Forming Groove Or Hole In A Substrate Which Is Subsequently Filled Or Coated Patents (Class 216/39)
  • Publication number: 20130025941
    Abstract: A method for forming a coating upon a wellbore tool includes forming a pattern of features supported by a body and forming a coating over the pattern of features. Forming the pattern of features includes forming a first feature and forming a second feature spaced from the first feature by a first width at a first elevation and by a second width at a second elevation, the second width being different than the first width, and the first elevation being further from an interior region of the body than the second elevation. Also disclosed is a wellbore tool comprising a coating covering a pattern of features and a method of utilizing a wellbore tool in a subterranean formation, the method including forming a pattern of features, forming a coating over the pattern, and disposing the wellbore tool in a borehole.
    Type: Application
    Filed: July 28, 2011
    Publication date: January 31, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Sunil Kumar, Hendrik John
  • Patent number: 8359748
    Abstract: A method of forming a fluid ejector includes forming a recess well into a silicon wafer on a first side of the silicon wafer, and filling the recess well with a sacrificial material. A thin layer structure is deposited onto the first side of a silicon wafer covering the filled recess well. Then a thin film piezoelectric is bonded or deposited to the thin layer structure, and a hole is formed in the thin layer structure exposing at least a portion of the sacrificial material. The sacrificial material is removed from the recess well, wherein the hole in the thin layer in the recess well with the sacrificial material removed, form a fluid inlet. An opening area in the silicon wafer is formed on a second side of the silicon wafer. Then a nozzle plate is formed having a recess portion and an aperture within the recess portion. The nozzle plate is attached to the second side of the silicon wafer, with the recess portion positioned within the open area.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: January 29, 2013
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Baomin Xu, Steven A. Buhler, Stephen D. White, Scott Jong Ho Limb
  • Patent number: 8361332
    Abstract: A method of fabricating micro-lenses is provided. A first layer is formed on a substrate. The first layer is comprised of a first material and the substrate is comprised of a second material. An opening is formed in the first layer and an etchant is provided in the opening to etch both the substrate and the first layer to form a first mold for a first micro-lens. The etchant etches the first layer at a different rate than the substrate. A lens material is added to the etched molds to form micro-lenses.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: January 29, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Jin Li
  • Patent number: 8354032
    Abstract: A method of manufacturing a mechanical part includes providing a substrate of micro-machinable material; etching, using photolithography, a pattern that includes said part through said entire substrate; assembling a clip on said part so that said part is ready to be mounted without the portion made of micro-machinable material having to be touched by a tool other than the clip; releasing the part from the substrate so as to mount said part in a device such as a timepiece movement.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: January 15, 2013
    Assignee: The Swatch Group Research and Development Ltd
    Inventors: Rudolf Dinger, Thierry Ravenel
  • Patent number: 8347489
    Abstract: A method for manufacturing a magnetic write head having a tapered write pole as well as a leading edge taper, and independent trailing and side magnetic shields. The method allows the write pole to be constructed by a dry process wherein the write pole material is either deposited by a process such as sputter deposition or electrically plated and the write pole shape is defined by masking and ion milling. The write pole has a stepped feature that can either be used to provide increased magnetic spacing between the trailing shield and the write pole at a location slightly recessed from the ABS or can be magnetic material that increases the effective thickness of the write pole at a location slightly recessed from the ABS. A bump structure can be further built over that stepped feature to enhance field gradient as well as reduce trailing shield saturation.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: January 8, 2013
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Liubo Hong, Aron Pentek, Yi Zheng, Honglin Zhu
  • Patent number: 8347488
    Abstract: A method for manufacturing a magnetic write head having a non-magnetic step layer, non-magnetic bump at the front of the non-magnetic step layer and a write pole with a tapered trailing edge. The tapered portion of the trailing edge of the write pole is formed by a two step process that allows the write pole taper to be formed with greater accuracy and repeatability than would be possible using a single step taper process. An alternative method is also described on how to make a non-magnetic bump structure with adjustable bump throat height prior to Damascene side shield gap formation in a Damascene wrap around shield head.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: January 8, 2013
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Liubo Hong, Aron Pentek, Yi Zheng
  • Patent number: 8349196
    Abstract: A system is provided for etching patterned media disks for hard drive. The modular system may be tailored to perform specific processes sequences so that a patterned media disk is fabricated without removing the disk from vacuum environment. In some sequence the magnetic stack is etched while in other the etch is performed prior to forming the magnetic stack. In a further sequence ion implantation is used without etching steps. For etching a movable non-contact electrode is utilized to perform sputter etch. The cathode moves to near contact distance to, but not contacting, the substrate so as to couple RF energy to the disk. The substrate is held vertically in a carrier and both sides are etched serially. That is, one side is etched in one chamber and then in the next chamber the second side is etched.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: January 8, 2013
    Assignee: Intevac, Inc.
