Forming Pattern Using Lift Off Technique Patents (Class 216/40)
  • Publication number: 20140012093
    Abstract: The present invention provides novel medical instruments and methods for fabricating them by using nano-technology processes.
    Type: Application
    Filed: March 21, 2012
    Publication date: January 9, 2014
    Applicant: CHANG HE BIO-MEDICAL SCIENCE (YANGZHOU) CO., LTD.
    Inventors: Chris C. Yu, Xuedong Du
  • Publication number: 20140004780
    Abstract: A method of manufacturing a polishing pad mold for a polishing pad including a micro pattern ? having micro protrusions arranged therein includes steps of manufacturing a mother mold where a mother mold including a substrate, on one side of which a micro pattern ? having an inverted protrusion-depression shape with respect to the micro pattern ? is formed, is manufactured, manufacturing a positive daughter mold where a positive daughter mold having a micro pattern ? formed on a surface is manufactured by the mold, and manufacturing a negative daughter mold where a negative daughter mold having a micro pattern ? formed on a surface is manufactured by the mold, and an assembly step where the mold is configured by arranging and fixing the molds on a basis with the surfaces having the micro pattern ? faced up. Thereby, highly precise and efficient planarization is provided.
    Type: Application
    Filed: June 19, 2013
    Publication date: January 2, 2014
    Inventors: Yasunori Tashiro, Masato Takata, Toshiaki Atari, Masaaki Matsuo, Takahiro Ito, Keisuke Suzuki, Keiichi Kimura, Panart Khajornrungruang
  • Patent number: 8603347
    Abstract: A method for forming a recess defect on a carbon nanotube is introduced. The method includes the following steps. A substrate with a surface is provided. A first carbon nanotube is deposed on the surface of the substrate. A second carbon nanotube is crossed with the first carbon nanotube. The second carbon nanotube crosses the first carbon nanotube and is in contact with the first carbon nanotube. A mask is deposited on substrate, the first carbon nanotube, and the second carbon nanotube. The substrate is etched to remove the second carbon nanotube and form a recess defect on the first carbon nanotube at a crossing position.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: December 10, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Xue-Shen Wang, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 8585918
    Abstract: A method is described of selectively etching a silicon substrate in small local areas in order to form columns or pillars in the etched surface. The silicon substrate is held in an etching solution of hydrogen fluoride, a silver salt and an alcohol. The inclusion of the alcohol provides a greater packing density of the silicon columns.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: November 19, 2013
    Assignee: Nexeon Ltd.
    Inventors: Mino Green, Feng-Ming Liu
  • Patent number: 8580127
    Abstract: An RFID based thermal bubble type accelerometer includes a flexible substrate, an embedded system on chip (SOC) unit, an RFID antenna formed on the substrate and coupled to a modulation/demodulation module in the SOC unit, a cavity formed on the flexible substrate, and a plurality of sensing assemblies, including a heater and two temperature-sensing elements, disposed along the x-axis direction and suspended over the cavity. The two temperature-sensing elements, serially connected, are separately disposed at two opposite sides and at substantially equal distances from the heater. Two sets of sensing assemblies can be connected in differential Wheatstone bridge. The series-connecting points of the sensing assemblies are coupled to the SOC unit such that an x-axis acceleration can be obtained by a voltage difference between the connecting points. The x-axis acceleration can be sent by the RFID antenna to a reader after it is is modulated and encoded by the modulation/demodulation module.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: November 12, 2013
    Assignee: Chung Hua University
    Inventor: Jium Ming Lin
  • Patent number: 8562842
    Abstract: A method of fabricating a nanoimprint stamp includes forming a resist pattern having a nano size width on a stamp substrate by performing imprint processes repeatedly. In the imprint processes, resist layers that are selectively etched are sequentially used. The stamp substrate is etched using the resist pattern as an etch mask.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: October 22, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Du-hyun Lee, Byung-kyu Lee, Woong Ko
  • Patent number: 8555486
    Abstract: A method for fabricating a magnetic recording transducer is described. The transducer has an ABS location and a nonmagnetic intermediate layer having a pole trench. The method includes depositing at least one magnetic pole layer having a top surface and a pole tip portion proximate to the ABS location. A first portion of the magnetic pole layer(s) resides in the pole trench. The magnetic pole layer(s) have a seam in the pole tip portion that extends to the top surface. The method also includes cathodically etching a second portion of the magnetic pole layer(s) from the seam at a rate of not more than 0.1 nanometers/second, thereby forming a seam trench in the magnetic pole layer(s). The method also includes refilling the seam trench with at least one magnetic refill layer. At least an additional magnetic pole layer is deposited on the top surface and the magnetic refill layer(s).
