Forming Pattern Using Lift Off Technique Patents (Class 216/40)
  • Patent number: 8025776
    Abstract: Embodiments of the present invention may provide a microchip applicable to an electrophoresis employing UV detection and a method of manufacturing the same. The microchip of the present invention has a glass channel plate, which is formed on an upper surface thereof with a loading channel and a separation channel and is provided on the upper surface thereof with an optical slit layer made of silicon except the channel region, and a glass reservoir plate, which is formed with sample solution reservoirs and buffer solution reservoirs. The loading channel and the separation channel are formed on the channel plate by deep reactive ion etching. The sample solution reservoirs and the buffer solution reservoirs are formed in the reservoir plate by sand blasting. The channel plate and the reservoir plate are combined by anodic bonding the optical slit layer and the reservoir plate. Electrodes for sample and electrodes for buffer are deposited by sputtering Pt with a shadow mask after anodic bonding.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: September 27, 2011
    Assignee: Korea Institute of Science and Technology
    Inventors: Myung-Suk Chun, Tae Ha Kim
  • Patent number: 8012361
    Abstract: According to one embodiment, a method of manufacturing a magnetic recording medium includes forming a first hard mask, a second hard mask and a resist on a magnetic recording layer, imprinting a stamper to the resist to transfer patterns of protrusions and recesses to the resist, removing residues remaining in the recesses of the patterned resist, etching the second hard mask by using the patterned resist as a mask to transfer the patterns of protrusions and recesses to the second hard mask, etching the first hard mask by using the second hard mask as a mask to transfer the patterns of protrusions and recesses to the first hard mask, removing the second hard mask remaining on the protrusions of the first hard mask, and deactivating the magnetic recording layer exposed in the recesses by means of ion beam irradiation.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: September 6, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kaori Kimura, Yousuke Isowaki, Yoshiyuki Kamata, Masatoshi Sakurai
  • Patent number: 7996984
    Abstract: A duplexer includes an FBAR band pass filter that can be easily embodied in single chip. A method for manufacturing the same includes the steps of forming a plurality of recesses in a substrate, forming an insulation layer on the substrate, and forming a plurality of filling-up layers that fill the recesses. The method also includes the step of forming a transmitting bandpass filter and forming a receiving bandpass filter on an upper side of the membrane, with each bandpass filter including at least two film bulk acoustic resonators (FBARs). In addition, the method includes the step of forming a circuit that connects the bandpass filters to an antenna terminal, with this circuit including at least one inductor and capacitor. The method also includes a step of removing the filling-up layers from the recesses in the substrate.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: August 16, 2011
    Assignee: MEMS Solution Inc.
    Inventor: Jaemyoung Jhung
  • Patent number: 7993972
    Abstract: A method of manufacturing a semiconductor device includes providing a wafer for supporting the semiconductor device. An insulation layer is disposed over a top surface of the wafer. The method includes forming a first interconnect structure over the top surface of the wafer with temperatures in excess of 200° C., forming a metal pillar over the wafer in electrical contact with the first interconnect structure, connecting a semiconductor component to the first interconnect structure, and forming encapsulant over the semiconductor component. The encapsulant is etched to expose a portion of the metal pillar. A buffer layer is optionally formed over the encapsulant. The method includes forming a second interconnect structure over the encapsulant in electrical contact with the metal pillar with temperatures below 200° C., and removing a portion of a backside of the wafer opposite the top surface of the wafer.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: August 9, 2011
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Haijing Cao
  • Patent number: 7988871
    Abstract: A method of lifting off includes forming a first material layer on a substrate; forming a photoresist pattern including first and second holes and on the first material layer; patterning the first material layer using the photoresist pattern as a patterning mask to form a material pattern having first and second grooves within the material pattern, the first and second grooves corresponding to the first and second holes, respectively; forming a second material layer on an entire surface of the substrate including the photoresist pattern and the first and second grooves; and removing the photoresist pattern and the second material layer on the photoresist pattern at the same time, wherein a portion of the material pattern between the first and second grooves and portions of the material pattern at sides of the first and second grooves constitute a line as a whole.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: August 2, 2011
    Assignee: LG Display Co., Ltd.
    Inventors: Hee-Young Kwack, Hyun-Seok Hong, Joo-Soo Lim, Hong-Sik Kim
  • Publication number: 20110175487
    Abstract: The invention relates to a method for producing a dielectric layer (3) in an electroacoustic component (1), in particular a component operating with acoustic surface waves or bulk acoustic waves, comprising a substrate and an associated electrode structure, in which the dielectric layer (3) is formed at least in part by depositing by a thermal vapour deposition process at least one evaporation material selected from the following group of layer vaporising materials: vapour deposition glass material such as borosilicate glass, silicon nitride and aluminium oxide. The invention further relates to an electroacoustic component.