    Inventors: Kevin P. Fairbairn, Michael S. Barnes, Terry Bluck, Ren Xu, Charles Liu, Ralph Kerns
  • Publication number: 20130005211
    Abstract: A donor substrate having a plurality of recesses and isolation structures may be provided. The isolation structures may be defined by the recesses. A first electrode is formed on a first substrate. A pixel defining layer may be formed on the first electrode to define a plurality of pixel regions. The donor substrate may be arranged over the first substrate, and a laser induced thermal imaging process may be performed to form a plurality of light emitting layers in the pixel regions. A second electrode may be formed on the pixel defining layer and the light emitting layers. The organic light emitting layers having minute dimensions may be effectively obtained from the donor substrate. The isolation structures may be formed integrally with the substrate, and thus the donor substrate may be easily recycled after the laser induced thermal imaging process.
    Type: Application
    Filed: April 19, 2012
    Publication date: January 3, 2013
    Inventors: Hyea-Weon Shin, Sang-Soo Kim, Sang-Hun Park, Young-Mok Son, Young-Il Kim
  • Patent number: 8341826
    Abstract: A method and system for fabricating magnetic transducer are described. The method and system include providing a main pole having a bottom, a top wider than the bottom, and a top bevel. A nonmagnetic gap covering the main pole is provided. A portion of the nonmagnetic gap resides on the top of the main pole. A first seed layer is provided. At least a portion of the first seed layer covers the portion of the nonmagnetic gap on top of the main pole. A portion of the nonmagnetic gap on the magnetic recording transducer is removed after the first seed layer is provided. A second seed layer is provided after the portion of the nonmagnetic gap is removed. The second seed layer covers at least the portion of the first seed layer. A wrap-around shield layer is provided on the second seed layer.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: January 1, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Hai Jiang, Yunhe Huang, Jinwen Wang, Yun-Fei Li, Ying Hong
  • Patent number: 8336194
    Abstract: A method of fabricating a tunneling magnetoresistance (TMR) reader is disclosed. A TMR structure comprising at least one ferromagnetic layer and at least one nonmagnetic insulating layer is provided. A first thermal annealing process on the TMR structure is performed. A reader pattern definition process performed on the TMR structure to obtain a patterned TMR reader. A second thermal annealing process is performed on the patterned TMR reader.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: December 25, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Lu Yuan, Jian X. Shen, Geoffrey W. Anderson, Christopher Ng
  • Patent number: 8334187
    Abstract: Methods of fabricating an integrated circuit device, such as a thin film resistor, are disclosed. An exemplary method includes providing a semiconductor substrate; forming a resistive layer over the semiconductor substrate; forming a hard mask layer over the resistive layer, wherein the hard mask layer includes a barrier layer over the resistive layer and a dielectric layer over the barrier layer; and forming an opening in the hard mask layer that exposes a portion of the resistive layer.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: December 18, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Wen Chang, Der-Chyang Yeh, Chung-Yi Yu, Hsun-Chung Kuang, Hua-Chou Tseng, Chih-Ping Chao, Ming Chyi Liu, Yuan-Tai Tseng
  • Patent number: 8333008
    Abstract: A method and system for fabricating a perpendicular magnetic recording head, and the head so formed, are described. The method includes depositing an underlayer directly on an insulating layer. The underlayer preferably includes at least one of a nonferromagnetic metal, silicon oxide, and silicon nitride. A pole layer, which has a pole removal rate, is provided on the underlayer. The method and system further include forming a perpendicular magnetic recording pole from the pole layer. The perpendicular magnetic recording pole has a top and a bottom that is narrower than the top. The process of forming the perpendicular magnetic recording pole further includes removing a portion of the pole layer such that a pole removal rate for the pole layer is less than or substantially equal to a removal rate of the underlayer during the removing step.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: December 18, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Kyusik Sin, Lei Wang, Yingjian Chen
  • Patent number: 8329049