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: October 15, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Jose A. Medina, Tiffany Yun Wen Jiang, Ming Jiang
  • Patent number: 8551353
    Abstract: Provided are a shape of a hierarchical structure, an engineering effect of the hierarchical structure according to the shape, an increasing method of the engineering effect, an application method of the hierarchical structure for novel material or parts, and a mass-manufacturing method of the hierarchical structure. The present invention relates to a hierarchical structure and a manufacturing method thereof, and includes a hierarchical structure in which at least one nano-object that has a characteristic length of a nanoscale region in an internal matrix is arranged in a predetermined pattern. According to the exemplary embodiments of the present invention, an excellent characteristic that is generated in a nanoscale region may be used in a structure of a macroscopic scale region, and structures that have different scales may be simply interconnected or interfaced regardless of the different scales.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 8, 2013
    Assignee: Korea Institute of Machinery & Materials
    Inventors: Jae-Hyun Kim, Hak-Joo Lee, Seung-Min Hyun, Hyun-Ju Choi, Byung-Ik Choi, Ki-Don Kim, Dae-Guen Choi
  • Patent number: 8551347
    Abstract: A method in one embodiment includes forming a layer of a nonmagnetic material above an upper surface of a substrate; forming a resist structure above the layer of nonmagnetic material, wherein the resist structure has an undercut; removing a portion of the layer of nonmagnetic material not covered by the resist structure; depositing a layer of magnetic material above the substrate adjacent a remaining portion of the layer of nonmagnetic material such that at least portions of the layer of magnetic material and the remaining portion of the layer of nonmagnetic material lie in a common plane; removing the resist structure; and forming a write pole above the layer of magnetic material and the remaining portion of the layer of nonmagnetic material. Additional methods are also presented.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: October 8, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Amanda Baer, Wen-Chien David Hsiao, John I. Kim, Vladimir Nikitin, Trevor W. Olson, John Bruce Piggott, Jr., Yuan Yao
  • Publication number: 20130236987
    Abstract: A method of fabricating workpieces includes one or more layers on a substrate that are masked with an ion implantation mask comprising two or more layers. The mask layers include a first mask layer closer to the substrate, and a second mask layer on the first mask layer. The method also comprises ion implanting one or more of the layers on the substrate. Ion implantation may form portions with altered physical properties from the layers under the mask. The portions may form a plurality of non-magnetic regions corresponding to apertures in the mask.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 12, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Kanaiyalal C. Patel, Kurt A. Rubin
  • Patent number: 8512583
    Abstract: A method for making a master disk to be used in the nanoimprinting process to make patterned-media disks uses an electrically conductive substrate and guided self-assembly of a block copolymer to form patterns of generally radial lines and/or generally concentric rings of one of the block copolymer components. A metal is electroplated onto the substrate in the regions not protected by the lines and/or rings. After removal of the block copolymer component, the remaining metal pattern is used as an etch mask to fabricate either the final master disk or two separate molds that are then used to fabricate the master disk.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: August 20, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Christian Rene′ Bonhote, Jeffrey S. Lille, Ricardo Ruiz, Georges Gibran Siddiqi
  • Patent number: 8512585
    Abstract: Methods for forming an imprint lithography template are provided. Materials for forming the imprint lithography template may be etched at different rates based on physical properties of the layers. Additionally, reflectance of the materials may be monitored to provide substantially uniform erosion of the materials.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: August 20, 2013
    Assignee: Molecular Imprints, Inc.