    Type: Application
    Filed: July 23, 2009
    Publication date: July 21, 2011
    Inventors: Ulli Hansen, Jürgen Leib, Simon Maus
  • Publication number: 20110165382
    Abstract: This invention presents a method for the fabrication of periodic nanostructures on polymeric surfaces by means of plasma processing, which method comprises the following steps: (i) provision of a homogeneous organic polymer (such as PMMA, or PET, or PEEK, or PS, or PE, or COC) or inorganic polymer (such as PDMS or ORMOCER); (ii) exposure of the polymer to an etching plasma such as oxygen (O2) or sulphur hexafluoride (SF6) or a mixture of oxygen (O2) and sulphur hexafluoride (SF6), or mixtures of etching gases with inert gases such as any Noble gas (Ar, He, Ne, Xe).
    Type: Application
    Filed: June 15, 2009
    Publication date: July 7, 2011
    Applicant: NATIONAL CENTER FOR SCIENTIFIC RESEARCH "DEMOKRITOS"
    Inventors: Evangelos Gogolides, Aagelike Tserepi, Vassilios Constantoudis, Nikolaos Vourdas, Georgios Boulousis, Maria-Elenma Vlachopoulou LACHOPOULOU, Aikaterini Tsougeni, Dimitrios Kontziampasis
  • Publication number: 20110111593
    Abstract: According to one embodiment, a pattern formation method is disclosed. The method can form a patterning film on a substrate. The method can transfer a form pattern provided on a template onto an imprint material by bringing the template into contact with the imprint material. The imprint material is coated on the patterning film. In addition, the method can perform patterning including etching the patterning film using the imprint material including the transferred form pattern as a mask. The transferring is implemented using a condition determined based on data relating to at least one selected from a dimension and a shape of a pattern of the patterning film after the patterning.
    Type: Application
    Filed: September 17, 2010
    Publication date: May 12, 2011
    Inventor: Masahiro KANNO
  • Publication number: 20110064925
    Abstract: An aqueous curable imprintable medium having at least one curable compound according to Formula 1: wherein R1-R3 are hydrolysable alkoxy groups, and wherein R4 is selected from the group consisting of C1-C6 linear alkyl groups, hydrolysable alkoxy groups and a phenyl group; and a photo-acid generator or a photo-base generator. Such a medium may have an extended shelf-life and may facilitate the formation of highly reproducible patterned layers when used in an imprint lithography process.
    Type: Application
    Filed: May 14, 2009
    Publication date: March 17, 2011
    Inventors: Ties Van Bommel, Sander Frederik Wuister, Emile Johannes Karel Verstegen, Rifat Ata Mustafa Hikmet
  • Publication number: 20110049096
    Abstract: Functional nanoparticles may be formed using at least one nano-lithography step. In one embodiment, sacrificial material may be patterned on a multi-layer substrate using an imprint lithography system. The pattern may be further etched into the multi-layer substrate. Functional material may then be deposited on multi-layer substrate and solidified. At least a portion of the functional material may then be removed to provide a crown surface exposing pillars. Pillars may be removed from multi-layer substrate forming functional nanoparticles.
    Type: Application
    Filed: August 11, 2010
    Publication date: March 3, 2011
    Applicants: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, MOLECULAR IMPRINTS, INC.
    Inventors: Sidlgata V. Sreenivasan, Shuqiang Yang, Frank Y. Xu, Vikramjit Singh
  • Patent number: 7887710
    Abstract: A method of patterning a transparent conductive film adaptive for selectively etching a transparent conductive film without any mask processes, a thin film transistor for a display device using the same and a fabricating method thereof are disclosed. In the method of patterning the transparent conductive film, an inorganic material substrate is prepared. An organic material pattern is formed at a desired area of the inorganic material substrate. A thin film having a different crystallization rate depending upon said inorganic material and said organic material is formed. The thin film is selectively etched in accordance with said crystallization rate.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: February 15, 2011
    Assignee: LG Display Co., Ltd.
    Inventors: Byung Chul Ahn, Byoung Ho Lim, Byeong Dae Choi
  • Publication number: 20110027407
    Abstract: An imprint template is provided with a shallower field bordering the patterned region. The shallower field can be formed with additional lithography/etch steps after (or before) the formation of the features in the patterned region. The template is used to establish a thin film pattern with a field thickness that is shallower than the pattern. A shallower field bordering the patterned region alleviates sidewall re-deposition during ion mill. In a planarization/etch-back process, a thinner field helps to achieve a flat top surface by compensating for the thickness variation caused by different filling ratios. Fabrication of the recessed field template comprises a multi-step patterning process. The initial patterns are formed using a convention fabrication process.