    Abstract: The present invention relates to a method of fabricating a nanostructure, comprising the following steps: prestructuring a substrate (1) adapted to receive the nanostructure to form a nanorelief (2) on the substrate, the nanorelief having flanks (4) extending from a bottom (1a) of the substrate and a top face (3) extending from said flanks, and then depositing on the substrate pre-structured in this way a single layer or multilayer coating intended to form the nanostructure; and further comprising: adding to the prestructured substrate or to the coating a separation layer adapted to enable separation of the coating and the substrate by external action of mechanical, thermomechanical or vibratory type; and exerting this external action on the substrate and/or the coating to recover selectively a top portion of the coating by separating it from the top face of the nanorelief so that this top portion constitutes some or all of the nanostructure.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: December 11, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Ursula Ebels, Bernard Dieny, Dominique Lestelle, Eric Gautier
  • Patent number: 8327523
    Abstract: There is provided a method of making two electrically separated inductors using deposition and wet-etching techniques, which inductors are formed by interwinding one of the inductors within the other inductor on the same planar level. In still another aspect of the invention, there is provided a method of making various levels inductors, each level having at least two electrically separated inductors, using deposition and wet-etching techniques. The inductors on each planar level are formed by interwinding one of the inductors within the other inductor, and then stacking these in a preferred manner. In still another aspect, there is provided a manner of connecting together inductors formed according to the above methods in order to achieve various inductor configurations.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: December 11, 2012
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Adam J. Whitworth, Wenjiang Zeng
  • Patent number: 8329001
    Abstract: To provide a filmy structure of a nanometer size having a phase-separated structure effective for the case where a compound can be formed between two kinds of materials. A structure constituted by a first member containing a compound between an element A except both Si and Ge and SinGe1-n (where 0?n?1) and a second member containing one of the element A and SinGe1-n (where 0?n?1), in which one of the first member and the second member is a columnar member, formed on a substrate, whose side face is surrounded by the other member, the ratio Dl/Ds of an average diameter Dl in the major axis direction to an average diameter Ds in the minor axis direction of a transverse sectional shape of the columnar member is less than 5, and the element A is one of Li, Na, Mg, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Cs, Ba, La, Hf, Ta, W, Re, Os, Ir, Pt, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and B.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: December 11, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Nobuhiro Yasui, Ryoko Horie, Toru Den
  • Patent number: 8318029
    Abstract: Capsules and similar objects are made from materials having diamond (sp3) lattice structures, including diamond materials in synthetic crystalline, polycrystalline (ordered or disordered), nanocrystalline and amorphous forms. The capsules generally include a hollow shell made of a diamond material that defines an interior region that may be empty or that may contain a fluid or solid material. Some of the capsules include access ports that can be used to fill the capsule with a fluid. Capsules and similar structures can be manufactured by growing diamond on suitably shaped substrates. In some of these methods, diamond shell sections are grown on substrates, then joined together. In other methods, a nearly complete diamond shell is grown around a form substrate, and the substrate can be removed through a relatively small opening in the shell.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: November 27, 2012
    Assignee: Terraspan LLC
    Inventor: Victor B. Kley
  • Patent number: 8318477
    Abstract: A cellular electrophysiological measurement device includes a thin plate and a frame. The thin plate has a first surface with a depression and a second surface with a through-hole. The frame is in contact with an outer periphery on the second surface of thin plate. The thin plate has a laminated structure of at least two layers including a first material layer on the first surface and a second material layer on the second surface. The frame is formed of a third material layer. The structure allows the cellular electrophysiological measurement device to be not so vulnerable to breakage of thin plate and other damages, thereby having high production yield.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: November 27, 2012
    Assignee: Panasonic Corporation
    Inventors: Masaya Nakatani, Takashi Yoshida, Masatoshi Kojima
  • Publication number: 20120273350
    Abstract: The present invention relates to a method for producing a miniaturized separation column for chromatographic purposes including a porous stationary phase anchored in the column, including the following steps: (a) preparing a fiat substrate of silicon, glass, glass ceramic or ceramic; (b) etching at least one channel structure into the fiat substrate; (c) introducing a non-porous precursor material for the porous stationary phase into at least one portion of the channel structure(s); (d) forming a porous, three-dimensional network from the precursor material; and (e) fluid-tight covering of the channel structure(s) on the top side of the flat substrate.