    Inventors: Gary F. Doyle, Gerard M. Schmid, Michael N. Miller, Douglas J. Resnick, Dwayne L. LaBrake
  • Patent number: 8512588
    Abstract: A method of fabricating a nanoporous membrane filter having a uniform array of nanopores etch-formed in a thin film structure (e.g. (100)-oriented single crystal silicon) having a predetermined thickness, by (a) using interferometric lithography to create an etch pattern comprising a plurality array of unit patterns having a predetermined width/diameter, (b) using the etch pattern to etch frustum-shaped cavities or pits in the thin film structure such that the dimension of the frustum floors of the cavities are substantially equal to a desired pore size based on the predetermined thickness of the thin film structure and the predetermined width/diameter of the unit patterns, and (c) removing the frustum floors at a boundary plane of the thin film structure to expose, open, and thereby create the nanopores substantially having the desired pore size.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: August 20, 2013
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Joseph W. Tringe, Rodney L. Balhorn, Saleem Zaidi
  • Patent number: 8470189
    Abstract: In the present invention, provided is a method of forming a mask pattern by which a fine thin film pattern may be formed more easily with higher resolution and precision. In the method of forming a mask pattern, a photoresist pattern having an opening is formed on a substrate, then, an inorganic film is formed so as to cover the upper surface of the photoresist pattern and the inside of the opening, then the inorganic film on the upper surface of the photoresist pattern is removed by a dry etching process. Subsequently, an inorganic mask pattern is formed by removing the photoresist pattern. The inorganic mask pattern thus formed hardly produces an issue of deformation such as physical displacement even when it is heated in the dry etching process.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: June 25, 2013
    Assignee: TDK Corporation
    Inventors: Akifumi Kamijima, Hideyuki Yatsu, Hitoshi Hatate
  • Publication number: 20130140265
    Abstract: A method of manufacturing a pattern structure, the method includes sequentially forming a mold layer and a mask layer on a substrate, patterning the mask layer to form a mask having a plurality of first and second holes located at vertices of hexagons that form a honeycomb structure, forming filling layer patterns in the first and second holes, removing the mask, forming a spacer on sidewalls of the filling layer patterns and the spacer has a plurality of third holes at centers of the hexagons, removing the filling layer patterns to form an etching mask including the spacer, and etching the mold layer using the etching mask to form the pattern structure having a plurality of openings located at the vertices and the centers of the hexagons.
    Type: Application
    Filed: September 10, 2012
    Publication date: June 6, 2013
    Inventors: Cheon-Bae KIM, Kyu-Pil LEE, Chang-Hyun CHO, Gyo-Young JIN
  • Patent number: 8455278
    Abstract: N-V centers in diamond are created in a controlled manner. In one embodiment, a single crystal diamond is formed using a CVD process, and then annealed to remove N-V centers. A thin layer of single crystal diamond is then formed with a controlled number of N-V centers. The N-V centers form Qubits for use in electronic circuits. Masked and controlled ion implants, coupled with annealing are used in CVD formed diamond to create structures for both optical applications and nanoelectromechanical device formation. Waveguides may be formed optically coupled to the N-V centers and further coupled to sources and detectors of light to interact with the N-V centers.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: June 4, 2013
    Assignee: Apollo Diamond, Inc
    Inventors: Robert C. Linares, Patrick J. Doering, William W. Dromeshauser, Bryant Linares, Alfred R. Genis
  • Patent number: 8454847
    Abstract: A method of lifting off includes forming a first material layer on a substrate; forming a photoresist pattern including first and second holes and on the first material layer; patterning the first material layer using the photoresist pattern as a patterning mask to form a material pattern having first and second grooves within the material pattern, the first and second grooves corresponding to the first and second holes, respectively; forming a second material layer on an entire surface of the substrate including the photoresist pattern and the first and second grooves; and removing the photoresist pattern and the second material layer on the photoresist pattern at the same time, wherein a portion of the material pattern between the first and second grooves and portions of the material pattern at sides of the first and second grooves constitute a line as a whole.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: June 4, 2013
    Assignee: LG Display Co., Ltd.
    Inventors: Hee-Young Kwack, Hyun-Seok Hong, Joo-Soo Lim, Hong-Sik Kim
  • Patent number: 8431034
    Abstract: The present invention relates to nanopore membranes, methods for manufacturing such nanopore membranes, and uses thereof. In the methods for manufacturing the membranes colloidal lithography is used, which results in production of nanosize pores in a short time and on a large scale. The nanopore membranes have a narrow size distribution and are randomly arranged. Furthermore, the inter-pore distance shows very little variation.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: April 30, 2013
    Inventors: Sarunas Petronis, Bengt Kasemo
  • Publication number: 20130087528
    Abstract: A nanoimprint lithography method includes the following steps. First, a first sacrifice layer, a second sacrifice layer and a nanoimprint resist are formed on a substrate. The nanoimprint resist includes a hyperbranched polyurethane oligomer, a perfluoropolyether; a methylmethacrylate, and a diluent solvent. Second, a master stamp with a first nanopattern formed by a number of projecting portions and gaps is provided, and the first nanopattern is pressed into the nanoimprint resist to form a second nanopattern in the nanoimprint resist. Third, the second nanopattern is transferred to the substrate.