    Type: Application
    Filed: July 28, 2009
    Publication date: February 3, 2011
    Applicant: Seagate Technology LLC
    Inventors: Kim Yang Lee, David S. Kuo, Zhaoning Yu
  • Publication number: 20110008618
    Abstract: A product and process for producing heat-transfers having a contrasting-color 3D appearance comprising a printed layer of woven fabric substrate adhered to a colorfast textile substrate. The woven fabric substrate includes a top substrate printed with a design logo. The underlying substrate is a solid color. The design logo/is engraved away in patterned designs using a galvanometric laser to reveal the contrasting substrate in desired areas, giving a layered embroidery 3D visual effect. These heat activated appliqués of the present invention are particularly suitable for use in forming decorations for apparel, bags and home furnishings. Their soft tactile hand feel does not cause discomfort to the wearer. The resulting product has superior care and durability characteristics, is more wash fast and can be ironed, and has superior appearance characteristics to other types of heat transfer appliqués. The heat transfer capability of the appliqué allows for fast customization of finished garments.
    Type: Application
    Filed: October 20, 2009
    Publication date: January 13, 2011
    Inventor: Paul Weedlun
  • Patent number: 7846344
    Abstract: Light in the visible spectrum is modulated using an array of modulation elements, and control circuitry connected to the array for controlling each of the modulation elements independently, each of the modulation elements having a surface which is caused to exhibit a predetermined impedance characteristic to particular frequencies of light. The amplitude of light delivered by each of the modulation elements is controlled independently by pulse code modulation. Each modulation element has a deformable portion held under tensile stress, and the control circuitry controls the deformation of the deformable portion. Each deformable element has a deformation mechanism and an optical portion, the deformation mechanism and the optical portion independently imparting to the element respectively a controlled deformation characteristic and a controlled modulation characteristic. The deformable modulation element may be a non-metal.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: December 7, 2010
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Mark W. Miles
  • Publication number: 20100294654
    Abstract: The present invention relates to a micro metal mold for manufacturing micro metal sheet products provided with a fine or micro opening(s) or an aperture(s) together with or independently of a groove(s) and/or a protrusion(s), a method for making the mold by the electroforming or electroplating method, a method for making the mold and micro metal sheet products manufactured by using the micro metal mold. According to the invention, it is possible to manufacture micro metal sheet products, provided with fine and precise dimensions of an opening(s) as well as a groove(s) and/or a protrusion(s), under a mass production.
    Type: Application
    Filed: August 24, 2007
    Publication date: November 25, 2010
    Inventors: Tae Heum Park, Chang Hee Han
  • Publication number: 20100266965
    Abstract: An enhanced process forming a material pattern on a substrate deposits the material anisotropically on resist material patterned to correspond to an image of the material pattern. The material is etched isotropically to remove a thickness of the material on sidewalls of the resist pattern while leaving the material on a top surface of the resist pattern and portions of the surface of the substrate. The resist pattern is removed by dissolution thereby lifting-off the material on the top surface of the resist pattern while leaving the material on the substrate surface as the material pattern. Alternately, a first material layer is deposited on the resist pattern and a second material layer is deposited and planarized. The second material layer is etched exposing the first material while leaving the second material in features of the resist pattern. The first material and the resist are removed leaving the first material pattern.
    Type: Application
    Filed: September 18, 2007
    Publication date: October 21, 2010
    Applicant: MOLECULAR IMPRINTS, INC.
    Inventors: Gerard M. Schmid, Douglas J. Resnick
  • Patent number: 7807064
    Abstract: In one embodiment of the present invention, a halogen-free plasma etch processes is used to define a feature in a multi-layered masking stack including an amorphous carbon layer. In a particular embodiment, oxygen (O2), nitrogen (N2), and carbon monoxide (CO) are utilized to etch the amorphous carbon layer to form a mask capable of producing sub-100 nm features in a substrate film having a reduced line edge roughness value. In another embodiment, the present invention employs an O2 plasma pretreatment preceding the halogen-free amorphous carbon etch to first form an oxidized silicon region in a patterned photoresist layer to increase the selectivity of the amorphous carbon etch relative to a patterned photoresist layer containing unoxidized silicon.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: October 5, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Jong Mun Kim, Judy Wang, Ajey M. Joshi, Jingbao Liu, Bryan Y. Pu
  • Patent number: 7795132
    Abstract: Fabricating a cross-point memory structure using two lithography steps with a top conductor and connector or memory element and a bottom conductor orthogonal to the top connector. A first lithography step followed by a series of depositions and etching steps patterns a first channel having a bottom conductor. A second lithography step followed by a series of depositions and etching steps patterns a second channel orthogonal to the first channel and having a memory element connecting the an upper conductor and the lower conductor at their overlaid intersections.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: September 14, 2010
    Assignee: Molecular Imprints, Inc.