    Type: Application
    Filed: November 5, 2010
    Publication date: November 1, 2012
    Inventors: Gundula Piechotta, Hans-Joachim Quenzer
  • Publication number: 20120273458
    Abstract: The invention relates to a method for processing a substrate with a focussed particle beam which incidents on the substrate, the method comprising the steps of: (a) generating at least one reference mark on the substrate using the focused particle beam and at least one processing gas, (b) determining a reference position of the at least one reference mark, (c) processing the substrate using the reference position of the reference mark, and (d) removing the at least one reference mark from the substrate.
    Type: Application
    Filed: May 9, 2011
    Publication date: November 1, 2012
    Inventors: Tristan Bret, Petra Spies, Thorsten Hofmann
  • Patent number: 8293193
    Abstract: A microfluidic component comprises at least one channel (2) delineated by a top wall (6) and a bottom wall (3) and two opposite side walls (4, 5). The distance (P) between the top wall (6) and the bottom wall (3) of the channel (2) is greater than or equal to 25 micrometers and first and second sets of nanotubes (9a, 9b) are respectively borne by the two opposite side walls (4, 5) for the component to present a particularly high ratio between the contact surface and the available volume and a limited overall surface size. In addition, the distance between the two opposite side walls (4, 5) is about a few micrometers and preferably comprised between 3 and 5 micrometers.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: October 23, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Florence Ricoul, Nicolas Sarrut, Jean Dijon, Francoise Vinet
  • Patent number: 8282846
    Abstract: A metal interconnect structure, which includes a bond pad, an overlying anti-reflective coating layer, an overlying passivation layer, and an opening that exposes a top surface of the bond pad, eliminates corrosion resulting from the anti-reflective layer being exposed to moisture during reliability testing by utilizing a side wall spacer in the opening that touches the side wall of the passivation layer, the side wall of the anti-reflective coating layer, and the top surface of the bond pad.
    Type: Grant
    Filed: February 27, 2010
    Date of Patent: October 9, 2012
    Assignee: National Semiconductor Corporation
    Inventor: Rodney L. Hill
  • Patent number: 8277668
    Abstract: A method of forming printed circuit boards and packaging substrates. After blind vias are created in a dielectric layer, a first seed layer is provided in the vias and on the dielectric layer. Copper is applied to fill the vias and to form a copper layer over the vias and over the first seed layer. The first seed layer and the copper layer are removed and a second seed layer is formed on the dielectric layer and the exposed surfaces of the vias. A wire pattern is then formed using a photo-sensitive thin film applied to the second seed layer, and the wires in the wire pattern are thickened. The photo-sensitive thin film and the exposed portions of the second seed layer are removed to form a first conductive pattern of wires. The process may be repeated to form a second conductive pattern of wires on the first pattern.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: October 2, 2012
    Assignee: Shanghai Meadville Science & Technology Co., Ltd.
    Inventors: FanXiong Cheng, Peifeng Chen, Haitao Fu, Yonghong Luo
  • Patent number: 8276258
    Abstract: A method and system provide a magnetic transducer that includes an underlayer and a first nonmagnetic layer on the underlayer. The method and system include providing a first trench in the first nonmagnetic layer. The first trench has at least one edge corresponding to at least one side shield. The method and system also include providing a second nonmagnetic layer in the first trench and providing a second trench in the second nonmagnetic layer. The method and system include providing the main pole. At least part of the main pole resides in the second trench. The method and system further include removing at least a portion of the second nonmagnetic layer between the edge(s) and the main pole. The method and system also provide the side shield(s) in the first trench. The side shield(s) extend from at least an air-bearing surface location to not further than a coil front location.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: October 2, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Ut Tran, Zhigang Bai
  • Publication number: 20120234791
    Abstract: Methods and apparatus for applying internal features or complex mechanical structures to a surface of a metal part are disclosed. According to one aspect of the present invention, a method for creating an assembly that includes a substrate and a molded piece involves obtaining the substrate, and forming at least one binding feature on a surface of the substrate. The method also includes molding on a surface of the binding feature and the surface of the substrate. Molding on the surface of the binding feature and the surface of the substrate mechanically binds the molded piece to the substrate.