    Type: Application
    Filed: November 28, 2012
    Publication date: April 11, 2013
    Inventors: ZHEN-DONG ZHU, QUN-QING LI, LI-HUI ZHANG, MO CHEN
  • Patent number: 8414786
    Abstract: A heater stuck includes first strata having a planar configuration supporting and forming a fluid heater element responsive to repetitive electrical activation and deactivation to produce repetitive cycles of fluid ejection from an ejection chamber above the heater element and second strata having a planar configuration coating the heater element of the first strata and being contiguous with the ejection chamber to protect the heater element. The first strata include a substrate and heater strata disposed on it and forming a cavity above the substrate and encompassed on three sides by the heater substrata. The heater substrata includes a pair of conductive layer portions constituting terminal leads disposed on the substrate at opposite sides of the cavity and a resistive layer disposed on the conductive layer portions and defining the fluid heater element that spans the top of the cavity.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: April 9, 2013
    Assignee: Lexmark International, Inc.
    Inventors: Yimin Guan, Burton Lee Joyner, II, Zachary Justin Reitmeier
  • Patent number: 8415000
    Abstract: Stabilized precursor solutions can be used to form radiation inorganic coating materials. The precursor solutions generally comprise metal suboxide cations, peroxide-based ligands and polyatomic anions. Design of the precursor solutions can be performed to achieve a high level of stability of the precursor solutions. The resulting coating materials can be designed for patterning with a selected radiation, such as ultraviolet light, x-ray radiation or electron beam radiation. The radiation patterned coating material can have a high contrast with respect to material properties, such that development of a latent image can be successful to form lines with very low line-width roughness and adjacent structures with a very small pitch.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: April 9, 2013
    Assignee: Inpria Corporation
    Inventors: Jason K. Stowers, Alan J. Telecky, Douglas A. Keszler, Andrew Grenville
  • Publication number: 20130082029
    Abstract: The object of the present invention is to provide a stamper or an imprint device which can reduce a variation of a base film thickness, a product processed and having a precise fine pattern, and a device for manufacturing a product processed or a method for manufacturing a product processed which can form a precise fine pattern. According to the present invention, in a stamper, an imprint device performing an imprint using the stamper, a device for manufacturing a product processed by the imprint device, a method for manufacturing a product processed by the imprint, and a product processed and manufactured, the stamper has a dummy pattern which is unnecessary for fulfilling a function of the product processed which is formed of a substrate for the product.
    Type: Application
    Filed: August 2, 2012
    Publication date: April 4, 2013
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Tetsuhiro HATOGAI, Kyoichi MORI, Makoto MARUYAMA, Akihiro MIYAUCHI, Masahiko OGINO
  • Patent number: 8409450
    Abstract: An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: April 2, 2013
    Assignee: The Regents of the University of California
    Inventors: Alexander K. Zettl, Jannik Christian Meyer
  • Patent number: 8404600
    Abstract: A mold having an open interior volume is used to define patterns. The mold has a ceiling, floor and sidewalls that define the interior volume and inhibit deposition. One end of the mold is open and an opposite end has a sidewall that acts as a seed sidewall. A first material is deposited on the seed sidewall. A second material is deposited on the deposited first material. The deposition of the first and second materials is alternated, thereby forming alternating rows of the first and second materials in the interior volume. The mold and seed layer are subsequently selectively removed. In addition, one of the first or second materials is selectively removed, thereby forming a pattern including free-standing rows of the remaining material. The free-standing rows can be utilized as structures in a final product, e.g., an integrated circuit, or can be used as hard mask structures to pattern an underlying substrate. The mold and rows of material can be formed on multiple levels.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: March 26, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Gurtej Sandhu
  • Patent number: 8388852
    Abstract: A method for fabricating a touch sensor panel is disclosed. The method includes providing a substrate for the touch sensor panel, depositing a conductive material layer on a top surface of the substrate, depositing a metal layer on top of the conductive material layer, affixing a resist to a first area of the metal layer, the resist also adapted to serve as a passivation layer during passivation, removing metal from the metal layer outside of the first area; and performing passivation on the substrate while leaving the affixed resist intact.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: March 5, 2013
    Assignee: Apple Inc.