    Inventors: Sidlgata V. Sreenivasan, Christopher Mark Melliar-Smith, Dwayne L. LaBrake
  • Publication number: 20100116784
    Abstract: Embodiments of the invention generally relate to compositions of mesa etch solutions and methods for mesa etching materials on a wafer during an epitaxial lift off (ELO) process. The wafer usually contains an etch stop layer disposed thereon and a laminated epitaxial material disposed on the etch stop layer. In one embodiment, an etch process includes exposing the wafer to a non-selective etch solution and subsequently exposing the wafer to a selective etch solution while peeling the laminated epitaxial material from the wafer. The selective etch solution may contain succinic acid, an ammonium hydroxide compound, and an oxidizing agent, such as hydrogen peroxide. The selective etch solution may have a GaAs/AlAs selectivity of about 600, about 1,000, about 1,400, or greater. The non-selective etch solution may be an aqueous solution containing sulfuric acid and hydrogen peroxide.
    Type: Application
    Filed: October 12, 2009
    Publication date: May 13, 2010
    Applicant: ALTA DEVICES, INC.
    Inventor: MELISSA ARCHER
  • Publication number: 20100102029
    Abstract: Systems, methods, and processes for forming imprint lithography templates from a multi-layer substrate are described. The multi-layer substrate may include a block copolymer layer positioned on a substrate layer. The block copolymer layer may include two or more domains. At least one domain may have a different composition sensitivity than another domain such that the domains have different reactions to a specific process. Reaction of the domains to the specific process may provide a pattern in the block copolymer layer. The pattern may be transferred into the substrate layer to form the imprint lithography template.
    Type: Application
    Filed: October 23, 2009
    Publication date: April 29, 2010
    Applicant: MOLECULAR IMPRINTS, INC.
    Inventors: Gerard M. Schmid, Douglas J. Resnick, Sidlgata V. Sreenivasan, Frank Y. Xu
  • Publication number: 20100092888
    Abstract: A process for etching a silicon-containing substrate to form structures is provided. In the process, a metal is deposited and patterned onto a silicon-containing substrate (commonly one with a resistivity above 1-10 ohm-cm) in such a way that the metal is present and touches silicon where etching is desired and is blocked from touching silicon or not present elsewhere. The metallized substrate is submerged into an etchant aqueous solution comprising about 4 to about 49 weight percent HF and an oxidizing agent such as about 0.5 to about 30 weight percent H2O2, thus producing a metallized substrate with one or more trenches. A second silicon etch is optionally employed to remove nanowires inside the one or more trenches.
    Type: Application
    Filed: October 9, 2009
    Publication date: April 15, 2010
    Inventors: Brent A. Buchine, Faris Modawar, Marcie R. Black
  • Patent number: 7682515
    Abstract: The inventive method includes a preparation step during which the substrate is covered with a layer, a pressing step in which a mould including a pattern of recesses and protrusions is pressed into part of the thickness of the aforementioned layer, at least one etching step in which the layer is etched until parts of the surface of the substrate have been stripped, and a substrate etching step whereby the substrate is etched using an etching pattern which is defined from the mould pattern. The preparation step includes a sub-step consisting of the formation of a lower sub-layer of curable material, a step involving the curing of said layer and a sub-step including the formation of an outer sub-layer which is adjacent to the cured sub-layer. Moreover, during the pressing step, the above-mentioned protrusions in the mould penetrate the outer sub-layer until contact is reached with the cured sub-layer.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: March 23, 2010
    Assignees: Commissarieat A l'Energie Atomique, Centre National De La Recherche
    Inventors: Corinne Perret, Cecile Gourgon, Stephan Landis
  • Patent number: 7678287
    Abstract: An information storage medium and method of manufacturing such a medium, particularly applicable to computer hard disks. An information storage medium includes an approximately plane front face and a back face, the medium being read and/or written by a device placed facing the front face. The back face includes recessed areas and all or part of sidewalls and/or the bottom of the recessed areas is covered with a magnetic deposit, the distance separating the front face from the deposit being such that the device can read and/or write information in the deposit.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: March 16, 2010
    Assignee: Commissariat a l'Energie Atomique
    Inventor: Stefan Landis
  • Patent number: 7632418
    Abstract: A paper pad having a three dimensional image is disclosed wherein the faces or sides of the pad comprise a plurality of paper sheet edges formed into three dimensional surfaces extending from the common planar surface of the side or indenting into said surface. According to one embodiment, the three dimensional surfaces are created through computer numeric controlled (CNC) carving of a compressed side of the paper pad to create an aesthetically pleasing, complex three dimensional design. According to another embodiment, a shaped die is applied to a compressed side of a paper pad under selected conditions of time, temperature, pressure and humidity to deboss a portion of the paper material and produce a three dimensional design in the surface of the compressed side.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: December 15, 2009
    Assignee: PCI Paper Conversions, Inc.