    Type: Application
    Filed: June 4, 2012
    Publication date: September 20, 2012
    Inventors: Douglas Weber, Stephen P. Zadesky, Stephen Brian Lynch
  • Publication number: 20120222947
    Abstract: A keypad structure and method of fabricating the keypad structure are disclosed, in which, an edge of a hollowed pattern of a light-shielding color layer and an edge of a hollowed pattern of a keycap color layer are allowed to be aligned with each other, to prevent the keypad pattern from suffering a halo issue.
    Type: Application
    Filed: June 8, 2011
    Publication date: September 6, 2012
    Inventor: Hsin-Chung Chang
  • Patent number: 8252690
    Abstract: A method of forming a seed layer of an interconnect structure includes forming a dielectric layer; forming an opening in the dielectric layer; performing a first deposition step to form the seed layer; and in-situ performing a first etch step to remove a portion of the seed layer. The method may further includes additional deposition and etch steps for forming the seed layer.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: August 28, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Lin Su, Cheng-Lin Huang, Shing-Chyang Pan, Ching-Hua Hsieh
  • Patent number: 8252379
    Abstract: A false inlay decoration is characterized in that a linear notch is formed in a surface of a base by laser processing; a first decoration face and a second decoration face are sectioned and formed by the linear notch; and a coating layer is formed on the inner surface of the linear notch.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: August 28, 2012
    Assignee: Nagashimakougei Co., Ltd.
    Inventor: Yoichi Nagashima
  • Patent number: 8252683
    Abstract: Provided are a three-dimensional (3D) interconnection structure and a method of manufacturing the same. The 3D interconnection structure includes a wafer that has one side of an inverted V-shape whose middle portion is convex and a lower surface having a U-shaped groove for mounting a circuit, and a first electrode formed to cover a part of the inverted V-shaped one side of the wafer and a part of the U-shaped groove.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: August 28, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventor: Kwon-Seob Lim
  • Patent number: 8230583
    Abstract: A method for self aligning a lapping guide with a structure of a write pole. A write pole is formed over a substrate and an electrically conductive material lapping guide material is deposited in a location that is removed from the write pole. A mask is then formed over a portion of the write pole and a portion of the electrically conductive material. A material removal process such as reactive ion etching can then be performed to remove a portion of the magnetic material that is not protected by the mask structure. An magnetic material is then electroplated over the write pole with the write pole, with the mask still in place. In this way, the electroplated material has an edge that is self aligned with an edge of the electrically conductive lapping guide material, both being defined by the same mask structure.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: July 31, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Jeffrey S. Lille
  • Patent number: 8228141
    Abstract: A high Q resonator device is disclosed. The device includes a substrate, a resonator tethered to the substrate by a tether, and an acoustic reflector etched into the substrate and positioned proximate the tether so as to reflect a substantial portion of planar acoustic energy received from the tether back into the tether.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: July 24, 2012
    Assignee: The Board of Regents for Oklahoma State University
    Inventors: Reza Abdolvand, Brandon Harrington
  • Publication number: 20120171596
    Abstract: A monolithic electrolyte assembly comprising improved as well as new associated structures and processes operative in the general field of solid oxide electrolytic devices is disclosed. The invention provides a reliable and durable interconnect for both structural and electrical components of such devices. In the present invention, thin-film-based solid oxide fuel cells and solid oxide oxygen/hydrogen generators may be fabricated using primarily solid metal alloys as underlying components of thin film and thick film structures built thereon.
