommodation layer is etched by RIE using a first etching mask having a first opening, whereby a groove is formed in the initial accommodation layer. Next, a part of the initial accommodation layer including the groove is etched by RIE using a second etching mask having a second opening, so that the groove becomes an accommodation part. The main pole is then formed in the accommodation part. The first etching mask has first and second sidewalls that face the first opening and are opposed to each other at a first distance in a track width direction. The second etching mask has third and fourth sidewalls that face the second opening and are opposed to each other at a second distance greater than the first distance.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: June 18, 2013
    Assignee: Headway Technologies, Inc.
    Inventors: Hironori Araki, Yoshitaka Sasaki, Hiroyuki Ito, Kazuki Sato, Shigeki Tanemura, Yukinori Ikegawa
  • Publication number: 20130146562
    Abstract: A method for smoothing a medium includes depositing a magnetic layer onto a base, depositing an overcoat layer onto an outer surface of the magnetic layer, and burnishing an outer surface of the overcoat layer. Further, the method includes at least one of (i) directing a first ion beam comprised of first energetic ions toward the outer surface of the magnetic layer at a first shallow grazing angle and smoothing the outer surface of the magnetic layer via etching engagement between the first ion beam and the outer surface of the magnetic layer; and (ii) directing a second ion beam comprised of second energetic ions toward the outer surface of the overcoat layer at a second shallow grazing angle and smoothing the outer surface of the overcoat layer via etching engagement between the second angled ion beam and the outer surface of the overcoat layer.
    Type: Application
    Filed: December 12, 2011
    Publication date: June 13, 2013
    Inventors: Xing-Cai Guo, Thomas E. Karis, Bruno Marchon, Daryl J. Pocker
  • Publication number: 20130149499
    Abstract: Magnetic devices, and methods of manufacturing the same, include a stack structure including at least one magnetic layer, etched using an etching gas including at least 70 volume percent of a hydrogen-containing gas and at least 2 volume percent of CO gas.
    Type: Application
    Filed: August 20, 2012
    Publication date: June 13, 2013
    Inventors: Hak-sun LEE, Tokashiki KEN, Myeong-cheol KIM, Hyung-joon KWON, Sang-min LEE, Woo-cheol LEE, Myung-hoon JUNG
  • Publication number: 20130146563
    Abstract: A method for plasma-etching a magnetic film and plasma-cleaning, in which deposits in an etching processing chamber are efficiently removed while corrosion of a wafer is suppressed, is provided. A plasma processing method for plasma-etching a to-be-processed substrate having a magnetic film in an etching processing chamber includes the steps of plasma-etching the magnetic film using a first gas not containing chlorine, transferring out the to-be-processed substrate from the etching processing chamber, first plasma-cleaning of the etching processing chamber using a second gas containing chlorine, and second plasma-cleaning using a third gas containing hydrogen after the first plasma cleaning.
    Type: Application
    Filed: February 17, 2012
    Publication date: June 13, 2013
    Inventors: Takahiro ABE, Takeshi Shimada, Atsushi Yoshida, Kentaro Yamada, Daisuke Fujita
  • Patent number: 8460565
    Abstract: A method of fabricating a patterned magnetic recording medium, comprises steps of: (a) providing a layer stack including an uppermost non-magnetic interlayer; (b) forming a resist layer on the interlayer; (c) forming a first pattern comprising a first group of recesses extending through the resist layer and exposing a first group of spaced apart surface portions of the interlayer; (d) filling the first group of recesses with a layer of a hard mask material; (e) selectively removing the resist layer to form a second pattern comprising a second group of recesses extending through the hard mask layer and exposing a second group of spaced apart surface portions of the interlayer; and (f) filling the second group of recesses with a layer of a magnetically hard material forming a magnetic recording layer.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: June 11, 2013
    Assignee: Seagate Technology LLC
    Inventors: Kim Y Lee, Hong Ying Wang, Nobuo Kurataka, Christopher Formato, David S Kuo, Dieter K Weller
  • Publication number: 20130141090
    Abstract: Magnetic field sensor designs that provide both increased directionality and proximate coupling desirable for improved directionality and sensitivity and methods for fabricating them.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 6, 2013
    Inventor: Alan L. Sidman
  • Patent number: 8453316
    Abstract: A method of forming a magnetic head comprises the steps of: selectively exposing through the use of a photomask a photoresist layer unpatterned; forming a pattern for forming a pole layer by developing the photoresist layer after the exposure; and forming the pole layer through the use of the pattern. The photomask includes first to third regions. The first region has such a perimeter that a projection image thereof is shaped along a perimeter of an ideal shape of the top surface of the pole layer. The second region touches the perimeter of the first region, and is located outside the first region. The third region is located inside the first region without touching the perimeter of the first region. The third region suppresses deviation of the pole layer from its desired shape which may be caused by the effect of light reflected while the photoresist layer is exposed.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: June 4, 2013
    Assignee: Headway Technologies, Inc.