    Inventor: Edward Killey
  • Patent number: 7597814
    Abstract: A structure is provided that is formed with a template defining a pattern having nanoscale features. The template may be positioned on a substrate and include a resist layer having openings formed therein, where the template is configured to accommodate the controlled assembly of nanoscale objects.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: October 6, 2009
    Assignee: Hewlett Packard Development Company, L.P.
    Inventors: James W. Stasiak, Kevin Francis Peters, Pavel Kornilovich
  • Publication number: 20090246510
    Abstract: A device and method include forming a mask on a substrate supporting a plurality of metallic nanocrystals such that a portion of the metallic nanocrystals is exposed. Protective shells are formed about the exposed metallic nanocrystals. Unprotected metallic nanocrystals are removed.
    Type: Application
    Filed: March 25, 2008
    Publication date: October 1, 2009
    Applicants: COMMISSARIAT A L'ENERGIE ATOMIQUE, ATMEL ROUSSET
    Inventors: Joel Dufourcq, Laurent Vandroux, Pierre Mur, Sylvie Bodnar
  • Patent number: 7574791
    Abstract: A method for fabricating magnetic side shields for an MR sensor of a magnetic head. Following the deposition of MR sensor layers, a first DLC layer is deposited. Milling mask layers are then deposited, and outer portions of the milling mask layers are removed such that a remaining central portion of the milling mask layers is formed having straight sidewalls and no undercuts. Outer portions of the sensor layers are then removed such that a relatively thick remaining central portion of the milling mask resides above the remaining sensor layers. A thin electrical insulation layer is deposited, followed by the deposition of magnetic side shields. A second DLC layer is deposited and the remaining mask layers are then removed utilizing a chemical mechanical polishing (CMP) liftoff step. Thereafter, the first DLC layer and the second DLC layer are removed and a second magnetic shield layer is then fabricated thereabove.
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: August 18, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Satoru Araki, Robert Stanley Beach, Marie-Claire Cyrille, Wipul Pemsiri Jayasekara, Quang Le, Jui-Lung Li, David John Seagle, Howard Gordon Zolla
  • Publication number: 20090194502
    Abstract: A morphous inorganic nitrides are used as release layers on templates for nanoimprint lithography. Such a layer facilitates the release of a template from a cured, hardened composition into which the template has transferred a pattern, by reducing the adhesion energy between the release layer and the cured, hardened composition. The release layer may include one or more metallic or semiconductor elements such as Al, Mn, B, Co, Ti, Ta, W and Ge.