    Type: Application
    Filed: August 4, 2010
    Publication date: July 5, 2012
    Inventor: Donald Bennett Hilliard
  • Patent number: 8211320
    Abstract: A carbon nanotube device includes a flexible substrate and a patterned carbon nanotube layer. The flexible substrate defines a plurality of recesses. The patterned carbon nanotube layer is formed on the flexible substrate. The carbon nanotube layer includes a plurality of carbon nanotube arrays. Each carbon nanotube array is fixedly attached in the corresponding recess.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: July 3, 2012
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Shao-Kai Pei
  • Patent number: 8207496
    Abstract: An electrospray ion source for a mass spectrometer includes an electrode comprising at least a first plurality of protrusions protruding from a base, each protrusion of the at least a first plurality of protrusions having a respective tip; a conduit for delivering an analyte-bearing liquid to the electrode; and a voltage source, wherein, in operation of the electrospray ion source, the analyte-bearing liquid is caused to move, in the presence of a gas or air, from the base to each protrusion tip along a respective protrusion exterior so as to form a respective stream of charged particles emitted towards an ion inlet aperture of the mass spectrometer under application of voltage applied to the electrode from the voltage source.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: June 26, 2012
    Assignee: Thermo Finnigan LLC
    Inventors: Alexander A. Makarov, Eloy R. Wouters
  • Publication number: 20120156791
    Abstract: Methods, systems, and computer readable media for using actuated surface-attached posts for assessing biofluid rheology are disclosed. According to one aspect, a method for testing properties of a biofluid specimen includes placing the specimen onto a micropost array having a plurality of microposts extending outwards from a substrate, wherein each micropost includes a proximal end attached to the substrate and a distal end opposite the proximal end, and generating an actuation force in proximity to the micropost array to actuate the microposts, thereby compelling at least some of the microposts to exhibit motion. The method further includes measuring the motion of at least one of the microposts in response to the actuation force and determining a property of the specimen based on the measured motion of the at least one micropost.
    Type: Application
    Filed: June 25, 2010
    Publication date: June 21, 2012
    Inventors: Richard Superfine, Richard Chasen Spero, Adam Richard Shields, Benjamin Aaron Evans, Briana Lee Fiser
  • Patent number: 8201320
    Abstract: A method for manufacturing a magnetic write head having a leading magnetic shield and a trailing magnetic shield that are arranged to prevent the lost of magnetic write field to the trailing magnetic shield. The write head includes a non-magnetic step layer that provides additional spacing between the trailing magnetic shield and the write pole at a region removed from the air bearing surface.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: June 19, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Donald G. Allen, Yingjian Chen, Andrew Chiu, Liubo Hong, Wen-Chien D. Hsiao, Edward H. P. Lee, Fenglin Liu, Katalin Pentek, Kyusik Shin, Yi Zheng, Qiping Zhong, Honglin Zhu
  • Patent number: 8197912
    Abstract: A method for manufacturing thin film panels comprises providing a laser patterning system, depositing a base layer on a glass substrate, separating the base layer by scribing a plurality of separation lines corresponding with a predefined scribe pattern, depositing a functional layer on the base layer, determining a first base layer separation edge, moving the translation stage by a first distance, activating the laser array and moving the translation stage by a second distance, deactivating the laser array, determining subsequent separation edges of the base layer and scribing lines therein, depositing a top layer on the functional layer, determining a first functional layer separation edge, operating the stepper motor to move the translation stage by a third distance, activating the laser array and moving the translation stage by a fourth distance, deactivating the laser array, and determining subsequent separation edges of the functional layer and scribing lines therein.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: June 12, 2012
    Assignee: International Business Machines Corporation
    Inventors: Rainer Krause, Gerd Pfeiffer
  • Publication number: 20120138570
    Abstract: Methods for fabricating sublithographic, nanoscale microstructures in line arrays utilizing self-assembling block copolymers, and films and devices formed from these methods are provided.