    Inventors: Yoshitaka Sasaki, Kazuo Ishizaki, Hiroyuki Itoh
  • Patent number: 8454848
    Abstract: A method of manufacturing the plasmon generator includes the steps of: forming a base part made of a dielectric material; forming a metal film that is to later become the plasmon generator; and forming a filler layer made of a dielectric material. The base part includes a base surface and a protruding part that protrudes from the base surface. The protruding part has a top surface that is different in level from the base surface, and a first sidewall connecting the top surface of the protruding part to the base surface. The metal film includes an adhesion part adhering to the first sidewall. The filler layer has a second sidewall disposed such that the adhesion part is interposed between the first sidewall and the second sidewall.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: June 4, 2013
    Assignee: Headway Technologies, Inc.
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Shigeki Tanemura, Hironori Araki, Kazuki Sato, Kazumasa Yasuda
  • Patent number: 8454846
    Abstract: A method and system for fabricating magnetic recording transducer are described. The magnetic recording transducer has a main pole including a plurality of sides, an intermediate layer adjacent to the sides of the main pole, and a field region distal from the main pole. The method and system include providing at least one trench in the intermediate layer. The trench(es) are between the main pole and the field region. The method and system also include providing a stop layer. A portion of the stop layer resides in at least part of the trench(es) and on at least part of the field region. The method and system also include removing a portion of the intermediate layer using a wet etch. The stop layer is resistant to removal by the wet etch. The method and system also include depositing a full wrap-around shield layer on the main pole.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: June 4, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Ronghui Zhou, Ming Jiang, Danning Yang, Yun-Fei Li
  • Publication number: 20130134970
    Abstract: Integrated magnetometer comprising a plurality of multilayer magnetoresistive sensors deposited on a surface, called the top surface, of a substantially planar substrate, characterized in that said top surface of the substrate has at least one cavity or protuberance provided with a plurality of inclined faces, and in that at least four said magnetoresistive sensors are placed on four said magnetoresistive sensors are placed on four said inclined faces, having different orientations and opposite one another in pairs, each sensor being sensitive to one component of an external magnetic field parallel to that face on which it is placed. Process for manufacturing such a magnetometer.
    Type: Application
    Filed: January 28, 2011
    Publication date: May 30, 2013
    Applicants: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Alain Schuhl, Gilles Gaudin, Philippe Sabon, Pierre-Jean Zermatten, François Montaigne
  • Publication number: 20130135772
    Abstract: A method for manufacturing a magnetic sensor that includes depositing a plurality of mask layers, then forming a stripe height defining mask over the sensor layers. A first ion milling is performed just sufficiently to remove portions of the free layer that are not protected by the stripe height defining mask, the first ion milling being terminated at the non-magnetic barrier or spacer layer. A dielectric layer is then deposited, preferably by ion beam deposition. A second ion milling is then performed to remove portions of the pinned layer structure that are not protected by the mask, the free layer being protected during the second ion milling by the dielectric layer.
    Type: Application
    Filed: November 29, 2011
    Publication date: May 30, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Yongchul Ahn, Xiaozhong Dang, Quang Le, Simon H. Liao
  • Publication number: 20130130063
    Abstract: A perpendicularly magnetized thin film structure and a method of manufacturing the perpendicularly magnetized thin film structure are provided. The perpendicularly magnetized thin film structure includes i) a base layer, ii) a magnetic layer located on the base layer and having an L10-crystalline structure, and iii) a metal oxide layer located on the magnetic layer.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 23, 2013
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventor: Korea Institute of Science and Technology
  • Patent number: 8444865
    Abstract: A method for encapsulating a magnetic recording head including coating at least a portion of a magnetic recording head containing a recording gap with a first layer of at least one coating material, including silicon nitride, the first layer of at least one coating material having a first removal rate, coating at least a portion of the magnetic recording head containing a recording gap and coated with the first layer of at least one coating material with a second layer of at least one coating material, including aluminum oxide, the second layer of at least one coating material having a second removal rate higher than the first removal rate, and removing at least a portion of the second layer of at least one coating material via a removal process, including chemical-mechanical polishing, lapping, or vacuum processing to at least partially planarize the surface of the recording gap.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: May 21, 2013
    Assignee: International Busines Machines Corporation
    Inventors: Robert G. Biskeborn, Calvin S. Lo, Gary M. Decad, Cherngye Hwang
  • Patent number: 8444866