    Inventors: Lili Huang, Siddharth Mohapatra, John Z. Zhong
  • Patent number: 8375565
    Abstract: A method fabricates a transducer having an air-bearing surface (ABS). The method includes providing at least one near-field transducer (NFT) film and providing an electronic lapping guide (ELG) film substantially coplanar with a portion of the at least one NFT film. The method also includes defining a disk portion of an NFT from the portion of the at least one NFT film and at least one ELG from the ELG film. The disk portion corresponds to a critical dimension of the NFT from an ABS location. The method also includes lapping the at least one transducer. The lapping is terminated based on a signal from the ELG.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: February 19, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Yufeng Hu, Zhongyan Wang, Jinshan Li
  • Patent number: 8372296
    Abstract: Provided is a manufacturing method for a thermal head, including: bonding a flat upper substrate in a stacked state onto a flat supporting substrate including a heat-insulating concave portion open to one surface thereof so that the heat-insulating concave portion is closed (bonding step (SA2)); thinning the upper substrate bonded onto the supporting substrate by the bonding step (SA2) (plate thinning step (SA3)); measuring a thickness of the upper substrate thinned by the plate thinning step (SA3) (measurement step (SA4)); deciding a target resistance value of heating resistors based on the thickness of the upper substrate, which is measured by the measurement step (SA4) (decision step (SA5)); and forming, at positions of a surface of the upper substrate thinned by the plate thinning step (SA3), the heating resistors having the target resistance value determined by the decision step (SA5), the positions being opposed to the heat-insulating concave portion (resistor forming step (SA6)).
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: February 12, 2013
    Assignee: Seiko Instruments Inc.
    Inventors: Noriyoshi Shoji, Norimitsu Sanbongi, Toshimitsu Morooka, Keitaro Koroishi
  • Publication number: 20130020281
    Abstract: The disclosed nanoimprinting method suppresses fluctuations in thickness of residual film and defects due to residual gas in a resist film, onto which a pattern of protrusions and recesses is transferred, in a nanoimprinting method that employs the ink jet method to coat a substrate with droplets of resist material. Droplets are coated onto a substrate such that the spaces between the droplets along an A direction which is substantially parallel to the direction of the lines of a linear pattern of protrusions and recesses are longer than the spaces between the droplets in a B direction which is substantially perpendicular to the A direction, in a nanoimprinting method that coats a substrate with the droplets of a resist material using the ink jet method.
    Type: Application
    Filed: March 30, 2011
    Publication date: January 24, 2013
    Applicant: FUJIFILM CORPORATION
    Inventors: Satoshi Wakamatsu, Tadashi Omatsu
  • Patent number: 8336194
    Abstract: A method of fabricating a tunneling magnetoresistance (TMR) reader is disclosed. A TMR structure comprising at least one ferromagnetic layer and at least one nonmagnetic insulating layer is provided. A first thermal annealing process on the TMR structure is performed. A reader pattern definition process performed on the TMR structure to obtain a patterned TMR reader. A second thermal annealing process is performed on the patterned TMR reader.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: December 25, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Lu Yuan, Jian X. Shen, Geoffrey W. Anderson, Christopher Ng
  • Publication number: 20120308783
    Abstract: The embodiments disclose a method of creating two-sided template from a single recorded master, including fabricating a first template using a single recorded master, wherein the first template has a changed duty cycle and an unchanged servo arc orientation, creating a replicate of the first template, wherein the replicate has a mirrored servo arc orientation and a changed duty cycle and fabricating a second template using the replicate to produce a predetermined mirrored servo arc orientation and a predetermined duty cycle for imprinting on a second side of a patterned stack.
    Type: Application
    Filed: August 3, 2011
    Publication date: December 6, 2012
    Applicant: SEAGATE TECHNOLOGY, LLC
    Inventors: David Kuo, Gennady Gauzner, Kim Yang Lee
  • Publication number: 20120300419
    Abstract: An intermediate structure of a flexible display device includes a substrate, an etching layer, a flexible substrate, and a display module. A trench structure is formed in a surface of the substrate. The etching layer is formed on the surface and covers the substrate. The flexible substrate is disposed on the etching layer. The flexible substrate and the substrate are spaced apart from each other by the etching layer. The display module is disposed on the flexible substrate. The flexible substrate can be peeled from the substrate without applying a mechanical force and thus the yield is improved, and the process time and the fabricating cost are also reduced. In addition, the present invention also provides a substrate for fabricating a flexible display device and a method for fabricating a flexible display device.
    Type: Application
    Filed: August 10, 2012
    Publication date: November 29, 2012
    Inventors: Wen-Chung TANG, Fang-An SHU, Yao-Chou TSAI, Ted-Hong SHINN
  • Patent number: 8303828
    Abstract: Provided is a method for manufacturing, in a simple process, a magnetic recording medium having a distinct magnetic recording pattern formed thereon. A method for manufacturing a magnetic recording medium having a magnetically-separated magnetic recording pattern MP, the method at least including; a first step of forming a first magnetic layer 11 on a non-magnetic substrate 10; a second step of forming a resist layer 12 on the first magnetic layer 11, the resist layer 12 being patterned in correspondence with the magnetic recording pattern MP; a third step of forming a second magnetic layer 13 so as to cover a surface of the first magnetic layer 11 having the resist layer 12 formed thereon; a fourth step of removing the resist layer 12 together with the second magnetic layer 13 formed thereon; and a fifth step of partially removing the first magnetic layer 11 or partially modifying magnetic property of the first magnetic layer 11.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: November 6, 2012
    Assignee: Showa Denko K.K.