    Type: Application
    Filed: February 14, 2012
    Publication date: June 7, 2012
    Inventors: Dan B. Millward, Donald Westmoreland
  • Patent number: 8192640
    Abstract: A method of manufacturing an ink-jet head is disclosed. The method in accordance with an embodiment of the present invention includes: forming a dividing groove such that one surface of a piezoelectric element is divided corresponding to the position of the chamber; filling the dividing groove with a filler; bonding one surface of the piezoelectric element to one surface of the ink-jet head in which the chamber is formed; and polishing the other surface of the piezoelectric element such that the filler is exposed.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: June 5, 2012
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Sang-Jin Kim, Jae-Woo Joung, Pil-Joong Kang
  • Patent number: 8191234
    Abstract: A method for protecting a thin film structure including fabricating a plurality of island structures in a recording gap of a magnetic recording head, exposing a substantial portion of the plurality of island structures by removing at least a portion of the surrounding recording gap material via at least one etching process, including ion milling, coating the magnetic recording head containing the plurality of island structures with a coating material, including silicon nitride or aluminum oxide, and removing at least a portion of the coating material via a removal process, including chemical-mechanical polishing or lapping, to expose an uppermost region of at least a portion of said plurality of island structures.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: June 5, 2012
    Assignee: International Business Machines Corporation
    Inventors: Robert G. Biskeborn, Calvin S. Lo, Cherngye Hwang
  • Patent number: 8192638
    Abstract: A method for manufacturing multiple layers of waveguides is disclosed. Initially, a first cladding layer is deposited on a substrate, a first inner cladding layer is then deposited on the first cladding layer, and a first waveguide material is deposited on the first inner cladding layer. The first inner cladding layer and the first waveguide material are then selectively etched to form a first waveguide layer. Next, a second inner cladding layer followed by a second cladding layer are deposited on the first waveguide layer. The second inner cladding layer and the second cladding layer are removed by using a chemical-mechanical polishing process selective to the first waveguide material. A third inner cladding layer followed by a second waveguide material are deposited on the first waveguide material. The third inner cladding layer and the second waveguide material are then selectively etched to form a second waveguide layer.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: June 5, 2012
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Andrew T. S. Pomerene, Timothy J. Conway, Craig M. Hill, Mark Jaso
  • Patent number: 8186040
    Abstract: A method in one embodiment includes forming a resist structure above an upper surface of a substrate, wherein a portion of the upper surface of the substrate is a shaping layer, wherein the resist structure has an undercut; depositing a layer of magnetic material above exposed regions of the substrate, wherein a portion of the layer of magnetic material tapers towards the substrate as it approaches the undercut; removing the resist structure; and forming a write pole above the layer of magnetic material. Additional methods are disclosed.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: May 29, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Amanda Baer, Wen-Chien David Hsiao, Vladimir Nikitin, Trevor W. Olson, Yuan Yao
  • Publication number: 20120130300
    Abstract: An injectable or implantable medical device having orifice(s) on the surface that release an active agent with zero-order release kinetics is described herein. The device is a hollow matrix of any size or shape, which can be made from both metal and non-metal surfaces. The device comprises of a reservoir capable of releasing at least one therapeutic, diagnostic, or prophylactic agent via the orifices to the desired anatomical site. The developed device, due to its composite structure, has the ability to combine several release mechanisms, leading to zero-order release kinetics for most of the time. The composition provides zero-order kinetics, in part, because the diffusion rate of the drug from the device is slow which enables sink conditions. Hence, no back transfer or build up of drug occurs at anytime. Polymers are not required for controlled release.
    Type: Application
    Filed: July 14, 2010
    Publication date: May 24, 2012
    Applicant: Board of Regents, The Univerity of Texas System
    Inventors: Salomon S. Stavchansky, Phillip Bowman, Paul S. Ho, Ashish Rastogi, Zhiquan Luo, Zhuoijie Wu
  • Publication number: 20120128882
    Abstract: The disclosure relates to methods of printing indicia on a substrate using a tip array comprised of elastomeric, compressible gel polymers. The tip array can be prepared using conventional photolithographic methods and can be tailored to have any desired number and/or arrangement of tips. Numerous copies (e.g., greater than 15,000, or greater than 11 million) of a pattern can be made in a parallel fashion in as little as 40 minutes.
    Type: Application
    Filed: February 18, 2010
    Publication date: May 24, 2012
    Applicant: NORTHWESTERN UNIVERSITY
    Inventors: Chad A. Mirkin, Fengwei Huo, Xiaodong Chen
  • Publication number: 20120125856
    Abstract: A nanocomposite solid material includes nanoparticles of a metal coordination polymer with CN ligands comprising Mn+ cations, in which M is a transition metal and n is 2 or 3; and anions [M?(CN)m]x? in which M? is a transition metal, x is 3 or 4, and m is 6 or 8. The Mnn+ cations of the coordination polymer are bound through an organometallic bond to an organic group of an organic graft chemically attached inside the pores of a support made of porous glass. The material can be used in a method for fixing (binding) a mineral pollutant, such as radioactive cesium, contained in a solution by bringing the solution in contact with the nanocomposite solid material.