    Abstract: A method for fabricating a magnetic transducer having a nonmagnetic intermediate layer is described. A trench is provided in the intermediate layer. The trench has a profile and location corresponding to a pole. A first nonmagnetic gap layer is provided. At least part of the first nonmagnetic gap layer resides in the trench. A pole including magnetic material(s) is provided. At least part of the pole resides in the trench and on the part of the nonmagnetic layer in the trench. At least part of the intermediate layer adjacent to the pole is removed and a second nonmagnetic gap layer provided. The second nonmagnetic gap layer is thicker than the first nonmagnetic gap layer. Part of the second nonmagnetic layer and part of the first nonmagnetic layer adjacent to the pole form a side gap. A side shield, a gap, and a top shield are also provided.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: May 21, 2013
    Assignee: Westen Digital (Fremont), LLC
    Inventors: Lijie Guan, Changqing Shi, Ming Jiang, Yun-Fei Li, Ying Hong
  • Patent number: 8440091
    Abstract: According to one embodiment, a method of manufacturing a magnetic recording medium comprises forming a protective film on a ferromagnetic recording layer containing Cobalt (Co) on a substrate and forming a recess in both the protective film and the ferromagnetic recording layer at a part where a nonmagnetic layer is to be formed. The method further comprises removing Co from a part of the recess of the ferromagnetic recording layer to form the nonmagnetic layer that separates magnetic patterns made of the ferromagnetic recording layer containing Co. The nonmagnetic layer has an identical chemical composition as the ferromagnetic recording layer, except for the nonmagnetic layer having a lower Co concentration than the magnetic patterns.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: May 14, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kaori Kimura, Yoshiyuki Kamata, Satoshi Shirotori, Masatoshi Sakurai
  • Publication number: 20130105437
    Abstract: A method for making a master disk for nanoimprinting patterned-media magnetic recording disks has patterns for both the data islands and the nondata regions. The method uses guided self-assembly of a block copolymer (BCP) to form patterns of generally radial lines and/or generally concentric rings as well as patterns of gap regions of one of the BCP components. The pattern of lines and/or rings have the BCP components aligned as lamellae perpendicular to the substrate, while the pattern of gap regions has the BCP components aligned as lamellae parallel to the substrate. One of the BCP components is removed, leaving the other BCP component as an etch mask to fabricate either the final master disk or two separate molds that are then used to fabricate the master disk.
    Type: Application
    Filed: November 2, 2011
    Publication date: May 2, 2013
    Inventors: Thomas R. Albrecht, Elizabeth Ann Dobisz, Guoliang Liu, Ricardo Ruiz, Gabriel Zeltzer
  • Patent number: 8425786
    Abstract: In processing a magnetic film composed for example of Fe, Co or Ni formed on a substrate and a nonvolatile metal containing the same in a vacuum reactor using a plasma generating gas for generating plasma and a gas containing C and O, a power applied to an antenna for generating plasma is time-modulated, wherein the feeding of gas containing C and O to the vacuum reactor is synchronized with the time-modulated antenna power so that the supply of gas containing C and O to the vacuum reactor is suppressed when the antenna power is high and the gas containing C and O is fed to the vacuum reactor when the antenna power is low.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: April 23, 2013
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Makoto Satake, Kenji Maeda, Kenetsu Yokogawa, Tsutomu Tetsuka, Tatehito Usui, Ryoji Nishio
  • Publication number: 20130092654
    Abstract: A method for manufacturing a magnetic read sensor at very narrow track widths. The method uses an amorphous carbon mask layer to pattern the sensor by ion milling, rather than a mask constructed of a material such as photoresist or DURIMIDE® which can bend over during ion milling at very narrow track widths. By using the amorphous carbon layer as the masking layer, the trackwidth can be very small, while avoiding this bending over of the mask that has been experienced with prior art methods. In addition, the track-width can be further reduced by using a reactive ion etching to further reduce the width of the amorphous carbon mask prior to patterning the sensor. The method also allows extraneous portions of the side insulation layer and hard bias layer to be removed above the sensor by a light CMP process.
    Type: Application
    Filed: October 18, 2011
    Publication date: April 18, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hamid Balamane, Patrick M. Braganca, Jordan A. Katine, Jui-Lung Li, Yang Li, Kanaiyalal C. Patel, Neil L. Robertson, Samuel W. Yuan
  • Publication number: 20130095349
    Abstract: Tolerances for manufacturing reader structures for transducer heads continue to grow smaller and storage density in corresponding storage media increases. Reader stop layers may be utilized during manufacturing of reader structures to protect various layers of the reader structure from recession and/or scratches while processing other non-protected layers of the reader structure. For example, the stop layer may have a very low polish rate during mechanical or chemical-mechanical polishing. Surrounding areas may be significantly polished while a structure protected by a stop layer with a very low polish rate is substantially unaffected. The stop layer may then be removed via etching, for example, after the mechanical or chemical-mechanical polishing is completed.