    Inventors: Shinichi Ishibashi, Masato Fukushima, Akira Yamane
  • Patent number: 8233248
    Abstract: A method and system for fabricating a magnetic transducer is described. The transducer has a device region, a field region, and a magnetoresistive stack. The method and system include providing a hard mask on the magnetoresistive stack. The hard mask is inorganic and includes a sensor portion and a line frame. The sensor portion covers a first portion of the magnetoresistive stack corresponding to a magnetoresistive structure. The line frame covers a second portion of the magnetoresistive stack in the device region. The method and system include defining the magnetoresistive structure in a track width direction using the hard mask and providing at least one hard bias material after the magnetoresistive structure is defined. A first portion of the hard bias material(s) is substantially adjacent to the magnetoresistive structure in the track width direction. The method and system also include removing a second portion of the hard bias material(s).
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: July 31, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Guanxiong Li, Wei Zhang, Ming Mao
  • Patent number: 8223330
    Abstract: A method for producing planar extended electrodes with nanoscale spacings that exhibit very large SERS signals, with each nanoscale gap having one well-defined hot spot. The resulting highly sensitive substrate has extended metal electrodes separated by a nanoscale gap. The electrodes act as optical antennas to enhance dramatically the local electromagnetic field for purposes of spectroscopy or nonlinear optics. SERS response is consistent with a very small number of molecules in the hotspot, showing blinking and wandering of Raman lines. Sensitivity is sufficiently high that SERS from physisorbed atmospheric contaminants may be detected after minutes of exposure to ambient conditions.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: July 17, 2012
    Assignee: William Marsh Rice University
    Inventors: Douglas Natelson, Daniel Robert Ward, Zachary Kyle Keane
  • Patent number: 8206602
    Abstract: According to one embodiment, there is provided a method of manufacturing a magnetic recording medium, including forming a first hard mask including carbon as a main component, a second hard mask including a main component other than carbon and a resist on a magnetic recording layer, contacting a stamper to the resist to transfer patterns of protrusions and recesses to the resist, removing residues in the recesses of the patterned resist, etching the second hard mask, etching the first hard mask, patterning the magnetic recording layer, and removing the first hard mask, the method further including, between etching the first hard mask and removing the first hard mask, removing the second hard mask remaining on the protrusions of the first hard mask, and removing a contaminating layer on a surface of the first hard mask by a mixed gas of oxygen-based gas and a fluorine compound.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: June 26, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kaori Kimura, Yousuke Isowaki, Yoshiyuki Kamata, Masatoshi Sakurai
  • Patent number: 8187479
    Abstract: Disclosed is a manufacturing method of a printed circuit board. The method in accordance with an embodiment of the present invention includes: providing a laminated substrate having an insulator as well as a first metal layer and a second metal layer, which are sequentially laminated on one side of the insulator; processing a via hole in the laminated substrate; forming a seed layer on an inner wall of the via hole and on a surface of the second metal layer; plating an inside of the via hole and the surface of the second metal layer with a conductive material that is different from a material of the second metal layer; etching the seed layer and the conductive material, formed on the second metal layer; etching the second metal layer; and forming a first circuit pattern by selectively etching the first metal layer.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: May 29, 2012
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventor: Myung-Sam Kang
  • Patent number: 8176622
    Abstract: A process for manufacturing a high performance MTJ it is described: A first cap layer of NiFeHf is deposited on the free layer, followed by a second cap layer of Ru on Ta. The device is then heated so that oxygen trapped in the free layer diffuses into the NiFeHf layer, thereby sharpening the interface between the tunnel barrier layer and the free layer.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: May 15, 2012
    Assignee: MagIC Technologies, Inc.