    Type: Application
    Filed: May 20, 2010
    Publication date: May 24, 2012
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, UNIVERSITE DE MONTLIER II
    Inventors: Agnes Grandjean, Yves Barre, Yannick Guari, Joulia Larionova, Christian Guerin
  • Publication number: 20120121928
    Abstract: Metalized plastic substrates, and methods thereof are provided herein. The method includes providing a plastic substrate having a plurality of accelerators dispersed in the plastic substrate. The accelerators have a formula selected from the group consisting of: CuFe2O4-?, Ca0.25Cu0.75TiO3-?, and TiO2-?, wherein ?, ?, ? denotes oxygen vacancies in corresponding accelerators and 0.05???0.8, 0.05???0.5, and 0.05???1.0. The method further includes removing at least a portion of a surface of the plastic substrate to expose at least a first accelerator. The method further includes plating the exposed surface of the plastic substrate to form at least a first metal layer on the at least first accelerator, and then plating the first metal layer to form at least a second metal layer.
    Type: Application
    Filed: January 20, 2012
    Publication date: May 17, 2012
    Inventors: Qing Gong, Liang Zhou, Weifeng Miao, Xiong Zhang
  • Patent number: 8176622
    Abstract: A process for manufacturing a high performance MTJ it is described: A first cap layer of NiFeHf is deposited on the free layer, followed by a second cap layer of Ru on Ta. The device is then heated so that oxygen trapped in the free layer diffuses into the NiFeHf layer, thereby sharpening the interface between the tunnel barrier layer and the free layer.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: May 15, 2012
    Assignee: MagIC Technologies, Inc.
    Inventors: Cheng T. Horng, Ru-Ying Tong, Chyu-Jiuh Torng, Witold Kula
  • Patent number: 8173033
    Abstract: In a nano filter structure for breathing and a manufacturing method of the nano filter structure, a semiconductor process technology is used for manufacturing a nano filter structure comprising a top gate, a bottom gate, a plurality of sidewall gates and a plurality of supports. The sidewall gates include a plurality of filterable gratings, and the filterable gratings are controlled precisely to a nanoscale by a semiconductor process technology. Therefore, the nano filterable gratings can be manufactured easily and quickly, and the multilayer design of the filterable gratings enhances the aperture ratio of a filter material, such that users can inhale or exhale easily through the filter material.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: May 8, 2012
    Inventor: Shu-Yuan Chuang
  • Patent number: 8166631
    Abstract: A method provides a magnetic transducer that includes an underlayer and a nonmagnetic layer on the underlayer. The method includes providing a plurality of trenches in the nonmagnetic layer. A first trench of corresponds to a main pole, while at least one side trench corresponds to at least one side shield. The method also includes providing mask covering the side trench(es) and providing the main pole. At least a portion of the main pole resides in the first trench. The method also includes removing at least a portion of the nonmagnetic layer residing between the side trench(es) and the main pole. The method also includes providing at least one side shield. The shield(s) extend from at least an air-bearing surface location to not further than a coil front location.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: May 1, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Ut Tran, Zhigang Bai, Kevin K. Lin
  • Patent number: 8166632
    Abstract: A method and system for providing a PMR transducer including an intermediate layer. The method and system include providing a hard mask layer on the intermediate layer. The hard mask layer is for a reactive ion etch of the intermediate layer. The method and system also include providing a bottom antireflective coating (BARC) layer on the hard mask layer. The BARC layer is also a masking layer for the hard mask layer. The method and system also include forming a trench in the intermediate layer using at least one reactive ion etch (RIE). The trench has a bottom and a top wider than the bottom. The method and system also include providing a PMR pole. At least a portion of the PMR pole resides in the trench.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: May 1, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Jinqiu Zhang, Liubo Hong, Yong Shen, Donghong Li
  • Patent number: 8163188
    Abstract: A method of forming a patterned functional layer on a substrate using a poly(hydroxyethyl methacrylate) lift-off layer is described. The method can be used with substrates that would not tolerate the organic solvents required for processing of known poly(methyl methacrylate) lift-off layers. When used in combination with known nanoimprint lithography and step-and-flash imprint lithography techniques, the method can be used to generate patterned functional structures with dimensions as small as five nanometers.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: April 24, 2012
    Assignee: The University of Massachusetts
    Inventors: Kenneth Raymond Carter, Sarav Bharat Jhaveri