    Type: Application
    Filed: October 14, 2011
    Publication date: April 18, 2013
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Carolyn Pitcher Van Dorn, Thomas Roy Boonstra, Eric Walter Singleton, Shaun Eric McKinlay
  • Patent number: 8419954
    Abstract: A method for fabricating a side shield for a magnetic transducer is described. The transducer has a nonmagnetic layer, a pole, a gap layer between the pole sidewalls and the nonmagnetic layer, and a hard mask having a hard mask aperture. A removal mask having a removal aperture exposing part of the pole and hard mask aperture is provided. The removal mask covers part of the hard mask aperture and the part of the hard mask. A trench in the nonmagnetic layer is formed by removing part of the nonmagnetic layer. A seed layer is deposited. A deposition mask having a deposition aperture therein is provided. The deposition aperture exposes part of the trench and part of the nonmagnetic layer. Side shield material(s) are deposited. Part of the side shield material(s) external to the deposition trench are removed. A remaining portion of the side shield material forms the side shield.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: April 16, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Yan Chen, Donghong Li, Lien-Chang Wang
  • Patent number: 8419952
    Abstract: According to one embodiment, a method of manufacturing a patterned medium includes forming an implantation depth-adjusting layer above a magnetic recording layer, the magnetic recording layer being made of a material that is deactivated when implanted with a chemical species, and the implantation depth-adjusting layer being made of a material that is etched when irradiated with an ion beam of the chemical species and irradiating the implantation depth-adjusting layer with the ion beam to implant the chemical species into a part of the magnetic recording layer through the implantation depth-adjusting layer while etching the implantation depth-adjusting layer by an action of the ion beam to decrease a thickness of the implantation depth-adjusting layer.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: April 16, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masatoshi Sakurai, Kaori Kimura, Hiroyuki Hyodo, Takeshi Iwasaki
  • Patent number: 8419951
    Abstract: A method of manufacturing a magnetic recording medium is provided, which include: forming a magnetic layer on the surface of a nonmagnetic substrate; forming a groove in which a nonmagnetic section is formed by etching a portion corresponding to a formation region of the nonmagnetic section in the magnetic layer and a magnetic recording section formed of the magnetic layer; applying a resin having an active energy ray curable functional group to the surface of the magnetic recording section so as to fill the groove; pressing a plate material against the resin so that the smooth surface of the plate material is in contact with the surface of the resin to make the surface of the resin smooth; removing the plate material from the resin; and forming the nonmagnetic section in the groove by etching and removing a portion located above the surface of the magnetic recording section in the resin having a smooth surface.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: April 16, 2013
    Assignee: Showa Denko K.K.
    Inventors: Yoshiko Takahashi, Yuki Hirai, Tomoo Shige
  • Patent number: 8419953
    Abstract: A method for fabricating a transducer on a substrate is described. The transducer includes an antiferromagnetic seed structure. The antiferromagnetic seed structure includes a first NiFe layer, a first multilayer including a first Ru layer, a second NiFe layer, and a second multilayer including a second Ru layer. The second multilayer, the second NiFe layer and part of the first Ru layer are removed using a first wet etch, which uses a first etchant combination to remove NiFe and in which Ru is insoluble. The second Ru layer is removed through lift-off due to etching of the second NiFe layer. A remainder of the first Ru layer is removed through a second wet etch, which uses a second etchant combination to remove Ru. A remaining portion of the first multilayer and the first NiFe layer are removed through a third etch, which uses a third etchant combination that removes NiFe.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: April 16, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Wencheng Su, Zhigang Zhou, Jane Ang, Ming Jiang
  • Patent number: 8413317
    Abstract: A method and system for fabricating a microelectric device are described. A write pole of an energy assisted magnetic recording head or a capacitor might be fabricated. The method includes depositing a resist film and curing the resist film at a temperature of at least 180 degrees centigrade. A cured resist film capable of supporting a line having an aspect ratio of at least ten is thus provided. A portion of the cured resist film is removed. A remaining portion of the resist film forms the line. An insulating or nonmagnetic layer is deposited after formation of the line. The line is removed to provide a trench in the insulating or nonmagnetic layer. The trench has a height and a width. The height divided by the width corresponds to the aspect ratio. At least part of the structure is provided in the trench.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: April 9, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Dujiang Wan, Hai Sun, Ge Yi, Wei Gao, Hong Zhang, Guanghong Luo, Yunjun Tang, Tiffany Yun Wen Jiang, Zhigang Zhou, Wencheng Su