    Inventors: Cheng T. Horng, Ru-Ying Tong, Chyu-Jiuh Torng, Witold Kula
  • Patent number: 8163185
    Abstract: A method of lifting off photoresist beneath an overlayer includes providing a structure including photoresist and depositing an overlayer impenetrable to a liftoff solution over the photoresist and a field region around the structure. The method also includes forming a mask over the structure and ion milling to remove the overlayer in the field region not covered by the mask. The method then includes lifting off the photoresist using the liftoff solution.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: April 24, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Hai Sun, Liubo Hong, Rowena Schmidt, Lijie Zhao, Winnie Yu, Hongping Yuan
  • Publication number: 20120091096
    Abstract: A pattern clean-up for fabrication of patterned media using a forced assembly of molecules is disclosed. E-beam lithography is initially used to write the initial patterned bit media structures, which have size and positioning errors. Nano-sized protein molecules are then forced to assemble of on top of the bits. The protein molecules have a very uniform size distribution and assemble into a lattice structure above the e-beam patterned areas. The protein molecules reduce the size and position errors in e-beam patterned structures. This process cleans the signal from the e-beam lithography and lowers the noise in the magnetic reading and writing. This process may be used to fabricate patterned bit media directly on hard disk, or to create a nano-imprint master for mass production of patterned bit media disks.
    Type: Application
    Filed: December 21, 2011
    Publication date: April 19, 2012
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Qing Dai, Dan Saylor Kercher, Huey-Ming Tzeng
  • Patent number: 8128830
    Abstract: Embodiments herein provide relatively permanent labeling of an imprint lithography template. The imprint lithography template generally has first and second sides, one side having a pattern to imprint a substrate and the other being optically smooth to unobstructably pass UV light. In one embodiment, a method of labeling the imprint lithography template includes placing a masking layer on a portion of the first side (e.g., the optically smooth side) of the template, forming a liftoff layer on the remainder of the first side of the template, removing the masking layer to expose the portion of the first side of the template, and placing a polymer mark on the exposed portion of the first side of the template. The method also includes depositing an opaque material on the first side of the template and removing the liftoff layer and the mark to form a label on the first side of the template with the deposited opaque material.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: March 6, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Jeffrey S. Lille, Scott A. MacDonald
  • Patent number: 8123966
    Abstract: A piezoelectric electronic component for use in a cellular phone or the like and capable of achieving reductions in size and profile is provided. A piezoelectric element oscillating in response to application of an input signal and outputting an output signal corresponding to the oscillations is provided on a substrate. The piezoelectric element includes a pad, the pad inputting and outputting the input and output signals. A shell member serving as a sealing member and having an insulation film covering the piezoelectric element is provided on the substrate, the shell member being remote from the piezoelectric element. The shell member includes a through hole above the pad, and the through hole is occluded with an electrode.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: February 28, 2012
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Ryuichi Kubo, Hidetoshi Fujii, Naoko Aizawa
  • Patent number: 8123967
    Abstract: A method for producing an article having a decorative coating includes depositing at least a first coating layer onto at least a portion of a substrate using a physical or chemical vapor deposition method in a vacuum chamber at sub-atmospheric pressure, the first coating layer comprising a first material having a first color. The method also includes patterning the first coating layer using a non-uniform patterning process to form a patterned coating layer having penetrations through which a portion of an underlying surface is visible, the underlying surface comprising a second material and having a second color that is visually contrasting to the first color. The patterned first coating layer comprises a decorative pattern comprising features distinguishable by an unaided human eye.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: February 28, 2012
    Assignee: Vapor Technologies Inc.
    Inventors: Bryce Anton, Richard P. Welty, Patrick Sullivan
  • Patent number: 8114777
    Abstract: A method for forming a nanotube/nanofiber growth catalyst on the sides of portions of a layer of a first material, comprising the steps of depositing a thin layer of a second material; opening this layer at given locations; depositing a very thin catalyst layer; depositing a layer of the first material over a thickness greater than that of the layer of the second material; eliminating by chem./mech. polishing the upper portion of the structure up to the high level of the layer of the second material; and eliminating the second material facing selected sides of the layer portions of the first material.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: February 14, 2012
    Assignees: STMicroelectronics, Commissariat a l'energie Atomique
    Inventors: Gérard Passemard, Sylvain Maitrejean, Valentina Ivanova-Hristova
  • Patent number: 8083959
    Abstract: In the present invention, a plurality of rounds of patterning are performed on a substrate. In a patterning system, the substrate on which a first round of patterning has been performed is transferred to a planarizing film forming unit, where a planarizing film is formed above the substrate. The substrate is then transferred to the patterning system and subjected to a second round of patterning. The time from the completion of the forming processing of the planarizing film to the start of the second round of patterning is managed to be constant among the substrates. According to the present invention, in the pattern forming processing of performing a plurality of rounds of patterning, a pattern with a desired dimension can be stably formed above the substrate.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: December 27, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Hideharu Kyouda, Junichi Kitano, Osamu Miyahara, Kenji Tsutsumi
  • Patent number: 8083957
    Abstract: Disclosed is a decorative material in which a metal layer (e.g., a radio-wave-transmitting metal layer) on a non-metallic-lustrous part can be removed readily and sufficiently even when the metal layer is formed partially by a process involving an etching treatment, and can decorate a molded article with a desired pattern readily and satisfactorily. Also disclosed is a method for producing the decorative material. Further disclosed is a molded article produced by using the decorative material.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: December 27, 2011
    Assignee: Nissha Printing Co., Ltd.