    Type: Application
    Filed: February 1, 2008
    Publication date: August 6, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Frances A. Houle, Christopher V. Jahnes, Simone Raoux, Stephen M. Rossnagel
  • Patent number: 7534359
    Abstract: The present invention relates to a process for producing a structure having holes at prescribed positions. The structure is produced through steps of (A) providing an impressing member having protrusions, and a substrate, (B) forming a layer, on the substrate, from a material having a less strength than the impressing member, (C) forming depressions by impressing the impressing member on the layer corresponding to protrusions of the impressing member, (D) etching the layer to bare at least a part of the surface of the substrate, and (E) anodizing the substrate to form holes on the substrate.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: May 19, 2009
    Assignee: Canon Kabushiki Kaisha
    Inventors: Aya Imada, Tohru Den
  • Patent number: 7384568
    Abstract: Susceptibility of darkfield etch masks (majority of the mask area is opaque) to pinhole defects, transferred pattern, non-uniformity, etc. due to ejector dropout or drop misdirection, and long duty cycles due to large-area coverage, when using digital lithography (or print patterning) is addressed by using a clear-field print pattern that is then coated with etch resist material. The printed clear field pattern is selectively removed to form an inverse pattern (darkfield) within the coated resist layer. Etching then removes selected portions of an underlying (e.g., encapsulation, conductive, etc.) layer. Removal of the mask produces a layer with large-area features with substantially reduced defects.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: June 10, 2008
    Assignee: Palo Alto Research Center Incorporated
    Inventors: William Wong, Scott Limb, Beverly Russo, Michael Chabinyc, Rene Lujan
  • Patent number: 7375012
    Abstract: This disclosure describes system(s) and/or method(s) enabling contacts for individual nanometer-scale-thickness layers of a multilayer film.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: May 20, 2008
    Inventors: Pavel Kornilovich, Peter Mardilovich, Sriram Ramamoorthi
  • Patent number: 7354521
    Abstract: A method of fabricating an inkjet print head includes forming at least one energy generating element to eject ink on a substrate. A chamber layer and a nozzle layer are formed on the substrate, wherein the nozzle layer has a nozzle corresponding to the energy generating elements, and at least one of the chamber layer and the nozzle layer is formed using a photocurable resin composition that includes a photo-base generator, an epoxy resin and a non-photoreactive solvent.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: April 8, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byung-Ha Park, Jong-Jin Park, Young-Ung Ha
  • Patent number: 7334317
    Abstract: A method of forming a magnetoresistive junction in a process of manufacturing a magnetoresistive memory cell includes providing a semiconductor substrate having at least one via contact layer on a main surface thereof, depositing a layered structure of magnetoresistive junction layers on the via contact layer, depositing an etch stop layer on the layered structure of magnetoresistive junction layers, depositing at least one hard mask layer on the etch stop layer, patterning and etching the hard mask layer to create a hard mask, removing of polymer residuals from the hard mask, etching of the etch stop layer, and etching the layered structure of magnetoresistive junction layers to create the magnetoresistive junction. The etching stops at the etch stop layer.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: February 26, 2008
    Assignees: Infineon Technologies AG, Altis Semiconductor
    Inventor: Philippe Blanchard
  • Publication number: 20080044647
    Abstract: This method of forming a carbonaceous material projection structure includes: the step of applying a resist 11 onto a diamond substrate 10; the step of forming holes 12 in the applied resist 11, the holes 12 being provided according to a predetermined arrangement, a wall 12b of each of the holes 12 being inversely tapered from an aperture 12a toward a bottom; the step of depositing a mask material through the aperture 12a to form a mask deposition 14 in each of the holes 12; the step of lifting off a mask material 13 deposited on the resist 11 together with the resist 11; and etching the diamond substrate 10 using the mask deposition 14 as a mask to form a carbonaceous material projection.
    Type: Application
    Filed: March 24, 2005
    Publication date: February 21, 2008
    Inventors: Yoshiki Nishibayashi, Tomihito Miyazaki, Tetsuya Hattori, Takahiro Imai
  • Patent number: 7323113
    Abstract: A method is provided for producing a lithographic pattern using a mask that includes the same materials as the material to be etched, allowing the pattern to be transferred and the etch mask to be removed in one step. In accordance with features of the invention, the method includes building up of a layer or layers of material of specific thickness on top of a substrate so that temporal control of an etching process allows formation of the desired pattern. Different exchange bias directions can be established by the use of shape anisotropy for the exchange biased component of a spin valve device. This enables several different magnetic reference directions to be present on a single chip, which allows a more compact magnetic field sensor to be developed. In accordance with features of the invention, different field directions are established on one single chip by using shape anisotropy.
    Type: Grant
    Filed: November 3, 2004
    Date of Patent: January 29, 2008
    Assignee: UChicago Argonne, LLC
    Inventor: Axel Hoffmann
  • Patent number: 7316784
    Abstract: A method of patterning a transparent conductive film adaptive for selectively etching a transparent conductive film without any mask processes, a thin film transistor for a display device using the same and a fabricating method thereof are disclosed. In the method of patterning the transparent conductive film, an inorganic material substrate is prepared. An organic material pattern is formed at a desired area of the inorganic material substrate. A thin film having a different crystallization rate depending upon said inorganic material and said organic material is formed. The thin film is selectively etched in accordance with said crystallization rate.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: January 8, 2008
    Assignee: LG.Philips LCD Co., Ltd.
    Inventors: Byung Chul Ahn, Byoung Ho Lim, Byeong Dae Choi
  • Patent number: 7316783
    Abstract: A method of wiring formation includes forming a feeder film partially on a substrate, forming on the substrate a plating base film via a physical film making method so that the plate base film partially overlaps the feeder film, forming a plated wiring on the plating base film using an electrolytic plating, and selectively removing at least an area of the feeder film which is exposed from the plated wiring, using a wet etching process.