    Inventor: Susumu Innan
  • Patent number: 8075792
    Abstract: A method (300) of texturing silicon surfaces (116) such to reduce reflectivity of a silicon wafer (110) for use in solar cells. The method (300) includes filling (330, 340) a vessel (122) with a volume of an etching solution (124) so as to cover the silicon surface 116) of a wafer or substrate (112). The etching solution (124) is made up of a catalytic nanomaterial (140) and an oxidant-etchant solution (146). The catalytic nanomaterial (140) may include gold or silver nanoparticles or noble metal nanoparticles, each of which may be a colloidal solution. The oxidant-etchant solution (146) includes an etching agent (142), such as hydrofluoric acid, and an oxidizing agent (144), such as hydrogen peroxide. Etching (350) is performed for a period of time including agitating or stirring the etching solution (124). The etch time may be selected such that the etched silicon surface (116) has a reflectivity of less than about 15 percent such as 1 to 10 percent in a 350 to 1000 nanometer wavelength range.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: December 13, 2011
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Howard Branz, Anna Duda, David S. Ginley, Vernon Yost, Daniel Meier, James S. Ward
  • Patent number: 8070968
    Abstract: According to one embodiment, this invention uses an ultraviolet-curable resin material for pattern transfer containing 80 to 95 wt % of isobornyl acrylate, 1 to 20 wt % of trifunctional acrylate, and 0.5 to 6 wt % of a polymerization initiator.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: December 6, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuyo Umezawa, Seiji Morita, Masatoshi Sakurai
  • Patent number: 8057689
    Abstract: According to one embodiment, a method of manufacturing a magnetic recording medium includes forming a first hard mask, a second hard mask and a resist on a magnetic recording layer, imprinting a stamper to the resist to transfer patterns of protrusions and recesses to the resist, removing residues remaining in the recesses of the patterned resist by means of a first etching gas, etching the second hard mask by means of the first etching gas using the patterned resist as a mask to transfer the patterns to the second hard mask, etching the first hard mask by means of a second etching gas different from the first etching gas using the second hard mask as a mask to transfer the patterns to the first hard mask, and performing ion beam etching in order to deactivate the magnetic recording layer exposed in the recesses and to remove the second hard mask.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: November 15, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yousuke Isowaki, Kaori Kimura, Yoshiyuki Kamata, Masatoshi Sakurai
  • Publication number: 20110266255
    Abstract: A method of making an imprint template includes providing a transfer layer on a substrate and providing a layer of imprintable medium on the transfer layer, using a master imprint template to imprint a pattern into the imprintable medium, polymerizing the imprintable medium by exposing it to actinic radiation, then etching the resulting polymer layer, the transfer layer and the substrate such that the imprinted pattern is transferred to the substrate, the substrate thereby becoming an imprint template bearing a pattern which is the inverse of a pattern provided on the master imprint template.
    Type: Application
    Filed: July 12, 2011
    Publication date: November 3, 2011
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Sander Frederik WUISTER, Johan Frederik Dijksman, Yvonne Wendela Kruijt-Stegeman, Ivar Schram
  • Patent number: 8029682
    Abstract: According to one embodiment, a method of manufacturing a magnetic recording medium includes forming a first hard mask, a second hard mask and a resist on a magnetic recording layer, imprinting a stamper to the resist to transfer patterns of protrusions and recesses to the resist, removing residues remaining in the recesses of the patterned resist, etching the second hard mask by using the patterned resist as a mask to transfer the patterns of protrusions and recesses to the second hard mask, etching the first hard mask by using the second hard mask as a mask to transfer the patterns of protrusions and recesses to the first hard mask, subjecting the magnetic recording layer exposed in the recesses to modifying treatment to change an etching rate, and deactivating the magnetic recording layer exposed in the recesses.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: October 4, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yousuke Isowaki, Kaori Kimura, Yoshiyuki Kamata, Masatoshi Sakurai