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: January 8, 2008
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yoshiyuki Tonami, Yoshihiro Koshido
  • Patent number: 7313857
    Abstract: A method of manufacturing a magneto-resistive device is provided for reducing a degradation in device characteristics due to annealing. The method includes the steps of depositing constituent layers, which make up a magneto-resistive layer on a base, patterning one or more layers of the constituent layers, forming an insulating layer in a region in which the one or more layers of the constituent layers have been removed by the patterning. For forming the insulating layer, the insulating layer is deposited while irradiating an ion beam of a gas mainly containing a rare gas toward the base after the step of patterning.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: January 1, 2008
    Assignee: TDK Corporation
    Inventors: Takayasu Kanaya, Takeo Kagami
  • Patent number: 7311850
    Abstract: In a method of forming a patterned thin film, first, an etching stopper film and a film to be patterned are formed in this order on a base layer. Next, a patterned first film is formed on the film to be patterned. Next, a second film is formed over an entire surface on top of the film to be patterned and the first film. Then, by removing the first film, an etching mask is obtained from the second film formed on the film to be patterned. The film to be patterned is selectively etched through dry etching using the etching mask. A patterned thin film having a groove is thereby obtained.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: December 25, 2007
    Assignee: TDK Corporation
    Inventors: Akifumi Kamijima, Yoichi Ishida, Koichi Terunuma
  • Patent number: 7291282
    Abstract: The present invention provides a method of fabricating an imprint mold for molding a structure. The method includes directing a first and a second flux for forming a first material and a second material, respectively, to a substrate to form a layered structure having alternating layers of the first and the second material. The method also includes controlling a thickness of the first and the second layers by controlling the first and the second flux and cleaving the layered structure to form a cleavage face in which sections of the layers are exposed. The method further includes etching the exposed sections of the layers using a etch procedure that predominantly etches one of the first and the second materials to form the mold having an imprinting surface with at least one indentation for molding the structure. At least one of the fluxes is controlled so that at least one of the layers has a thickness that varies along a portion of a length of the at least one layer.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: November 6, 2007
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: William M. Tong
  • Patent number: 7270758
    Abstract: A method is presented for fabricating a read head having a read head sensor and a hard bias/lead layer which includes depositing a strip of sensor material in a sensor material region, and depositing strips of fast-milling dielectric material in first and second fast-milling dielectric material regions adjacent to the sensor material region. A protective layer and a layer of masking material is deposited on the strip of sensor material and the strips of fast-milling dielectric material to provide masked areas and exposed areas. A shaping source, such as an ion milling source, is provided which shapes the exposed areas. Hard bias/lead material is then deposited on the regions of sensor material and fast-milling dielectric material to form first and second leads and a cap on each of these regions. The cap of hard bias/lead material and the masking material is then removed from each of these regions.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: September 18, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Shawn Marie Collier Hernandez, Wipul Pemsiri Jayasekara, Timothy J. Minvielle, Benjamin Lu chen Wang, Howard Gordon Zolla
  • Patent number: 7244368
    Abstract: A manufacturing method of a magnetic head includes a process for forming a lift-off mask pattern on a magnetoresistance effect element, such that the upper part of the lift-off mask pattern is larger in size than the lower part, a process for forming a couple of electrodes on the magnetoresistance effect element using the lift-off mask pattern as a mask, and a process for removing the lift-off mask pattern. The process for forming the lift-off mask pattern is performed according to a dry etching process.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: July 17, 2007
    Assignee: Fujitsu Limited
    Inventors: Shoichi Suda, Masayuki Takeda, Keiji Watanabe
  • Patent number: 7235141
    Abstract: A lift-off procedure is provided which enables prevention of damage to a wiring pattern caused by contact of a metal being peeled off from a wafer with a wiring pattern at a time of lift-off procedure. A wafer having a surface on which a pattern is formed which contains a pattern portion to be removed is soaked into a chemical liquid at an angle at which the surface faces downward.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: June 26, 2007
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Masaru Suzuki, Yoshiki Nitta, Kazuhiko Ohmuro
  • Patent number: 7195715
    Abstract: A method for manufacturing quartz oscillators is provided which permits quartz oscillators having an oscillation frequency, as designed, to be obtained with small variation of individual oscillation frequency and with high reliability. The method for manufacturing quartz oscillators according to the present invention comprises the steps of forming a first resist layer (300) on one surface of a quartz substrate (100), exposing said first resist layer to light of a first amount of exposure to form a patterned first masking layer (210), forming a second resist layer (400) on the other surface of said quartz substrate, exposing said second resist layer to light of a second amount of exposure via said quartz substrate to form a patterned second masking layer (410) by using said first masking layer, and etching said quartz substrate to form quartz pieces (150) by using said patterned first masking layer and said patterned second masking layer.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: March 27, 2007
    Assignee: Citizen Watch Co., Ltd.
    Inventor: Tomoo Ikeda
  • Patent number: 7178222
    Abstract: Insulating layers are formed on both sides of a multilayer film, and bias layers are formed in contact with at least portions of both end surfaces of a free magnetic layer. The bias layers are formed so as not to extend to the upper surface of the multilayer film. In this construction, a sensing current from electrode layers appropriately flows through the multilayer film, and a bias magnetic field can be supplied to the free magnetic layer from the bias layers through both side surfaces of the free magnetic layer. Furthermore, the magnetic domain structure of the free magnetic layer can be stabilized to permit an attempt to decrease instability of the reproduced waveform and Barkhausen noise.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: February 20, 2007
    Assignee: Alps Electric Co., Ltd.
    Inventor: Naoya Hasegawa
  • Patent number: 7168155
    Abstract: A method of manufacturing an integrated thin film head comprises, in order to prevent short-circuit among the lead layer, upper lead layer and shield layers, a lower shield layer formed on a substrate, a lower readgap layer formed on the lower shield layer, an MR sensor layer formed on the lower readgap layer, a lead layer jointed with the MR sensor layer, an upper lead layer formed in contact with a part of the lead layer, an upper readgap layer formed to cover the MR sensor layer, lead layer and upper lead layer and an upper shield layer formed on the upper readgap layer. The part of the lead layer in contact with the upper lead layer is formed thinner than the part not contact with the upper lead layer.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: January 30, 2007
    Assignee: Hitachi Global Storage Technologies Japan, Ltd.
    Inventors: Kiyonori Shiraki, Tadashi Imanaka, Atsushi Kato, Matahiro Komuro
  • Patent number: 7118680
    Abstract: A method for fabricating a current-perpendicular-to-plane (CPP) giant magnetoresistive (GMR) sensor of the synthetic spin valve type is provided, the method including an electron-beam lithographic process employing both primary and secondary electron absorption and first and second self-aligned lift-off processes for patterning the capped ferromagnetic free layer and the conducting, non-magnetic spacer layer. The sensor so fabricated has reduced resistance and increased sensitivity.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: October 10, 2006
    Assignee: Headway Technologies, Inc.
    Inventors: Jei-Wei Chang, Chao-Peng Chen, Min Li, Kochan Ju
  • Patent number: 7100270
    Abstract: A method of fabricating printed circuit boards integrating thick film resistor components and thin film circuit portions thereon is disclosed. This is a two-phase process, where the first phase is to create multiple thick film resistors, and the second phase is to create a thin film circuit portion on the substrate with thick film resistors in existence, involving the printing of the electrodes and the resistive coating for the thick film resistors, and the printing of a low temperature passivation layer over the resistors; and the thin film circuit is formed by titanium and copper layers over the substrate, and electroplating of interconnections to form copper plated circuit. The present fabrication process does not require drilling of holes nor electroplating of leads to the resistors, thus the whole process can be automated to a greater extent than with conventional techniques.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: September 5, 2006
    Assignee: Tong Hsing Electric Industries Ltd.
    Inventor: Shao-Pin Ru
  • Patent number: 7090783
    Abstract: A method of patterning self-assembled thin films, including forming a photoresist layer on a substrate and then patterning and etching the photoresist layer. In combination with the etched photoresist layer, a self-assembled layer is formed on the substrate using LbL self-assembly.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: August 15, 2006
    Assignee: Louisiana Tech University Research Foundation as a Division of the Louisiana Tech University Foundation
    Inventors: Tianhong Cui, Yuri Lvov, Feng Hua
  • Patent number: 7043823
    Abstract: A current-perpendicular-to the-plane (CPP) magnetoresistive device, such as a magnetic tunnel junction (MTJ), is formed by patterning a capping layer (e.g., using resist) in the shape of a central region of an underlying free ferromagnetic layer that in turn resides over additional layers of the MTJ. Side regions of the capping layer are removed by ion milling or etching down into the free ferromagnetic layer. Unmasked side regions of the ferromagnetic layer are then oxidized to render them locally non-ferromagnetic and electrically insulating.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: May 16, 2006
    Inventors: Jeffrey R. Childress, Elizabeth A. Dobisz, Robert E. Fontana, Jr., Kuok San Ho, Ching Hwa Tsang, Son Van Nguyen